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Abstract 

Emission games are two-person zero-sum games where P1 emits a 

sequence of symbols from some alphabet while P2 watches until he 

decides to predict what P1 will emit next. P1 does not know either the 

time or details of the prediction. P2 wins if the next symbols emitted 

by P1 are in accordance with his prediction. Time is usually 

considered to be discrete. Two modifications are introduced in this 

paper. One is to make time continuous in a new game called the 

communication game. The other is to explore the value of information 

by making P2 blind, so that P2 does not get to study P1’s emissions 

before making his predictions. 

Introduction 

I believe that emission games were inspired by an incident that occurred 

at the beginning of the Battle of Midway. At one point, the Japanese aircraft 

carrier Hiryu was attacked by a flight of B-17 bombers that attempted to sink 

her by dropping bombs from 20,000 feet. None of the bombs scored a hit-it 

takes on the order of a minute for a bomb to fall from that altitude, and an 

aircraft carrier can do considerable maneuvering in a minute. This incident 

and other similar incidents inspired considerable game theoretic work after 
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World War II, the object being to describe how ships should maneuver,  

when and how bombers should aim bombs, and what the net result of the 

competition would be (Isaacs and Karlin [6]), Dubins [2] and Ferguson [3]). 

The subject is still relevant. A more recent example occurred during the Cold 

War before the advent of ballistic missile submarines. The United States was 

concerned about the possibility of a nuclear first strike by the Soviet Union, 

and considered putting ballistic missiles onto vehicles that could perpetually 

move around in the southwestern desert. It takes about half an hour for a 

missile to get from the USSR to the USA, so the hope was that the vehicles 

could maneuver enough to survive an attack, just like Hiryu. The delay time 

and the lethal radius are both greatly enlarged, but the same issues arose as in 

WWII. 

Very little is known about such games. The initial workers quickly 

realized that considerable abstraction would be necessary in order to have 

any chance of successfully employing game theory. Their bomber-versus-

battleship game is played in one dimension with no time limits, and the 

ship’s only options are to either move forwards or backwards at every 

discrete time instant. The one-step game was easily solved, the two-step 

game turned out to be much harder (Dubins [2])), and the three-step game is 

still unsolved, albeit well approximated (Goodson [4] and Lee and Lee [8]). 

Part of the difficulty with the bomber-versus-battleship game is that there 

are multiple emission strings that can result in the same target location. 

Matula’s [9] emission prediction games are simpler because both sides are 

concerned with the occurrence of only one particular emission string. P1 

emits symbols from some alphabet one at a time. P2 can observe as long as 

he wants, but must eventually predict that the next symbols will not be the 

string for which the game is named. Using Matula’s notation, for example, 

EP1100 has an alphabet with only two characters, and P1 wins unless P2 

successfully predicts that the next four characters emitted will not be 1100. 

EP11 is trivial because P1 can win by emitting nothing but 1’s, but EP1100 

is not trivial. In addition to solving the game, Matula shows that no finite 

memory for the number of symbols already emitted will suffice for P1. 
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The first game we will consider here can be thought of as a modification 

of an emission prediction game where time is continuous, rather than 

discrete. Instead of choosing a single time to act, P2 must choose an open 

interval of “act time”. 

The Communication Game (CG) 

This game is played on the nonnegative real line, hereafter “time”. P1 

emits “starts” at any sequence of times that he desires, and wins if any start 

has two properties, those being 

1. The start must be “valid” (see below), and 

2. There must be no succeeding start within time L of it, L being one of 

the two parameters of the game. 

P2 can watch P1 make starts as long as he wishes, but must eventually 

choose some open subset of time within which subsequent starts will be 

valid. That subset can itself consist of subsets and P2 can rearrange it in the 

future as he wishes, but the total measure of the set of open times must 

eventually be at least T, the other parameter of the game. P1 cannot observe 

any of P2’s actions. Both players know both parameters. 

To be complete, we must describe the payoff in extreme cases. If P1 

emits only a finite number of starts, none of which are valid, he loses even if 

P2 does not allocate all of T. Otherwise P1 wins if P2 does not allocate all of 

T. 

I call CG the communication game because P1 might be trying to send a 

message of length L over a channel guarded by P2, with P2 being forced for 

some reason to relax his guard (open the channel) for an amount of time T. 

