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Abstract 

This paper introduces EPIMOD, a generalization of the susceptible-
infected-recovered (SIR) epidemic model. The generalization is 
essentially to expand the infected compartment of SIR into a transient 
class of compartments in a continuous-time Markov chain. EPIMOD is 
general enough to encompass a variety of communicable diseases, 
while still being simple enough to enable planning for their 
consequences and containment. Stochastic and deterministic analyses 
are made and compared. Examples include one based on an Ebola 
epidemic in the USA. 

1. Introduction 

Kermack and McKendrick [10] introduced a deterministic epidemic 
model that is now referred to as the susceptible-infective-recovered                   
(SIR) model. Subsequent work has generalized SIR to include more 
“compartments” of the disease, including the SEIR model that adds the              
E-compartment of victims who are exposed but not yet infective and the 
SEQIJR model of Gumel et al. [6] that has two additional compartments for 
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intermediate stages of the SARS disease. In addition to these generalizations, 
it has been observed that the data for any of these models can be interpreted 
either deterministically, as a system of ordinary differential equations, or 
stochastically as a continuous-time, finite-state Markov chain. This paper 
introduces a general epidemic model EPIMOD that encompasses SIR, SEIR, 
SEQIJR and other similar models. Section 3 is a deterministic analysis and 
Section 4 is a stochastic analysis. Section 5 includes a rough Ebola epidemic 
planning model. 

By “epidemic” is meant the introduction of a new or mutated 
communicable disease into a population. History has many examples of 
epidemics, including the introduction of smallpox to the New World, the 
worldwide 1918 influenza epidemic, the 2014 Ebola epidemic in West Africa 
and the 2014 Ebola epidemic in the USA. The first two were disastrous, 
whereas the fourth died out soon after it was introduced (“fizzled”, as we 
shall say). Ebola is apparently endemic in Africa, but in the other three 
examples the causative agent has by now died out, a feature that will always 
be the case in EPIMOD. As we use the term epidemics always die out in the 
sense that the initial causative agent ultimately leaves no offspring, even 
though the number of cases caused in the meantime can be explosively large. 
In fact, as we use the term epidemics die out quickly enough that birth rates 
and immigration rates within the affected susceptible population can be (and 
are) assumed to be negligible. Explosiveness is a possible but not necessary 
feature; in fact, one of our objects in Section 4 is to determine the probability 
of “fizzling”, a term we use to mean “does not explode”. 

Difficult questions arise in planning for epidemics. By now we are 
familiar with the properties of smallpox and know how to make effective 
vaccines, but, considering the cost and shelf life of vaccines and the 
unlikelihood (but not impossibility) of a smallpox epidemic, how much 
vaccine should be stockpiled, and under what circumstances should it be 
administered to whom? Should vaccines for other potential epidemic agents 
be developed, and if so should they be produced or is it sufficient to simply 
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have a plan for producing them? Is it worth the cost to construct facilities for 
isolation that will be useless unless there is an epidemic? In the particular 
case of Ebola, one of the current problems is the lack of a cheap and fast 
diagnostic tool – without one, isolation facilities could easily be 
overwhelmed. Should such a tool be developed or improved? Although 
questions like these can be difficult, epidemics must still be planned for. Our 
goal for EPIMOD is that it should be sufficiently flexible to deal with a 
variety of epidemics and responses to them, while at the same time being 
sufficiently simple to enable these crucial analyses. 

2. EPIMOD, a Completely Mixed Epidemic Model 

In this paper, vectors and matrices will be represented in bold, non-italic 
type, while scalars will be italic but not bold. The components of a vector or 
matrix will be given the same alphabetic symbol as the vector or matrix. 
Thus, the vector ( )nxx ...,,1  will be named x, and if A is a matrix, then the 

element in row i and column j is .ijA  The symbol ”“≡  means “by definition”. 

EPIMOD is a continuous-time Markov chain whose state is a vector 
( )rs ,, x  of counts of individuals who are either “susceptible”(s), 

“removed”(r), or in one of a finite number of infected “compartments” of the 
disease (row vector x). An infected susceptible enters one of n compartments, 
circulates among the compartments for a while, possibly infecting other 
susceptibles in the process, and ultimately enters the absorbing state R, which 
can stand for either “recovered” or “removed”. Once in R the victim can 
never infect anybody again, nor ever again be infected. The susceptible 
population decreases by unity with each new infection, and never increases. 

