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Estimating NHL Scoring Rates
Samuel E. Buttrey, Alan R. Washburn, and Wilson L. Price

Abstract

We propose a model to estimate the rates at which NHL teams score and yield goals. In the
model, goals occur as if from a Poisson process whose rate depends on the two teams playing, the
home-ice advantage, and the manpower (power-play, short-handed) situation. Data on all the
games from the 2008-2009 season was downloaded and processed into a form suitable for the
analysis. The model seems to perform adequately in prediction and should be useful for
handicapping and for informing the decision as to when to pull the goalie.
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1. INTRODUCTION 
 
In the final game of the 2009 Stanley Cup playoff series, with just over a minute 
remaining, Detroit Red Wings' head coach Babcock called a timeout and pulled 
goalie Osgood in favor of an extra attacker.  The Red Wings hurled their powerful 
man-advantage attack at the Pittsburgh Penguins, pressing into their zone, cycling 
and looking for an opening.  A whistle set up a face-off near the Penguins’ goal 
with 6.5 seconds left. The Wings won the draw and Zetterberg got a solid shot 
away, but Fleury made a save for the Pens. The rebound went to Lidstrom, who 
let go a likely winner, but Fleury made another save. The Wings battered the 
defensive box as the puck bounded to the right of the net, but time expired before 
the Wings could make another shot. If there had been a few more seconds on the 
clock, would the Wings have scored?  Did Detroit pull its goalie soon enough?  
Could Operations Research have brought the cup back to the Motor City? 

The question of when to pull the goalie has been looked at before. We 
have nothing new to contribute to the methodology for computing the best time to 
pull the goalie, and will use dynamic programming method of Washburn (1991) 
to do so when one is needed. Our main contribution here is to introduce a 
statistical method that will tailor the needed parameters to the particular teams 
that are playing. This same methodology will also enable the construction of a 
scale on which hockey teams can be ranked. We will do so, again using statistics 
from the 2008-2009 season (the Red Wings will end up at the top).  

Hockey is a fluid game where puck possession changes frequently, and 
where scoring can happen at any time. We take the point of view that scoring for 
each team is well modeled as a Poisson process (Breiman, 1986), and our first 
object will be to realistically estimate the rate parameters (the “scoring rates”) for 
those processes in a given game. Statistically speaking, the winner of a hockey 
game will be the team whose Poisson random variable (number of goals scored) is 
larger than the other’s.  

In considering questions related to goalie-pulling, the scoring rates will 
have subscripts that correspond to various game states that the National Hockey 
League (NHL) records as each game progresses. Principal among these is the 
number of players on the ice, which varies with the imposition of penalties. The 
identities of the participating players are also recorded, but we will not use them. 
Puck possession is not part of the recorded state, mainly because puck possession 
is not as clearly defined in hockey as it is in (say) American football.  

The usual statistical dilemma is present here: we want as much data as 
possible, but on the other hand we don’t want to go back so far in time that the 
nature of a team essentially changes. Our solution will be to use all data from the 
current season, but none from previous seasons. Our justification for this is that a 
team’s roster can fluctuate significantly between seasons, but not within a season. 
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This will make our estimates statistically unreliable at the beginning of a hockey 
season, but at their best at the end of the season, as in the introductory vignette.  

The rest of the paper is organized as follows: section 2 describes the basic 
model and describes the different manpower situations in hockey. Accounting for 
these differing situations is important for estimating scoring rates and, eventually, 
for addressing the question of the optimal time to pull the goalie. Section 3 
describes the data acquisition, processing, and analysis task. Section 4 gives the 
details of the model, together with the results and evaluation of the estimation. 
Finally, section 5 offers some conclusions and describes our directions for future 
work. 
 