To succeed, P1 must start his message at one of the “valid” times left open by 

P2. Only the start of P1’s message needs to be in a valid interval, perhaps 

because it includes a key that is required to decode the rest of the message. If 

P1 interrupts himself by making another start too soon after a valid start, the 

message received on the other end of the channel will be incomplete, hence 
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the second rule above. The nomenclature of sending messages will be useful 

in the sequel. A message will be called “complete” if it is not interrupted, and 

“successful” if it is both valid and complete. P1 wins if any of his starts are 

successful. 

It is not true that P1 should never interrupt himself. If he were to adopt 

any emission strategy with that property and announce it to P2, as he is free 

to do if the strategy is optimal, P2 could simply wait for an invalid start and 

then safely allocate an open interval within the next L units of time, perhaps 

of length .2L  By repeating that action with subsequent invalid starts, P2 

could dispose of the entirety of T without ever risking a valid start. 

Occasionally interrupting himself has got to be part of P1’s optimal strategy. 

It turns out that P1’s optimal strategy is to make starts in a Poisson 

process. A complete proof of this can be found in Appendix A, but the rest of 

this paragraph may suffice. If  is the rate of P1’s Poisson process, then the 

average number of valid starts will be T  regardless of how P2 distributes T 

(P2’s ability to monitor P1’s starts is of no use to P2 because of the lack of 

memory of the exponential distribution that separates starts). Each of P1’s 

starts will be a successful transmission with probability  ,exp L  so the 

average number of successful starts is  .exp LT   To maximize this 

quantity, P1 should choose  to be ,1 L  and the maximized average number 

of successful transmissions is then  ,eLT  where e is the base of natural 

logarithms. If the actual number of successful transmissions is a Poisson 

random variable, the probability of at least one such is   ,exp1 eLT  

which we will show to be the value of the game. The hypothesis that the 

number of successful transmissions is a Poisson random variable is actually 

false, hence the need for Appendix A, but the conclusion is nonetheless 

correct. 

Player 2’s optimal strategy is more complex than P1’s. To describe it, 

begin by partitioning time into cycles marked by the end of a completed 

message, with the first cycle starting at time 0. Whether complete messages 
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are successful is irrelevant as far as cycles are concerned. Any given cycle 

might include several incomplete messages, but by definition will include 

only one complete message. The cycling structure is entirely under P1’s 

control. 

If a cycle ends at time (say) t, P2 selects a random variable X from a 

carefully chosen density  f  that will be described later, and, if the next 

cycle does not end before ,Xt   opens the channel for a small valid time 

interval  just after .Xt   Call this event A for “act”. Event A happens if and 

only if the next cycle does not end before .Xt   If A does not happen, then 

P2 does nothing in the cycle that begins at t, and will independently draw 

another X for the following cycle. At some time ,yt   P1 will start his next 

complete message. Event A is the event that .XLy   Note that P2 does 

not need to know y in order to act, since all he needs to observe is that the 

current cycle has not ended. If and only if yt   lies in the open interval  

just after ,Xt   as it will with probability  yf  if P2 acts, then P1 wins in 

the current cycle, call that event W for “win”. The conditional probability 

that P1 wins in the current cycle, given that P2 acts, is therefore 

     ,LyFyfAWP   where  F  is the cumulative distribution 

function corresponding to density  .f  P1 controls y and will maximize the 

ratio involved in  .AWP   For P2, the problem therefore arises of finding 

the density  f  that makes the maximum value of that ratio be as small as 

possible. 

The density that P2 desires is one of a class called “distribution 

constrained densities” by Matula [9]. It is useful to introduce an intermediate 

function  uG  in describing them.  uG  is the solution of an ordinary 

differential equation    1 uGuG  for ,0u  where  is a parameter 

and  uG  is defined to be 1 for .0u  The solution is   uuG  1  for 

,10  u  then a quadratic function for ,21  u  then cubic, etc., in 

successive unit intervals. The details are in Appendix B, but it turns out that 

  0uG  for all u as long as .10 e  If  uG,0  becomes 
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negative at some point .0u  Figure 1 plots  uG  for two values of . When 

0,5.0 u  is approximately 2.7. When  uG,0  never quite becomes 

negative, hence the term “boundary function”. It will be shown in Appendix 

B that the area under the boundary function is .7.11 e  

 