A probability distribution represented by row vector p is given. A newly 
infected susceptible enters compartment i with probability .ip  Also given are 

n-vectors v (a row with all positive components) and c (a column with no 
negative component) whose meaning will be explained shortly, and an 
( ) ( )11 +×+ nn  Markov transition matrix P whose states correspond to the 
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compartments augmented by the absorbing state R, which has index .1+n  
Except for ,1,1 ++ nnP  which is 1, all diagonal elements of P are 0, and it is 

assumed that all states of P except for R are transient-all infected individuals 
ultimately enter state R. 

Every occupant of compartment i leaves compartment i at rate ;iv  that is, 

he remains in compartment i for an exponentially distributed time with mean 
.1 iv  The SIR model described by Kermack and McKendrick [10] includes 

the possibility that the compartmental dwell times are not exponentially 
distributed, but dwell times are always exponential in EPIMOD. A partial 
remedy for this restriction is that EPIMOD can have many compartments. 
Any dwell time that is a sum of independent exponentials can be modeled, so 
all Erlang-type dwell time distributions are available. 

While in compartment i, each victim infects each susceptible at rate .ic  

When the victim leaves compartment i, he instantly transitions to state ij ≠  

with probability ,ijP  moving among the compartments until state R is finally 

encountered. It is assumed that the fate of every occupant of a compartment 
is independent of the fate of every other occupant, and that infections of 
susceptibles are also independent of each other. 

The total rate at which susceptibles become infected is assumed to be 

∑
=

=
n

i
ii sxcs

1
;xc  (1) 

that is, each susceptible is infected by each occupant of compartment i at the 
rate .ic  This is the “completely mixed” model. The reason for the special 

notation for susceptibles (s is not one of the compartments) is the presence of 
a product of variables in (1), which distinguishes susceptible transitions from 
compartmental transitions. 

The effective rate of transferring from compartment i to state j, for each 
occupant of compartment i, is .;1...,,1;...,,1; jinjniPvA ijiij ≠+==≡  
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The vector v and the matrix P can be dispensed with in favor of the nn ×  
transition rate matrix ( )ijA=A  whose diagonal elements are .iii vA −=  

Thus, for example, instead of dealing with ( )4,2,1=v  and 

,
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=P  

we can deal with the more compact .
400
8.122.0
5.02.01

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=A  We will make 

no further reference to either v or P, referring only to the analytically more 
convenient matrix A, which is a diagonally dominant matrix and also 
irreducible because of our assumption that all states of P except for R are 
transient. Matrix A will therefore always have an inverse (Horne and Johnson 

[8]). In fact, if ,1−−≡ AT  then ijT  is the average amount of time spent in 

compartment j before R is encountered, starting in compartment i. Diekmann 
et al. [5] pointed out that for some purposes the dimensionality of A can be 
reduced to the number of positive components of p, since these are the 
possible compartments at infection, but we will not exploit that feature here. 

The matrix A might be upper triangular, which corresponds to the idea 
that the compartment index of an infected individual can only increase with 
time. All of our examples will be of this form, but EPIMOD does not require 
it. The generality could be useful. It sometimes happens, for example, that a 
victim temporarily goes from being symptomatic to being asymptomatic, as 
well as vice versa. 

Initial susceptible and compartment populations are given, with at least 
one of the compartment counts being nonzero. In the long run the 
compartment populations will all become 0, at which point the disease will 
disappear. The primary goal of our analyses will be to determine the number 
of susceptibles that are infected in the meantime (the “case count”). 
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We will also consider a different epidemic model where the number of 
susceptibles remains constant at ,0s  regardless of how many infections have 

occurred. Call this model LINMOD to distinguish it from EPIMOD. Brauer 
[3] referred to the linearized model as “standard”. The only difference 
between LINMOD and EPIMOD is that s in (1) is replaced by its initial 
value .0s  Although we think of LINMOD as an approximation to EPIMOD, 

LINMOD might actually be a better model of an epidemic than EPIMOD, 
depending on how mixing actually occurs. Imagine an experiment conducted 
before the epidemic that is designed to estimate one of the components of c. 
We take a random citizen and track him through a day of his life, noting all 
of the susceptibles that he infects or would infect if he were an occupant of 
component i. Then we repeat the experiment often enough to establish that 
the average number of victims per day is .im  All susceptibles are equally 

infectable, so we might argue that the probability that any particular 
susceptible is infected has to be .0smi  This reasoning leads to EPIMOD 

with .0smc ii =  But one might also argue that the average number of 

infections caused by one person-day of component i is ,im  regardless of how 

many susceptibles remain. This reasoning leads to LINMOD. The essential 
question is whether the infective activity of a compartment occupant can be 
expected to decrease in proportion to the remaining population of 
susceptibles (EPIMOD) or not (LINMOD). Depending on social habits and 
the infection mechanism, either model (or something in between as in Brauer 
[3]) might be more realistic. The two models are indistinguishable at the 
beginning of an epidemic, but differ once the population of susceptibles in 
EPIMOD has been significantly reduced, with LINMOD being the more 
pessimistic of the two. 