2. THE BASIC MODEL AND TEAM RANKING 
 
2.1: Scoring Rates 
 
The most direct method of estimating scoring rates would be to simply divide the 
number of goals scored by the amount of time available for scoring them.  Since 
there are 30 teams in the NHL, this method would estimate 3029=870 
parameters ij from a single season’s data, each one being the rate at which team i 

scores goals on team j. There would, for example, be a rate at which the Wings 
scores goals on the Pens. There is not enough data in a single season to reliably 
estimate that many parameters — many pairs of teams play only one game per 
season. We therefore make the reasonable structural assumption that ij is a 

product of factors that include an offensive factor for team i and a defensive factor 
for team j, in addition to a factor for which team is at home. (A tiny number of 
NHL games – two of the 1,230 in our data – are played at neutral sites, in which 
cases we use the NHL’s designation of the “home” team.) Specifically, we 
assume that the scoring rate of team i against team j, for i j , is 

 0ij i jA B D  ,                                                                          (0.1) 

where 0 is the base scoring rate, Ai is the offensive factor, Bj is the defensive 
factor and the factor D depends on whether team i is at home or away. Putting 
aside the home team advantage, in any matchup the team more likely to win is the 
one with the higher scoring rate, so the crucial question is whether i jA B  is larger 

than j iA B . This is equivalent to whether /i iA B is larger than /j jA B , so the ratio 

of each team’s offensive factor to its defensive factor is the desired method of 
ranking teams. 

We choose to deal with (1.1) in its logarithmic form, which is a sum or 
four terms instead of a product of four factors. In that form we have 
 ij i jL        ,                                                                    (0.2) 
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where 0ln( )  , etc. Since equation (1.2) is a sum, we can arbitrarily set 

1 1 0   , and 0  when team i is away. This leaves 60 parameters to be 

estimated. In this form the teams can be ranked by the difference i i  . 

 
2.2:  Adjusting For “Power Plays” 
 
We downloaded and analyzed every National Hockey League (NHL) box score 
from the 2008-2009 season in order to compute team-specific scoring rates. 
(Section 3, below, gives some details on acquiring and processing the data.) The 
ordinary estimate (goals divided by games) feels naïve because no adjustment is 
made for the “power play,” which takes place after some penalties when a player 
is temporarily ejected and his team plays with one fewer player for the duration of 
the penalty. These power-play situations obviously make it easier for the team at 
full strength to score. By computing the lengths of all power-play situations we 
were able to compute improved scoring rates for each team for each manpower 
situation. Under a suitable model these rates can be employed to compute the 
probability of one team beating another. Our model performs reasonably well 
when using twenty days’ worth of data to predict the next day’s games but the 
real contribution of this work may be the construction of this goals-by-manpower 
data set, which we have not seen elsewhere. This procedure also serves as an 
instructive example of data collection in the internet age. 
 
2.2. The Types and Effects of Penalties in Hockey  
 
When a hockey game begins, each team has six players on the ice. One is the 
goalie; the other five are collectively referred to as “skaters.” So in the usual 
terminology the game starts in the “five-on-five” manpower situation. There are 
five sorts of penalties in hockey. “Minor” penalties are the most common sort, 
and are assessed for two minutes, during which the offender (or in some cases a 
proxy) is removed from the ice. The penalized team then plays with four skaters 
until the penalty’s two-minute duration expires, or until the other team scores a 
goal. (We will use “expire” to refer to either of these two outcomes.)  However, if 
two penalties are called simultaneously, both players are removed but the 
manpower situation remains unchanged (unless other penalties are also declared) 
because new players are substituted. In general, when the two teams have 
different numbers of skaters, the team with more is said to be on the “power 
play,” and the team with fewer, to be “short-handed.” Otherwise the two teams 
are said to be “at even strength,” even if the manpower situation is, for example, 
four-on-four. If a goal is scored on a team with an existing (non-simultaneous) 
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minor penalty, the penalty (the earliest minor penalty, if more than one is in 
effect) is ended. 
 A “major” penalty lasts five minutes and is not ended when a goal is 
scored. “Misconduct,” “game misconduct” and “match” penalties do not result in 
a change in the manpower situation and so these are ignored here. 
 Complications in keeping track of the manpower situation ensue in two 
situations. A team may not have fewer than three skaters, so if a team with three 
skaters commits a penalty the penalty is “stacked” – that is, it is not imposed until 
an existing penalty expires.  A second complication occurs during a “double 
minor.” This is a pair of minor penalties imposed on the same player. The first of 
these is imposed immediately (or, if necessary stacked); the second is imposed 
when the first expires. So the second part of a double minor acts like a stacked 
penalty, even when the penalized team has four skaters, except that it is only 
imposed when the first part expires, not when an earlier minor expires. 
 A hockey game consists of three twenty-minute periods. A penalty 
imposed late in one period will extend into the next if necessary. In the NHL’s 
regular season, if a game is tied at the end of sixty minutes, an overtime period 
lasting up to five minutes is played. In the case where no penalties are in effect, 
the overtime period starts in the with four-on-four condition. (A team with 
penalties in effect can have three skaters; if two penalties are in effect for a team, 
then the other team starts the overtime with five skaters.) Such a period is ended 
immediately by a goal. We treat overtime play in the same way as play in 
regulation time. A game that is still tied after the five-minute overtime goes to a 
shootout; we essentially ignore shootouts for the purposes of this paper. In the 
playoffs, there are no shootouts: overtime periods in the playoffs are played at full 
strength, last twenty minutes each, and continue until the first goal is scored. 
 