Figure 1. The function  uG  for two values of . The boundary curve is for 

.0  

As long as ,0  P2 can use  uG  to make sure that the critical           

ratio is .L  P2 does this by setting    LxuGxF  0  for .0x  That 

function rises monotonically from 0 to 1 as x increases from 0 to 0Lu                

and is 1 for larger values of x, so it is a legitimate differentiable                  

cumulative distribution function. The corresponding density is   xf  

    ,0 LLxFLLxuG   hence the critical ratio is .L  

In order to win, P2 must act T  times without any of those         

independent acts leading to a successful transmission. The probability of       

this is   ,1  TL  and the limit of this expression as δ approaches 0 is 

 .exp LT  Thus this strategy for P2 guarantees, in the limit where P2 

makes  nearly 0  and  nearly 0, that the probability that P1 wins cannot 

exceed   .exp1 eLT  This is the same value that P1 can guarantee by 

using a Poisson process of starts, so CG is solved. 
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The communication game would be boring to watch, especially when P2 

is conservative. P2’s samples of X in the successive cycles tend to be very 

large when  is not much larger than ;0  the parameter 0u  becomes very 

large, and the amount subtracted from 0u  in the process of obtaining X 

cannot on the average exceed 1.7, the area under the boundary curve. In most 

cycles, a conservative P2 will not act. Even when P2 acts, in most cycles 

nothing will happen because  is so small that P1 is unlikely to make a start 

in the valid interval. None of this dalliance should be surprising, since 

information is free to P2 in CG and, as every statistician knows, there is 

always something to be said for gathering more data. 

Assessing the Value of P2’s Information Advantage 

CG without information 

The communication game is still well defined even if P2 does not have 

the privilege of monitoring P1’s emissions before deciding what set of times 

to leave open, and solution of the revised game (call it IG for “Intersection 

Game”) would be illuminating as to the value of information. In IG, the 

argument that P1 should never interrupt himself is correct, since any start that 

is subsequently interrupted should simply be deleted because it cannot 

succeed and might itself serve as an interruption. In fact, it is conceptually 

simpler to omit the idea of interruption and simply require that P1 chooses a 

set of starts that are all separated by at least L. P2 chooses a set of open times 

with measure at least T, and P1 wins if and only if the sets intersect. By 

comparing the values of CG and IG, the value of P2’s information in CG can 

be determined. 

P2 cannot use his CG strategy in IG because he cannot observe P1’s 

starts. One reasonable strategy for P2 would be a “confetti” strategy where 

the open times come in the form of widely distributed, randomly placed 

small bits. P2 picks any long interval of time of length S, independently 

locates n random points within S and surrounds each point with an open 

interval of length .nT  The probability that there is no overlap is 
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 





1

0
,1

n

i
Si  which P2 can make approach 1 by making S large, as he will 

want to do anyway. P1 can make at most  LSm  1  starts within S, each 

of which will win for P1 if it starts within one of the open intervals. Each 

invalid start establishes an additional interval of length  that is not open, so 

the probability that all attempts are invalid is   





1

0

.1
m

j

jSTP  Since 

 can be made small by increasing n, we have PnS  limlim  

   .exp1lim LTST LS
S    This strategy for P2 with large values 

for n and S thus establishes an upper bound of  LT exp1  on the value of 

IG. 

P1 might be attracted by the “comb” strategy of emitting a start every L 

units of time, since doing so maximizes the density of starts. To incorporate 

unpredictability, the first start could be made uniformly at random in the 

interval  .,0 L  However, the win probability guaranteed by that strategy is 

0. P2’s counter would be to use a comb strategy himself, with T  small 

intervals of length  separated by L. The two combs will intersect with 

probability ,L  which P2 can make as small as he likes, so P1 cannot 

guarantee a win probability of anything greater than 0 using the comb 

strategy. P1 has a conflict between start density and unpredictability, and the 

comb strategy is not sufficiently unpredictable. P1 could still use his CG 

Poisson process, improving it after generation by removing interruptions as 

described above. Doing so would guarantee at least the CG value as a lower 

bound, but this still leaves a significant gap between the upper and lower 

bounds. I do not know the solution of IG. I hypothesize that the best strategy 

for P1 is actually a renewal process where all of the independent interstart 

times are L plus a uniform random variable. I also hypothesize that the 

confetti strategy is not optimal for P2. Both of these hypotheses are prompted 

by the solution of the discrete equivalent introduced next. 
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A Discrete Version of IG 

The discrete version of IG is played on the set of positive integers, rather 

than the nonnegative real line, and P2 is required to select a certain number 

of integers, none of which he hopes will be included in the set selected by 

P1. Call the game jkG  if P1 is required to have the absolute difference 

between any two of his selected integers be at least j and if P2 is required to 

select k integers. 