LINMOD is entirely linear and easier to analyze than EPIMOD, but it 
does have the unfortunate feature that there is no upper limit on the number 
of cases, which in large epidemics can exceed 0s  or even be infinite. Even 

so, LINMOD can serve as good approximation to EPIMOD for certain 
purposes. 
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3. Deterministic Analysis 

Let ( )nxx ...,,1=x  be the compartment populations and let s be the 

population of susceptibles, with given nonnegative initial values 0s  and .0x  

As functions of time, x and s are assumed to satisfy a set of ordinary 
differential equations: 

,xcss −=�  and (2) 

.xApx =+ s��  (3) 

In (2) and (3), the superimposed dot means “derivative with respect              
to time”. We omit the equation for r�  because r is not involved in either (2) 
or (3). These equations are a fluid approximation to EPIMOD, so the 
variables are not integer-valued. Equation (2) states that every occupant of 
compartment i infects every susceptible at the rate ,ic  and equation (3) states 

that population i increases at a rate that is ip  of the infections, otherwise 

being determined by the dynamics represented by A. 

There is a problem interpreting what x means, as is often the case in fluid 
approximations. The components of x are not integers, which is at odds with 
the notion that its components are populations of individuals. One might 
suppose that x is the mean population vector, but that turns out not to be true 
in general. Even so, the equations are easily solved numerically, and ought to 
be a good approximation to epidemics that are in some sense “large”. 

Equations (2) and (3) do not constitute a linear system because of the 
product of variables in (2), so we cannot easily construct an analytic solution. 
However, the solution must still have certain predictable properties. Since 0s  

is nonnegative and 0=s�  when ss ,0=  will always be nonnegative. Our 

assumptions also imply that 0≥ix�  if 0( ≥s  and 0≥x  and ,)0=ix  so x 

will also remain nonnegative for all .0≥t  Therefore, s must decrease to 

some limiting nonnegative value ,∞s  and s�  must approach 0 in the limit as 
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.∞→t  All compartment populations must also approach 0 in the limit, 
since every infected susceptible will ultimately end up in state R. 

It would be useful if we could compute ,∞s  the limiting population of 

susceptibles, without having to solve the differential equations numerically. 
Toward this end, let 

∫
∞

=
0

.dtxM  (4) 

M is necessarily nonnegative, and represents the total number of victim-
hours spent in each of the various compartments. Dividing (2) by s and 
integrating, we have 

( ) ( )∫
∞

∞ −==
0 0 .ln Mcssdtss�  (5) 

Integrating (3), we have, since ,0x =∞  

( ) ( )∫
∞

∞ =−+−=+
0 00 .MApxpx ssdts��  (6) 

Since 1−A  exists, (6) can be solved for M, after which (5) determines .∞s  

Now let ( ) 00 sssf ∞−≡  be the fraction of original susceptibles who 

are ultimately infected by the disease, the “case fraction”. Given ∞sf ,  is 

simply ( ).10 fs −  To find f, solve (6) for M, recall the definition of T, and 

substitute the result into (5) to obtain 

( ) ( ) .01ln 00 =++− Tcpx fsf  (7) 

Equation (7) can be rewritten as 

,0Tcx≡a  

,0pTcsb ≡  

( ) ( ) .01ln =++−≡ bfaffg  (8) 
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Parameter a is a scalar measure of the initial size of the epidemic, and 
parameter b is the “basic reproductive number” that is often called .0R  As 

long as the number of susceptibles remains at ,0s  the average number of 

additional infections caused by a newly infected individual before he enters 
state R is b. When ,1>b  at least until the population of susceptibles is 
substantially reduced, there is clearly the potential for the epidemic to 
explode. 