3. DATA ANALYSIS 
 
3.1: Acquiring and Processing The Data 
 
3.1.1. Events and Intervals 
 
Our goal in this research was to compute the number of minutes that each team 
played against each opponent in each manpower situation. We define an “event” 
as an action in the game which changes (or has the potential to change) the 
manpower situation. We also include the beginning and the end of the game as 
events. A full-strength goal, or a goal scored against a team that is short-handed as 
a result of only major penalties, does not change the manpower situation, but we 
will call these “events” as well. Events that can affect manpower include 
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penalties, the expiration of penalties, and goals scored on a team that is short-
handed as a result of at least one minor penalty. 
 Box scores list goals and penalties, but not expirations, so we had to 
deduce these ourselves. Our parser, then, converted a partial list of events into a 
list of “intervals.” An interval is a set of playing time during which there is no 
change in manpower, together with the number of skaters on each team and the 
number of goals scored by each team during that interval (of course, these could 
both be zero). By computing every interval for every game we were able to model 
goal-scoring (and goal-yielding) rates for each team for each manpower situation. 
 
3.1.2. The Data And the Parser 
 
Data for this effort came from the website sports.yahoo.com. We were able 
to acquire all the game identifiers by automatically examining the “scores and 
schedule” pages, and then read and dump all the box scores using a text-based 
web browser. (Some care had to be taken to separate regular-season from pre-
season games, and the all-star game also needed to be excluded.) As an example, 
the boxscore from the Vancouver/San Jose game of January 20, 2009 is found at 
http://sports.yahoo.com/nhl/boxscore? gid= 2009012018. 
(The final two digits of the address identify the home team, mostly alphabetically 
by city name, so that Boston is 01, Buffalo 02 and so on, down to Washington, 
which is 23; then fairly recent additions Phoenix, Anaheim, Florida, Nashville, 
Atlanta, Columbus, and Minnesota have numbers 24 through 30.) In a small 
number of cases the box scores were internally inconsistent and we verified their 
contents by comparing them to the corresponding ones at CBS Sports.com. 
The boxscore for the Vancouver/San Jose game of January 20, 2009 can be found 
athttp://www.cbssports.com/nhl/gamecenter/boxscore/ 
NHL_20090120_VAN@SJ. Other researchers will find useful similar documents 
at nhl.com as well. 

In text form each of the Yahoo box scores is about 25,000 bytes, and, 
because each of thirty teams plays 82 games, there are 1,230 regular-season box 
scores, all in a consistent format.  

We parse the box scores by means of a number of functions in S-Plus 
(Insightful Corp., 2005). One function converts the text of the box score to a set of 
lists giving times and teams responsible for penalties and goals, in ascending time 
order. (Although it is conventional to refer to times within periods, we convert 
times to global ones in decimal minutes, so that “5:30 of the third period” 
becomes 45.5). When a goal and penalty take place at the same time, the goal 
must have come first.  