The value of jG0  is zero because P2 can choose the empty set, and the 

value of 1kG  is 1 for 0k  because P1 can include every integer. 12G  is 

almost as simple: P1 selects all the odd integers or all the even integers on a 

coin flip, P2 chooses either 1 or 2 on a coin flip (any other pair of 

consecutive integers would do as well), and the value is .21  In fact, the 

value of jG1  is ,1 j  with P2’s strategy being to randomize over any j 

consecutive integers. Since P1 cannot include more than one of those 

integers in his chosen set, he can win at most one time in j. P1’s optimal 

strategy is also simple: P1’s lowest integer i is equally likely to be any of the 

first j integers, and the rest of his set consists of .,3,2, jijiji   

Every positive integer is included in one of those j possible sets, so P1 can 

guarantee the same value as P2. P1’s strategy is the discrete version of the 

comb strategy that is not optimal for P1 in IG, but it is optimal in .1 jG  P1 

does not have a conflict between density and randomness in ;1 jG  his chosen 

strategy is always maximally dense, always including the fraction j1  of the 

positive integers, and the randomness of his initial integer is sufficient. We 

will show below that this is not the case for .2k  

It is of interest to compare jG1  with an Emission Prediction game jEP  

where the crucial character string is a 1 followed by 1j  zeros. The only 

significant difference between the two games is the information that P2 gets 

as he watches P1’s emissions in .jEP  If the rules of jEP  are modified so 
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that P2 cannot observe P1’s sequence before making his prediction, we have 

a game that is essentially jG1  because P1 would lose by interrupting the 

string once it is begun; that is, every one of P1’s 1’s should be followed by at 

least 1j  0’s. The comparison thus shows the value of P2’s information in 

.jEP  Matula [9] shows that the value of jEP  is   ,1 1 jj jj   considerably 

smaller than the value of .1 jG  Since   ,11lim 1 ejjj jj

j
 


 it might be 

said that the value of information in this circumstance is a factor of about 2.7 

in the value of the game. 

The game kjG  gets more complicated if .1k  In ,1 jG  P1’s selected 

integers always differ by exactly j, thus making the selected set be as dense 

as the rules permit. If P1 were to do that in ,2 jG  then P2 could exploit the 

predictability of that tactic by selecting two integers that also differ by 

exactly j, thus holding P1 to winning only one time in j, just as in .1 jG  As in 

IG, P2’s comb would defeat P1’s comb. When P2 is required to select         

more than one integer, P1 must introduce some additional variety into his 

selection, even at the cost of reducing its density. The following theorem 

gives the solution of ,2 jG  with an optimizing strategy for P1 included in the 

proof. 

Theorem. The value of jG2  is      ,1212  KKjKV  where 

K is the largest integer in .j  

Proof. We will show that both P1 and P2 can guarantee V, considering 

first P1 and then P2. 

It is convenient to imagine P1 selecting positive integers in an increasing 

sequence because that sequence can be described as a Markov chain, even 

though it is only P1’s chosen set (not the order of choice) that matters           

in the payoff. We will use “state” to mean the largest integer generated                   

so far in that sequence. From state i, P1 advances to each of the                       

states Kjijiji  ,,1,   with equal probability, that probability 
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necessarily being  .11  KQ  The average advance is ,2Kj   so only a 

fraction  21 Kjf   of the integers will appear in this sequence. P1’s 

object is to make every positive integer appear in this sequence with 

probability f by carefully choosing the initial state. Specifically, P1 initially 

chooses states j,,1   with probability f each. The total initial probability 

for those states is only jf, which is less than 1, but P1 also initially chooses 

state ij   with probability    11  KiKf  for .1 Ki   This makes 

the total initial probability be 1, and also makes the total visitation 

probability be f for every positive integer. State ,1j  for example, is 

initially chosen with probability  ,1KKf  but is also visited from state           

1 on the first advance with probability fQ, making the total visitation 

probability f. It is only the total visitation probability that matters - the 

advance on which the visit occurs is irrelevant as far as the payoff is 

concerned. 