Consider the concave function ( )fg  defined in (8). Since ( ) ag =0  and 

the function approaches ∞−  as f approaches 1, (8) will have a unique 

solution in the interval [ ]1,0  as long as .0≥a  The equation is 

transcendental, but can nonetheless be solved numerically by (say) the 
Newton-Raphson technique. The case fraction is therefore well-defined and 
computable. When 1<b  and ,1a  the logarithm in (8) can be 

approximated by ,f−  and the solution is therefore approximately =~f  

( ),1 ba −  provided that the ratio is small. A somewhat more accurate 

solution can be obtained by approximating the logarithm by 22ff −−  and 

solving a quadratic equation: ( ) ( ).121~ 2 babf −−+−=  When 1.0=a  

and ,5.0=b  the two approximations are 0.200 and 0.171, while the exact f 
is 0.168. 

This completes the deterministic analysis of EPIMOD. 

The deterministic analysis of LINMOD is comparatively simple. With 
,0cm s=  (3) can be replaced by 

.xAxmpx =−�  (9) 

Letting ,mpAB +≡  (9) can be expressed as 

.xBx =�  (10) 

Since mp is a nonnegative matrix, ( )tx  must be nonnegative for all t, as 

in EPIMOD. The solution of (10) is ( ) ( ),exp0 tt Bxx =  where exp() is the 
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matrix exponential function. This analytic solution for the compartment 
levels is of course an advantage of LINMOD, since the corresponding 
solution for EPIMOD must be obtained by numerical integration. 

Depending on B, the compartment populations might approach infinity 
because there is no limit on the number of infections in LINMOD. We 
assume in the following that 0s  is small enough that B shares with A the 

property that an entirely negative inverse exists, in which case the 
compartment populations must remain finite. In fact, integrating (10), we 
find that 

( ) ,
00 MBBxx =⎟

⎠
⎞

⎜
⎝
⎛=− ∫

∞
dtt  (11) 

where M is defined as before as a vector of victim-hours, and therefore 

.1
0

−−= BxM  (12) 

Equation (12) determines M, and the case fraction f is simply Mc. If f 
exceeds 1, it means that there will be more cases than the initial number of 
susceptibles. 

The case fraction will generally be very small in planning 
countermeasures to an epidemic, and in that case EPIMOD and LINMOD 
will produce nearly identical solutions. 

Whether the epidemic is modeled with EPIMOD or LINMOD, there still 
remains the problem of interpreting the meaning of x, which is not a vector 
of integers in the deterministic analysis. The remedy is a stochastic 
interpretation of the same data, which we consider next. 

4. Stochastic Analysis 

Consider a continuous-time Markov chain where the state is ( ),, sx  a 

vector where as usual x is an n-vector of compartment populations and s is 
the remaining number of susceptibles. All variables are now required to be 
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nonnegative integers. States where 0x =  are absorbing, while all other states 
are transient. Our main interest is in the long run occupancy probabilities of 
the absorbing states, since these probabilities determine the probability 
distribution of the number of cases. 

Every transient state ( )s,x  has a set ( )sSUC ,x  of successor states that 

can be reached after one transition. There are three transition categories that 
need to be accounted for: (A) a new infection can occur, (B) an occupant of 
some compartment can disappear into R, and (C) an occupant of some 
compartment can move into a different compartment. Let ( )( )yx ,, sr  be the 

rate of transition from ( )s,x  to successor state y. Also let ≡ie  

( ),0...,,0,1,0...,,0  where the single 1 is in the ith of n places, and let 

iR
n

j
ijiR AniAA ∑

=
=−≡

1
....,,1;  is the rate of transference from compartment i 

to the absorbing state R, nonnegative by assumption. Then for the three 
categories we have 

( ) ( )( ) ,...,,1;1,,, nipsssr ii ==−+ xcexx  

( ) ( )( ) ,...,,1;,,, niAxssr iRii ==− exx  

(( ) ( )) ,;...,,1,;,,, jinjiAxssr ijiji ≠==+− eexx  (13) 

except that the rate is 0 if any component of the successor state is negative. 

The total rate out of state ( )s,x  is ( ) ( )( )
( )

∑
∈

≡
sSUC

srsR
,

.,,,
xy

yxx  It is 

easily shown that ( ) ( )∑
=

−=
n

i
iiii xAscsR

1
,,x  which is always positive for 

transient states. 

Every state also has a set ( )sPRE ,x  of transient predecessor states from 

which ( )s,x  can be reached after one transition. We have ( ) =sPRE ,x  

,CBA ∪∪  where 
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( ){ },...,,1;1, nisA i =+−= ex  

( ){ },...,,1;, nisB i =+= ex  

{( ) },;...,,1,;, jinjisC ji ≠=−+= eex  (14) 

except that set elements are missing if any component of the predecessor 
state is negative. 