The current status of the game is maintained in a list with five 
components. One is the complete list of goals and penalties, in time order, 
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produced by the parser. The set of penalties also includes an indicator of whether 
each is a major, minor, or part of a double-minor. At this stage misconduct and 
paired major penalties have been discarded. 

A second component is the list of intervals generated up to the current 
time. The set of penalties currently in effect, if any, makes up a third component. 
This list includes the offender, the starting time of the penalty, its scheduled 
ending time, and an indicator as to whether it is stacked (in which case the starting 
time shows the time at which it was called, not the time at which it is imposed).  
Other parts of this list are the names of the teams, with an indication of which is 
the home team, and the way the game ended: regulation, overtime, or shootout. 
 
3.1.3 The Parsing Algorithm 
 
Once the game’s text has been parsed, a second function runs through the set of 
goals and penalties implementing this general algorithm: 

1.) Read an event from the list of penalties and goals. 
2.) Check for expiration. That is, before processing this event, find out 
whether any penalties have expired since the most recent event before this 
one was processed. (If this event is the first of the game excluding the 
“game start” event, of course, no penalty can have expired between the 
start of the game and now.) If a penalty has expired between the time of 
the most recent event and the time of the current one, adjust the manpower 
situation at the time of the penalty’s expiration. This step requires a loop, 
because there could have been stacked penalties (or the second half of a 
double minor) that needed to be imposed between then and now, and those 
newly imposed penalties may themselves have expired by the current 
time. A “start new interval” function creates new intervals and adds them 
to the end of the existing list of intervals. 
3a.) If the current event is a goal, score the goal by incrementing the 
scoring team’s goal counter in the current interval. Now check for 
expiration again, since if the team scored on is short-handed it may (or 
may not) get an additional skater. The check for expiration step may 
therefore bring about the creation of a new interval. 
3b.) If the current event is a penalty, impose it. That is, we add this 
penalty to the list of penalties currently in effect. If the penalized team 
already has only three skaters, the penalty is added to the list of penalties, 
together with an indication that it is to be stacked. Otherwise we will 
decrement the number of skaters on the offender’s team and start a new 
interval.   
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3c.) The final event is the end of the game. If a game ends on an overtime 
goal we will have processed this event already. Otherwise we need to 
check for expiration one final time, since one or more penalties may have 
expired between the most recent event and the end of the game. 
 

After applying this algorithm to every box score, we have a list of 
intervals for every game. These intervals are then combined into a single interval 
for each unique manpower situation encountered in the game. There may be as 
many as nine of these (since each team can have three, four or five skaters) or as 
few as one, in a game with no penalties. (In the 2008-2009 season there were two 
games which exhibited all nine possibilities, but there was no game with no 
penalties.) Each interval identifies the visiting and home teams, the numbers of 
skaters, the total time spent in that manpower configuration, and the number of 
goals scored by each of the teams during that configuration. It is also convenient 
to convert each of these records into two, one giving the number of goals scored 
by the home team and a second giving the number scored by the visitors; this is 
the format expected by standard statistics packages. 
 
3.2.  Overall Goal-Scoring Rates 
 
Our final data set has 10,864 rows. Since (as we discuss below) our model 
assumes that goals arise like events from a Poisson process, it is reasonable to 
compute the league-wide scoring rate, by manpower situation. Table 1 shows the 
number of minutes spent in each situation (rounded to the nearest minute), the 
number of goals scored in that situation, and that situation’s scoring rate, 
expressed in goals per sixty minutes. These numbers of goals are lower than the 
official totals for two reasons. First, they exclude empty-net goals – goals scored 
against a team which has removed its goalie in favor of an extra skater. Goals 
scored by the team removing its goalie are included. Second, a team that wins a 
shootout is awarded a goal in the official totals and those goals are excluded here 
as well. Of course the number of minutes teams collectively spent in 5-on-4 is 
exactly equal to the number spent in 4-on-5, and likewise for other i, j pairs with i 
 j. “Type” refers to even-strength (ES), power-play (PP), or short-handed (SH). 
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Manpower Type Goals Time 
(Min.) 