Against this strategy for P1, suppose P2 selects the two distinct integers 

m and n, with ,nm   let ,mnk   and let mE  and nE  be the events that 

those integers occur in P1’s sequence. The event that P1 wins is ,nm EE   

the union of the two events. P1’s strategy makes the probability of both 

events be f each, but the probability of winning is less than f2  because           

mE  and nE  are not mutually exclusive. We must subtract the probability                 

of the intersection to find P1’s win probability. Let  mimi EEPp    for 

,0i  which is independent of m. Then 0ip  for ,0 ji   since the  

state must always advance by at least j. Also, Qpi   for Kjij   

because the only way to advance by i in that range is by a single           

transition. The sequence subsequently satisfies the recursion ip  

   11   Kppp Kjijiji   for .Kji   The largest number 

in this sequence is Q by induction, since every calculation is an average          

of numbers that do not exceed Q. Since   ,fEP m     ,knm fpEEP   

which cannot exceed fQ. Therefore, 
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    112  KffQffEEP nm   

       .1212 VKKjK   

This expression is maximized by making K the greatest integer in ,j  as 

stated in the theorem, but it is not necessary to establish that here because it 

follows from the fact that P2 can guarantee the same value, as will be shown 

next. 

P2’s strategy is to select one integer m uniformly at random from the set 

 ,,,1 MS   where M is a large number that can be revealed to P1, and 

then to randomly choose an advance i in the interval  Kjj ,  to obtain his 

second number ,imn   except that P2’s second number is Mimn   

should im   exceed M. The probability distribution that P2 uses to advance 

is not uniform like P1’s. Instead P2 uses a distribution q that makes the 

differences iq2  be proportional to i. If C is the proportionality constant, 

then necessarily    





Kj

ji

KjKCCi .21  But the same sum must also 

be    





Kj

ji
i KKq ,12112,2  so      .1212  KKjKC  

Since C equals V, we will refer only to V from here on. 

To develop P1’s optimal response to P2’s strategy, we first observe that 

P1 must choose at least one number within S, since otherwise he will lose. 

Let his sequence of choices in S be Nss ,,1   in ascending order, and define 

the advance from ks  to be kk ss 1  except that the advance from Ns  is 

defined to be .1 NssM   The sum of all N advances is M. 

Let ix  be the number of times that P1’s advance is i. Then  
i i Mix  

and the total number of integers in P1’s sequence is 
i ixX .  Since P2’s 

first choice m is selected uniformly at random within S,   ,MXEP m   and 

for the same reason, it is also true that   .MXEP n   The probability that 
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both events occur is ,Mxi  since it is merely a question of whether n is 

within the set of P1’s integers wherein the advance is i. The probability 

distribution required for removing the condition on P2’s advance is known, 

so we can write 

        .2 MxqXEEPEPEPEEPv
Kj

ji
iinmnmnm 












 





  

The vector x must consist of nonnegative integers, at least one of which 

is positive. With one exception, ix  must be 0 for .ji   The exception is 

because the advance from Ns  can be as small as 1 1(s  could be 1 and Ns  

could be M). P1 can therefore set 1x  to 1, rather than 0, which he should do 

if v is to be maximized. Taking account of this and recalling that ,2 Viqi   

we can rewrite the equation for v as 

    











Kj

ji
Kji

Kj

ji
Kji iiiii xixVxqxMv .22222  

But  





Kj

ji
Kji ii ixMix .1  Substituting, we have  12  MVMv  

   
Kji i Vix .2  The factor  Vi2  is never positive within the sum, 

even when the index i is at its lowest value .1 Kj  Some elementary 

algebra reveals that the factor is positive if and only if   ,1 2 Kj  which 

is false because K is the greatest integer in .j  Therefore, P1 can do no 

better than to make 0ix  for ,Kji   and the maximized v is 

  .12 MMVM   Since M is P2’s choice, he can make v be as close to V 

as he wishes by making M large, and therefore V is the value of the             

game.  