Now let ( )tP ,z  be the probability that the state is z at time t, and let           

the derivative with respect to time be ( )., tP z�  Then Kolmogorov’s forward 

differential equations for the stochastic process are 

( ) ( ) ( ) ( ) ( )
( )

∑
∈

−=
zy

zzzyyz
PRE

RtPrtPtP .,,,,�  (15) 

Equation (15) states that the time derivative is the average rate coming into 
state z minus the average rate going out. It applies to all states, transient or 
not. 

We know that all the derivatives in (15) are 0 in the limit as .∞→t  
That observation is often used to determine stationary probabilities, but it                
is useless here because only absorbing states have nonzero limiting 
probabilities, and the corresponding probabilities are all multiplied by 0 in 
(15). However, (15) can still be used to determine the case distribution by 
using a method pioneered by Bailey [1]. 

Except for the initial state, we know that the initial probability of                           
being in any given state is 0. For transient states we must therefore have 

( ) ( )∫
∞

δ−=
0

,, zz dttP�  where ( )zδ  is 0 in all states except the initial state 

( ),, 00 sx  where it is 1. For all transient states z define ( ) ≡zM ( )∫
∞

0
;, dttP z  

this is the mean amount of time spent in state z before some absorbing state 
is reached. We then have, after integrating (15) over the time interval [ )∞,0  

and rearranging terms, 
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( ) ( ) ( ) ( ) ( )
( )

∑
∈

+δ=
zy

zyyzzz
PRE

rMMR .,  (16) 

The function ( )sM ,x  is 0 unless ( )s,x  is a feasible transient state. Since 

the number of susceptibles cannot increase, feasibility requires .0 0ss ≤≤  

Since compartment shifts never create new occupants, feasibility also 

requires ∑ ∑
= =

+≤+
n

i

n

i
ii xsxs

1 1
00 ,  so the total number of transient states is 

finite. Thus, (16) is a finite system of linear equations to be solved for 
( )., sM x  

Now let ( )sQ  be the probability that the terminal number of susceptibles 

is s. Since state ( )s,0  can only be reached from some state ( )si ,e  for some 

compartment index i, and since the rate at which state ( )si ,e  moves to 

absorbing state ( )s,0  is ,iRA  we have 

( ) ( )∑
=

=
n

i
iRi AsMsQ

1
.,e  (17) 

The probability that the epidemic results in m cases is ( );0 msQ −  

.0 0sm ≤≤  This case distribution is the desired end of analysis. 

If A is upper triangular, the states can be numbered so that every 
transition increases the state number, starting with 1 for ( )., 00 sx  If (16) is 

employed in state number sequence, the right-hand side will always be 
known when ( )zM  is to be computed. The initial computation leads to 

( ) ( )0000 ,1, sRsM xx =  because the initial state has no predecessors, and 

the rest of the computations can be made in a single pass (Black and Ross 
[2]). 

An alternate method of computing the case distribution can be based on 
the associated embedded discrete Markov chain that models state transitions 
without regard to the time of occurrence. The transition probability from 
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state z to state y in this chain is ( ) ( ) ( )., yzyyz RrPr =|  Define ( )zN  to be 

the mean number of entrances to state z. Then the desired probability that the 
terminal number of susceptibles is s is ( ) ( ),, sNsQ 0=  a number that cannot 

exceed 1 because the maximum number of entrances to an absorbing state is 
1. Furthermore, according to the conditional expectation theorem we have 

( ) ( ) ( ) ( )
( )

∑
∈

|+δ=
zy

yzyzz
PRE

PrNN .  (18) 

The term ( )zδ  in (18) accounts for the initial entrance to state ( )., 00 sx  This 

equation applies to all states, transient or not, so (18) is an alternate, more 
direct method of computing the case distribution. In fact ( ) ( ) ( )zzz MRN =  

for transient states, so (18) is just a compact restatement of (16) and (17). In 
the upper triangular case ( ) .1, 00 =sN x  

We now turn to the stochastic case count analysis for LINMOD. 