Rate 

5.on.5 ES 4,508 113,957 2.37 

4.on.4 ES 143 2,811 3.05 

3.on.3 ES 11 186 3.55 

5.on.4 PP 1,671 15,321 6.54 

4.on.3 PP 55 506 6.52 

5.on.3 PP 190 601 18.97 

4.on.5 SH 208 15,321 0.81 

3.on.5 SH 2 601 0.20 

3.on.4 SH 11 506 1.30 

Table 1: Number And Rate Per Sixty Minutes of Adjusted Goals By 
Manpower Situation, for All NHL teams in the 2008-2009 Regular Season 
 
4. A MODEL FOR SCORING RATES AND GAME OUTCOMES 
 
4.1. The Assumptions 
 
In this section we specify our model. Under the assumptions of the model (and 
some other assumptions) we can then compute the probabilities of the different 
possible outcomes of any game. We assume that goals are scored according to a 
Poisson process whose rate depends on the teams in question and also on the 
manpower situation. Each team has two parameters, one for offense (denoted by, 
for example, DET for Detroit) and one for defense (denoted by, for example, PIT 
for Pittsburgh). There is, furthermore, one parameter common to all teams for 
each manpower situation (denoted by, for example, γ45 for the 4-on-5, with γ55 
set to the baseline value of zero) and a single parameter (γH) common to all teams 
denoting the size of the home-ice advantage. The intercept is denoted by μ. We 
model the logs of the scoring rates by sums of these parameters. 

So, for example, in a game between Detroit and Pittsburgh, with Detroit 
the home team, and with both teams at full strength, we would expect Detroit to 
score goals at a rate whose log is μ + DET + PIT + γH and Pittsburgh to score 
goals at a rate whose log is μ + PIT + DET. When Detroit goes on the 5-on-4 
power play, we expect the log of its rate to be μ + DET + PIT + γ54 + γH, and the 
log of Pittsburgh’s to be μ + PIT + DET + γ45.  

This model is, of course, naïve. It presumes that the rates are constant 
across all the minutes of every game, regardless of time of season, choice of 
goalie, injuries, or anything else. It presumes that all teams have the same home-
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ice advantage and the same advantage (disadvantage), in a multiplicative sense, 
from the power play (shorthandedness). All minutes in a particular situation are 
interchangeable under the model, and Detroit’s offensive strength and 
Pittsburgh’s defensive strength are taken to be additive on the log scale. Because 
of our success in producing this data, researchers now have the ability to examine 
lots of different models. However, we have not seen much improvement from 
more complicated models, and our model produces interesting results, as we see 
below. 

To recap, the number of goals Detroit scores against Pittsburgh at 5-on-5 
(call it XDET,PIT,5-on-5) is, under the model, a Poisson random variable which 
depends on the parameters and also on the number of minutes during which the 
two teams were in that situation (n DET,PIT,5-on-5). It is usual to think of λ as a rate 
per hour (since a game often lasts an hour) and n as a number of minutes. Under 
our model, then, 

XDET,PIT,5-on-5 ~ Poisson (DET,PIT,5-on-5  n DET,PIT,5-on-5/60) 
and 

log (DET,PIT,5-on-5) = μ + DET + PIT + γH  
 so that 
log (E(XDET,PIT,5-on-5)) = μ + DET + PIT + γH + log (n DET,PIT,5-on-5/60) 

and similarly for all other situations. This is then a Poisson GLM (McCullagh and 
Nelder, 1989) and estimation of the parameters is straightforward. We use the 
statistical packages R (R Development Core Team, 2010) and S-Plus. The critical 
point is that we need to require that the coefficient of the log duration – that is, the 
coefficient of the last term on the right side – be 1; the offset() command in 
those two languages accomplishes this.  This model produces 68 parameters: 29 
for the offense of the thirty teams, with Anaheim (which comes first 
alphabetically) set to be the baseline with value 0; 29 for defense, eight for the 
nine manpower situations, and one for home-ice advantage, plus an intercept.  
 