The theorem gives an asymptotically optimal strategy for P2, but there 

are cases where P2 can guarantee V without approximation. Consider .22G  
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In that game P2 can randomly choose a pair of integers from the set           

{13, 24, 35, 46, 25}, each pair having probability .51  After listing all of 

P1’s possible sequences up to integer 6, one can observe that P1 has no 

sequence that will intersect more than three of those pairs, so he cannot win 

with a probability exceeding ,53  which is V. 

It may even be true that P2 always has an optimal strategy, but, if he 

does, it is not easy to discover. Consider making M be a parameter of the 

game, rather than a choice for P2, so that both players are required to choose 

integers not exceeding M. If M is required to be anything larger than 5 in 

,22G  the game value is still 53  and P2’s optimal strategy does not change. 

Similarly there is a mixed strategy for P2 in 23G  that will assure V (which is 

)73  for any .10M  However, I have been unable to discover a value for 

M that is large enough that the value of the modified 24G  is V as stated in the 

theorem. The largest value considered so far is ,17M  where one can 

enumerate all of the strategies for both sides and solve the game by linear 

programming. The value of that game is ,360121  slightly larger than 

,31V  and the optimal strategies are as complicated as the denominator 

360 would suggest. This situation is reminiscent of Johnson’s [7] comments 

about a different game played on the first M integers where P1 selects an 

integer and P2 makes a sequence of guesses that are reported to be either 

high or low until he finally finds P1’s integer. Johnson solves this game for 

,11M  commenting that the case 11M  is more complicated than the 

others. 

There is a hint here that the confetti strategy evaluated earlier for P2 is 

probably not optimal. The strategy of selecting two integers independently at 

random from some large set is certainly not optimal for P2 in .2 jG  P1 could 

counter with a comb and win with probability   ,111 2j  which is larger 

than the game value. 
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Summary 

The communications game CG is a kind of emission game in continuous 

time. CG has been solved for all values of its two parameters. Seemingly, it 

would be simplifying to remove P2’s information advantage in CG, thus 

enabling an assessment of the importance of information, but the resulting 

game IG has not been solved. The solution of some discrete versions of IG 

may nonetheless be useful to others who are interested in the subject. 

Appendix A. Player 1’s winning strategy in the communications game 

Here we will show that P1 will win with a probability that is at least the 

value of the game by emitting starts in a Poisson process with rate .1 L  

The only fallacy in the earlier argument in the text is the assumption that the 

number of successful starts is a Poisson random variable. If LT   and if P2 

utilizes a single open interval of length T, for example, then the number         

of successful starts is 0 if the number of starts in that interval is 0, or 

otherwise 1. 

It is convenient to generalize so that the amount of time remaining for P2 

to allocate is t, with .0 Tt   P2 will then face a Markov decision process 

with a state that includes t and whether the most recent start is valid or 

invalid. The lack of memory of the exponential distribution that separates the 

starts in P1’s Poisson process justifies that statement, and also means that we 

do not need to incorporate the amount of time expired since the last start as 

part of the process state. Let  tP  and  tQ  be P1’s win probabilities when 

the most recent start is valid or invalid, respectively. In either case, P2          

will open the channel for an interval of length . Again because of the 

memoryless property of the interstart times, the open interval can be assumed 

to start immediately after the most recent start. Let X be the time from P1’s 

most recent start to the next start, an exponential random variable with 

density    .exp xxf   If the most recent start is invalid, then the 

succeeding start will be valid only if X is in the interval  ,,0   and the 

amount of time remaining for P2 to allocate will in that case be decreased by 
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X. Otherwise, P2 will rejoice because the next start will also be invalid and 

he will have  less time to leave open. In other words, P1’s conditional win 

probability is  XtQ   if X  or  tP  if .X  Removing the 

condition, we have a functional equation for  :tP  

          .expinf
0

0






  


 tPdxxtQxftP t  

We use “inf” rather than “min” because P2 is not free to make the open 

interval null. If he did, the situation would repeat indefinitely and P2 would 

never open the channel, thus losing to P1. 