It is not necessary to include the number of susceptibles in the state 
vector in LINMOD because that number remains constant at .0s  Define the 

transition rates ( )yx,r  and ( )xR  as in EPIMOD, except that the state is now 

x, rather than ( ),, sx  and s is replaced by 0s  in the first transition rate of 

(13). Also let ,0cm s≡  a vector of infection rates. As before, the transition 

probability from state x to state y in the embedded Markov chain is 
( ) ( )., xyx Rr  For the three types of transition possible, define ≡iRq  

( ),iiR RA e  ( ) ( ),, iiimiijij RmqRAq ee ≡≡  and note that 

∑
≠

==++
ij

imijiR niqqq ....,,1;1  

The embedded Markov chain in LINMOD is a multitype Galton-Watson 
process (Harris [7]). 

Unlike EPIMOD, LINMOD permits a clear definition of the “fizzle” 
event. There are only two possibilities: either the state will eventually be 0 
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(which is absorbing) or not (the compartment populations might grow 
indefinitely). In the former case we say that the epidemic fizzles. Even 
epidemics where the reproductive number b exceeds 1 can fizzle. 

The distinguishing feature of LINMOD is that every victim creates a 
mini-epidemic that is independent of all the others, so that the total number 
of cases is a sum of independent random variables. Sums of independent 
random variables are well handled by generating functions, so let iC  be the 

number of cases spawned by a single new victim in compartment i, and 

define the generating functions ( ) ( ) .10;...,,1; ≤≤=≡φ znizEz iC
i  We 

take iCz  to be 0 if iC  is not finite, even if ,1=z  and we take 0z  to be 1, 

even if .0=z  This convention makes iCz  a continuous function of z 
throughout the unit interval, regardless of the number of cases. The 
probability that 0=iC  is ( ),0iφ  and the generating function ( )ziφ  in 

principle determines the rest of the distribution of iC  through its derivatives 

at .0=z  That distribution will sum to ( ),1iφ  the fizzle probability. Since the 

generating function for a sum of independent random variables is the product 
of the generating functions, the generating function of the total number of 

cases, starting from ,0x  is ( ) ( )∏
=
φ≡φ

n

i

x
i izz

1
.0  

We will determine the generating functions by using the conditional 
expectation theorem. There are only three possibilities for a mini-epidemic 
starting in compartment i: the victim may disappear, the victim may transfer 
from compartment i to compartment j, or the victim may cause an additional 
infection. In the latter case there will then be two victims, the original victim 
in compartment i and a new companion in compartment j who will start his 
own mini-epidemic. Thus 

⎪
⎩

⎪
⎨

⎧
=

′+′+

′

.companionafindsvictimtheif
or,tscompartmenchangesvictimtheif

or,disappearsvictimtheif1

1 ji

ji

CC

CC

z
zz  (19) 
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The primed notation in (19) is to emphasize that all random variables                     
are independent of each other, with the subscript alone determining the 

distribution. Note that (19) is consistent with respect to the meaning of iC0  

and iC1  defined above; e.g., iC1  is 0 if iC′  is finite, but jC′  is not. Taking 

expectations of both sides, 

( ) ( ) ( )∑ ∑
≠ =

′+′′
=++=φ

ij

n

j

CC
jim

C
ijiRi nizEpzqzEqqz jij

1
....,,1;  (20) 

If we define the function ( )φF  by 

( ) ∑ ∑
≠ =

=φφ+φ+≡φφ
ij

n

j
jjiimiijiRni nipzqqqzF

1
1 ,...,,1;;...,,  (21) 

then, since the two expected values in (20) are first ( )zjφ  and second 

( ) ( ),zz ji φφ  (20) can be compactly stated as ( ) ( )( ),; zzz φφ F=  a system of 

second order equations to be solved for ( ).zφ  

Multiplying through by ( ),iR e  (20) is equivalent to 

( ) ( ) ( )∑
≠

φ+=φ−
ij

jijiRiiii zAAzAm  

( ) ( )∑
=

=φφ+
n

j
jjii nizpzzm

1
....,,1;  (22) 

Equation (22) may be more appealing than (20) because it avoids appeal to 
the embedded Markov chain. The most important special case is when ,1=z  

for which case define ( ).1iir φ≡  As mentioned earlier, ir  is the fizzle 

probability for a mini-epidemic starting in compartment i. Equation (22) 
reduces to 
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( ) ∑ ∑
≠ =

=++=−
ij

n

j
jjiijijiRiiii nirprmrAArAm

1
....,,1;  (23) 

This equation can be rearranged so that 

( ) ( ) ( )∑ ∑
= ≠

==−+−+−
n

j ij
jiijiiRjjii nirrArArprm

1
,...,,1;011  (24) 

in which form it is clear that 1r =  will always be a solution. Harris ([7], 
Corollary 1 to Theorem 7.2 in Chapter II) proved that there can be at most 
two solutions to (23) whose components are all in the unit interval, with the 
smaller of the two having the correct meaning. If there is only one such 
solution, fizzling is inevitable regardless of the starting state. 