4.2. The Coefficients 
 
Table 2 shows the offensive and defensive coefficients sorted from best (positive 
for offense, negative for defense). It also shows the actual numbers of (adjusted) 
goals scored by, and allowed by, each team, and the league rankings among those 
numbers. (Non-integer rankings reflect ties.) The rankings, not surprisingly, show 
general agreement between the coefficients of our model and the actual numbers 
of goals scored and allowed. Differences are attributable to differences in the 
numbers of penalty minutes accrued by the teams. 

The coefficients in Table 2 can be interpreted as follows. When Detroit is 
on offense the log of the scoring rate is greater than that of Anaheim by 0.126. 
Since exp(0.126) = 1.13, we conclude that Detroit scores goals at a 13% higher 
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rate than Anaheim does, other things being equal. Boston’s defensive coefficient 
is –.178, and exp(–.178) = .837. So Boston gives up goals at 83.7% the rate of 
Anaheim. Table 3 shows the remaining parameters, together with their 
exponentiated values. We see that, according to the model, teams in a 5-on-4 
score goals at a rate that is 175% greater than at 5-on-5, and teams in a 4-on-5 
score at a rate only 34% of the full-strength rate.  (The numbers in table 3 differ 
from the overall ones in table 1 since these former adjust for the team strength 
parameters). 

 
4.3. Computing Probabilities of Victory 

 
Predicting the outcome of a game is difficult, in part because the distribution of 
penalties is unpredictable. For example, penalties often come in bunches so they 
should not be treated as independent. Conditioning on the number and location of 
penalty minutes in a game would make for better estimates but seems unrealistic. 
For this model, we restrict ourselves to predicting the outcome of a game in which 
there are no penalties at all (which is not very different from the case in which 
penalties are charged equally).  

Suppose that Detroit and Pittsburgh play and that their goal-scoring 
parameters are respectively D and P (for sixty minutes). We observe the two 
Poisson random variables XD and XP, denoting the numbers of goals, and we 
compute X = XD – XP. Then Detroit will win if X > 0, and Pittsburgh will win if 
X < 0.  If X = 0, regulation time will end in a tie; we handle this case later. 

The difference between two independent Poisson random variables is 
known to follow a Skellam distribution (Haight, 1967). The probability that X 
takes on value x is 
 S(x; D, P)  = Pr (X = x | D, P)  

= exp( – (D + P))  (D/P)x/2  Ix (2 [DP]), 
where Ix() denotes the modified Bessel function of the first kind of order x. This 
distribution is not directly provided in R but is easy to compute because of that 
package’s computation of the Bessel functions. The probability that Detroit wins 
in regulation is then just  x>0 S(x). If a playoff game ends in a tie in regulation, 
play continues until a goal is scored. We envision that goals arise from one of two 
independent Poisson processes generating goals at rates D and P per sixty 
minutes, respectively. In this case the game ends if the Detroit process produces 
its first goal before the Pittsburgh process produces one, an event with probability 
D/ (D  + P). Finally, therefore, the probability that Detroit wins a playoff game 
is x>0 S(x) + S(0) D/ (D  + P), versus Pittburgh’s probability of x<0 S(x) + S(0) 
P/ (D  + P).  
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Team Off (α) GF Rank Team Def (β) GA Rank 
Detroit 0.126 280 1 Boston –0.178 185 1 
Boston 0.065 258 2 Minnesota –0.121 191 2 
Washington 0.058 254 3 New Jersey –0.109 199 4 
Philadelphia 0.045 249 4.5 NY Rangers –0.098 207 6.5 
Chicago 0.015 247 6 San Jose –0.085 198 3 
Pittsburgh 0.011 249 4.5 Chicago –0.076 203 5 
Toronto 0.009 242 9.5 Vancouver –0.068 207 6.5 
Anaheim 0.000 235 13 Ottawa –0.052 218 13.5 
Calgary –0.001 243 7.5 Nashville –0.051 215 10.5 
Atlanta –0.006 242 9.5 Florida –0.042 212 9 
San Jose –0.023 243 7.5 Carolina –0.040 210 8 
New Jersey –0.038 233 15 Columbus –0.040 215 10.5 
Buffalo –0.039 241 11 Los Angeles –0.039 217 12 
Vancouver –0.052 235 13 St. Louis –0.024 218 13.5 
Montreal –0.058 235 13 Philadelphia –0.015 229 18 
St. Louis –0.093 220 18 Buffalo –0.010 222 15 
Florida –0.095 222 17 Anaheim 0.000 226 17 
Carolina –0.099 229 16 Pittsburgh 0.002 225 16 
Edmonton –0.108 218 20 Washington 0.029 235 19.5 
Dallas –0.112 219 19 Montreal 0.048 241 23 
Columbus –0.115 215 21 Calgary 0.070 240 22 
Ottawa –0.159 209 22 Detroit 0.087 235 19.5 
Tampa Bay –0.169 205 24 Edmonton 0.092 239 21 
Minnesota –0.170 207 23 Tampa Bay 0.100 259 27 
Nashville –0.176 201 25 Colorado 0.114 245 26 
NY –0.201 193 28.5 Dallas 0.115 244 25 
Phoenix –0.213 196 26 Phoenix 0.132 242 24 
Colorado –0.227 189 30 NY Islanders 0.154 267 28 
NY Rangers –0.245 195 27 Atlanta 0.194 272 29 
Los Angeles –0.250 193 28.5 Toronto 0.249 281 30 