The situation is similar if the most recent start is valid, except that P2 is 

free to use an empty interval and P1 wins if X exceeds L, as will happen with 

probability  .exp Lq   The corresponding functional equation for  ,tQ  

after noting that     
L

qdxxf ,exp  is 

             .expmin
0

,min0






  


 tPqdxxtQxfqtQ Lt  

Making  larger than L would be pointless after a valid start because P1 

will win if the next start advances by more than L, hence the restriction             

on  in the equation. P2 is free to make 0  after a valid start, since          

there is no danger of the situation repeating. If he does, we have 

     .1 tPqqtQ   We will show, in fact, that the only differentiable 

solution of the two functional equations has P2 doing exactly that, with  

being any positive number after an invalid start. 

If  is infinitesimal after an invalid start, the equation for  tP  becomes, 

to terms of first order with  tP  being the derivative of  ,tP  

               .110 tPtPtPqqftP   

After cancelling second order terms and then cancelling , this reduces to 

   .tqPtP   Since   ,00 P  the only solution is    .exp1 qttP   
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It remains to be shown that this solution is in fact minimizing. When the 

analytic expressions for  tP  and  tQ  are substituted into the right-hand-

side of the functional equation for  ,tP  it evaluates to  ;exp1 qt             

that is, P2’s choice of  is immaterial after an invalid start, as long as             

 is positive. The RHS of the functional equation for  tQ  evaluates             

to     .expexp1  tqqqt  This is an increasing function of , 

confirming the assumption that P2 should make 0  after a valid start. 

Appendix B. Distribution constrained densities and the function  uG  

In this appendix, we describe the function  uG  defined in the text as the 

solution of the ordinary differential equation    1 uGuG  for ,0u  

with   1uG  for .0u  The parameter  can be either positive or           

negative and it is slightly easier to deal with nonnegative quantities, so                        

for immediate purposes, define .  For an explicit solution of the 

differential equation, first define 11 G  and then the sequence of functions 

   


 
n

j

j
jnn jxGxg

0
1 !. If we take  ,1nn gG   then the sequence 

,, 10 GG  is defined iteratively by evaluating     ,1,1 10 gg  in that order. 

It is easily verified that    xgxg nn 1  for 0n  and that   10  nn Gg  

for .0n  Thus  xgn  advances from 1nG  to nG  as x advances from 0 to 

1. The function  uG  can now be defined in intervals as    ;1 nuguG n    

,0u  where n is the greatest integer in u. Note that the intermediate 

functions  xgn  can be dispensed with if it suffices to know  uG  at only 

nonnegative integer values n, since   nGnG   and  


 
n

j

j
jnn jGG

0
1 !. 

Although there is no simple closed-form expression for  ,uG  simple 

closed-form transforms can be determined. Consider the power series 
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  





0
.

n

n
nzGzF  To determine  ,zF  first note that  !11

1  
 nG n

n  




 
n

j

j
jn jG

0

!.  The summation is in the form of a convolution, and the 

power series for !jj  is  ,exp z  so upon multiplying both sides by nz  

and summing, we get          .exp1exp1 zFzzzzzF   The 

solution is     .exp1 zzzF   The Laplace transform of  uG  can 

also be similarly obtained. It is 

            



0

.expexp11exp ssssdusuuGs  

For the area under the boundary function, take 0s  and e1  to find 

that the area is .7.11 e  

It is crucial for P2 whether  uG  ever becomes negative for some value 

of u, since in that case (and only in that case), the function can be converted 

into the distribution function that P2 needs. The claim in the text is that this 

will happen if and only if .1 e  Matula [9] essentially proves this when   

he shows that, as long as   ,1 1 MM
M MM   where M is a        

large integer, there exists a probability distribution ,, 21 xx  such that 







1

1

,
Mi

j
ji xx  for all .0i  To prove the corresponding continuous 

result, divide time into small increments of length M1  and define the 

density function    ixxf  for x in the small interval   .1 ixi   

For x in that interval, the corresponding cumulative density function is 

  





1

1
,

i

j
ij yxxxF  where y is the nonnegative amount that x exceeds the 

lower bound of the interval. Therefore, since ,1  M  
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   





1

1

,1
Mi

j
ij xfxxxF  

as long as ,M  where the middle inequality is Matula’s. But M1  

and ,1lim eM MM   so we have established the existence of a density 

function satisfying    1 xFxf  for all positive x, as long as .1 e  

That is possible only if the function  uG  becomes negative, as described in 

the text. 
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