An epidemic can also fizzle “directly”, by which is meant that no further 
susceptibles are ever infected. If we let iu  be the direct fizzle probability, 

then ( )0iiu φ=  and (22) reduces to 

( ) ∑
≠

=+=−
ij

jijiRiiii niuAAuAm ....,,1;  (25) 

This system of linear equations in u can be solved by simple substitution 
when A is upper triangular. Direct fizzling is comparatively unlikely, but the 
probability is easier to compute than the general fizzle probability and has 
the additional advantage that direct fizzling is the same in EPIMOD as it is in 
LINMOD. The event “fizzle” is hard to define in EPIMOD because the 
compartment populations always vanish in any case, but whatever is meant 
by “fizzling” in EPIMOD, it should surely include direct fizzling. 

As long as the only solution of (23) is ,1r =  fizzling is guaranteed and 

we can investigate the mean number of cases. Let iw  be the mean number of 

cases spawned by a victim in compartment i. Then ( ),1iiw φ′=  where now 

the prime notation denotes the first derivative. After differentiating all terms 
in (22) and setting ,1=z  we find that (22) reduces to 
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( ) ( )∑ ∑
≠ =

=+++=−
ij

n

j
jjiiijijiiii niwpmwmwAwAm

1
....,,1;1  (26) 

This system of linear equations has the solution ,1mBw −−=  where B is 

the matrix defined in Section 3. This is in agreement with the deterministic 
analysis of LINMOD. Thus, the deterministic solution of LINMOD is also 
the mean of the stochastic solution of LINMOD, at least as far as case count 
is concerned. 

An approximation to the average case count in the stochastic version of        
a large epidemic, starting from a single occupant of compartment i, would                  
be to multiply the deterministic case count by ,1 ir−  the probability that the 

LINMOD epidemic does not fizzle. The justification is that the deterministic 
analysis is accurate enough if the epidemic does not fizzle, and the case 
count is negligible if it does fizzle. This approximation will be tested in the 
special cases described below. 

We close this section with two comments: 

(1) Known algorithms cannot compute the exact case count distribution 
for large susceptible populations in reasonable amounts of time. In the next 
section, we will give an example where .4000 =s  The associated 

computations using (18) are not taxing, but would be impractical if (say) 
.000,4000 =s  

(2) The observation above is not important to the applications we have in 
mind, which will always plan for epidemics where 1<b  and .1a  For 

such epidemics the fizzle probability is 1 and ( )ba −1  is an adequate 

summary of the case fraction in either EPIMOD or LINMOD. 

5. Special Cases and Examples 

In this section, we will use uppercase symbols for the compartment 
populations, as is customary in SIR and its derivatives. All of the 
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computations referenced in this section are available from an Excel™ 
spreadsheet EPIMOD.xlsm that can be found at the downloads link at 
http://faculty.nps.edu/awashburn/. 

5.1. Susceptible-infective-removed (SIR) 

The deterministic equations for the SIR special case of EPIMOD are 

,ISS α−=�  

,IISI γ−α=�  

.IR γ=�  

As usual we ignore the R category, so the only variables in EPIMOD are the 
number of susceptibles ( )S  and the number of infecteds ( ).I  Omitting the 

bold notation we take γ−=A  and ,α=c  in which case (see (8)) ,1 γ=T  

,0 γα= Ia  and .0 γα= Sb  

Since A is trivially upper triangular, (18) can be coded for sequential 
computation of the case count distribution. Figure 1 shows the EPIMOD case 
count distribution for ( ) ( ),1,005.0,1,400,,, 00 =γαIS  an epidemic where 

.2=b  In spite of appearances in that figure, the case count probability is 
always positive–the least likely number of cases is 117, where the probability 
is 0.00004. Generating Figure 1 takes less than a second on a modern 
computer. 0S  could be increased to a few thousand without much difficulty, 

but it could not be increased to the population of any city or country with a 
population in the millions. In spite of considerable previous work, there is 
still no practical method of computing the exact, complete SIR case count 
distribution for large value of .0S  Whittle’s (1953) method requires less 

arithmetic than (18), but is numerically unstable because of the need for 
subtraction (the only operations involved in (18) are multiplication and 
addition). Britton [4] also commented on this instability, and gave an 
asymptotically accurate normal approximation (his formula 12) to the bell-
shaped part of Figure 1. 
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The generating function for the case count distribution for one initial 
infective in LINMOD can be found by solving (22): 