Table 2: Offensive and Defensive Coefficients, Plus Adjusted Goals For (GF) 
and Against (GA) And League GF/GA Rankings 
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Effect Coefficient Exp 

(Intercept) –3.216 0.040 

5.on.5 0.000 1.000 

4.on.4 0.249 1.282 

3.on.3 0.409 1.505 

5.on.4 1.012 2.752 

4.on.3 0.989 2.688 

5.on.3 2.070 7.924 

4.on.5 –1.070 0.343 

3.on.5 –2.476 0.084 

3.on.4 –0.605 0.546 

Home 0.084 1.088 

Table 3: Other Coefficients and Their Exponentiated Values 
 

For the regular season, a game goes to a shootout after five minutes of 
overtime. Detroit will win in overtime if its first goal precedes Pittsburgh’s and is 
also within the first five minutes. This probability is  

P5(D, P) =  [D/(D  + P)] (1 – exp (–5 (D  + P)). 
Pittsburgh will win in overtime with probability P5(P, D), and the game will go 
to a shootout with probability exp (–5 (D + P)). We assign the probability of 
winning a shootout to be 0.5 for each team, which is not unreasonable in light of 
the shootout data. (There is also no evidence of a home-ice advantage in the 
shootout.) So Detroit’s overall probability of winning a regular season game, 
according to the model, is   

x>0 S(x) + S(0) P5 (D, P) + 0.5 exp (–5 (D  + P)), while Pittsburgh’s is 
x<0 S(x) + S(0)  P5 (P, D) + 0.5 exp (–5 (D  + P)). 
Now we can use the coefficient values to get a numeric value for this 

estimated probability. The log of Detroit’s (per-minute) scoring rate at home 
against Pittsburgh is μ + DET + PIT + γH = –3.216 + 0.126 + 0.002 + .084  
= –3.004. Therefore Detroit’s (sixty-minute) rate is 60 exp (–3.004) = 2.975. 
Meanwhile Pittsburgh’s scoring rate has log equal to μ + PIT + DET = –3.216 + 
0.011 + .087 = –3.118, leading to a sixty-minute scoring rate of 2.654. Using the 
computations above, we compute Detroit’s predicted probability of winning a 
home, regular-season game in regulation to be .467, in overtime to be .034, and in 
a shootout to be .053, for a total of .554. Meanwhile Pittsburgh’s probability of 
winning is .446 (.362 in regulation, .030 in overtime, and .053 in a shootout, after 
rounding). When Boston plays at home against the Islanders (to pick teams with 
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very different scoring rates), we estimate a .772 probability of Boston winning, 
versus .228 for the Islanders. 

Teams in hockey are ranked by points, with two points being awarded for 
each win (whether in regulation, overtime or by shootout), and one point being 
awarded for a loss in overtime or shootout. In our example above, the expected 
number of points awarded to Detroit is 2  .554 + (.030 + .053) = 1.19, versus 
Pittsburgh’s 2  .446 + (.034 + .053) = .979. 

 
4.4. Evaluating the Model 
 
We evaluated this model’s fit by comparing its predictions to the actual regular-
season outcomes.  We selected a cutoff date of February 27, 2009. In the 2008-
2009 season, 922 games, roughly 62 games played by each team, were played up 
to and including that date.  

Our predictions came in two forms, “static” and “dynamic.” In static 
prediction, we update the model so that the coefficients reflect all the data up to 
and including February 27th and then predict the outcomes of all the subsequent 
games. In dynamic prediction, we updated the model after each day’s games, so 
that on day d the coefficients reflect outcomes up to (but not including) d. We 
then used the resulting model to predict only the outcomes on day d.  

In both cases we used data starting either at the beginning of the season, or 
(to reduce the effect of games played long ago) starting at day d – n, where the 
“days back” parameter n was set 10, 20 and 30. (It was convenient to count days 
because hockey teams play on different days. Notice that when n is 20, for 
example, models are built on the basis of 19 days.) We then tallied the numbers of 
wins and expected points for all teams across the set of days representing the final 
308 games of the 2008-2009 season.  

One drawback of this prediction scheme is that it uses only the overall 
(even-strength) scoring rates. Knowledge of a game’s penalty structure should 
almost certainly lead to better predictions. Therefore, as a test of the model, we 
also performed prediction when the numbers of durations of the manpower 
situations were taken to be known. That is, we computed the expected numbers of 
goals for each team in a particular game, using the actual numbers of minutes of 
5-on-4, 4-on-5 and so on situations observed in that game. (Obviously in practice 
these numbers are not known until the game is over.) We call these results 
“conditional” since they refer to numbers of goals scored, conditional on the 
number of minutes in each manpower situation. 

Table 4 shows the correlation between the actual number of points 
observed by each team over the final 308 games and the numbers predicted under 
the different parameter settings. 
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 Dynamic Static 
Days back Regular Conditional Regular Conditional 
10 days .682 .752 .314 .334 
20 days .688 .750 .298 .315 
30 days .636 .688 .283 .303 
All season .403 .425 .456 .475 

Table 4: Correlations Between Actual and Predicted Points Under Different 
Settings 

 
The correlation between the predicted and actual numbers of points is 

unmistakable, if not overwhelming. It is no surprise that the “conditional” 
correlations are uniformly better than their regular counterparts, although the 
differences are not always large. Perhaps more surprising is the difference in 
quality between the static and dynamic predictions; the static ones perform much 
worse in the situations where they have only a few days, but better when a lot of 
data is available. This suggests that (among other shortcomings in the model) the 
goal-scoring and goal-preventing rates may be changing fairly quickly.  

By inspection of the table we have selected 20 days as the best number of 
days to use at the time the parameters are estimated. Figure 1 shows the plot of 
the actual number of points acquired by each team (noted by its two- or three-
letter abbreviation) versus the number of points predicted with the regular, 
dynamic, 20-day-back model.  

 
5. CONCLUSIONS 

 
We have constructed a data set containing all the intervals, by manpower 
situation, for every NHL game in the 2008-2009 season. This might serve as an 
instructive exercise in collecting data from the internet. A simple probabilistic 
model for hockey outcomes is described and implemented in standard statistical 
software. Making predictions after about ¾ of the season, we find that dynamic 
predictions perform better than static ones, and that using data from the last 
twenty days improves on using the whole season’s worth. Conditional predictions 
– ones that use knowledge of the number of penalties – perform better than 
unconditional ones, which demonstrates that the knowledge of penalty times can 
be important, but these predictions cannot be used in practice.  
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 In future work we hope to improve these models. It would be instructive to 
examine the rate at which the estimated goal-scoring and goal-preventing 
parameters change. We might consider looking for overdispersion in the GLM or 
other evidence of “streakiness.” These estimates of scoring rates could be put to 
use handicapping games, or used in conjunction with Washburn’s (1991) work to 
determine the optimal time at which one team should pull its goalie when playing 
another specific team. 
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