( ) ( ) .10;2
411 2

≤<−+−+=φ zbz
bzbbz  (27) 

The direct fizzle probability u can be found either by solving (25) or by 
using L’Hopital’s rule on (27): it is ( ) ( ).110 bu +=φ=  This is the 

probability that the total number of cases (as usual not counting the initial 

infective) is zero. A Taylor series expansion of ( ) 0Izφ  reveals (Diekmann et 

al. [5]) the distribution of C, the total number of cases if there are 0I  initial 

infectives: 

( ) ( ) ( )
( ) .0;!!

!121
0

000 ≥
+

−+
−== + xxIx

xIIuuxCP xIx  (28) 

Equation (28) sums to ( ),1φ  which is 1 if ,5.0≥u  or otherwise ,1 b  the 

fizzle probability. Equation (28) is not shown in Figure 1 because it is nearly 
0 throughout the bell-shaped region and otherwise in close agreement with 
the EPIMOD distribution. 

 

Figure 1. Case count distribution for an epidemic among 400 susceptibles. 

The mean of the distribution shown in Figure 1 is 158.02, whereas the 
deterministic case count is 319.4, right in the middle of the bell-shaped 
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region. The two differ so strongly because the true mean takes account of the 
possibility of fizzling. The probabilities of 0, 1 and 2 cases are not shown in 
Figure 1 because they are large enough to take over the vertical scale, but the 
sum of just those three is already 0.44. The LINMOD fizzle probability is 
0.5, and the resulting product of the nonfizzle probability with the 
deterministic case count is 159.7, remarkably close to the true mean. Kendall 
[9] suggested also including the product of the LINMOD fizzle probability 
with the expected number of cases, given that the epidemic fizzles. This 
results in the slightly larger estimate of 160.2. It should be obvious that 
summarizing Figure 1 with any single number is bound to be misleading. It is 
much more informative to report that the fizzle probability is 0.5, and that 
about 319 cases can be expected if the epidemic does not fizzle. 

The various models come much closer to agreeing with each other when 
.1<b  If α is reduced from 0.005 to 0.001 in the above example (so 

),4.0=b  the case count distribution becomes a decreasing function that 

closely agrees with (28)–the maximum difference between the EPIMOD case 
probabilities and (28) is 0.0002. The true stochastic mean shrinks to 0.662, 
while the deterministic case count in EPIMOD is 0.666. The LINMOD mean 
is ( )bb −1  in general, which is 0.667 in this instance. 

While it is difficult to define fizzling in EPIMOD, it is natural to seek 
some level of cases that will separate the left-hand slide in Figure 1 from the 
right-hand hump. Let ( )xF  be the probability that there are x or fewer cases. 

Table 1 shows ( )xF  for three values of x and five values of ,0S  in all cases 

adjusting α to keep 20 =αS  as in the base case. The rows of the table might 

be regarded as different case cutoff levels, the first row being the direct fizzle 
probability and the other two as increasingly generous allowances for cases 
in defining “fizzle”. It should be evident that there is little difference between 
an allowance of 20 and an allowance of 40 when 0S  is large, with both 

resulting in approximately the LINMOD fizzle probability (0.5). It should 
also be evident that all large values of 0S  result in nearly the same fizzle 

probability. 
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The total computational effort required to produce Table 1 is small, in 
spite of our earlier observation that producing the complete case distribution 
is problematic for large values of .0S  The total number of arithmetic 

operations required in SIR to compute ( ) CxxF ...,,1; =  via (18) is ( ),2CO  

regardless of .0S  It is only when 0SC =  that the computational problem 

emerges. For large epidemics like the one in Figure 1, this means that the 
fizzling end of the case distribution is easy to compute exactly, even though 
the nonfizzling end is not. 

Table 1. Fizzle probability for three definitions of “fizzle” and five values of 

0S  

→↓ 0, Sx  40 400 4,000 40,000 400,000 

0 (direct) 0.333333 0.333333 0.333333 0.333333 0.333333 

20 0.566071 0.502401 0.499344 0.499052 0.499023 

40 1.000000 0.503975 0.500332 0.499997 0.499963 

5.2. SEIR+ and Ebola 

The SEIR model differs from SIR only in having an additional 
compartment ( )E  that has contracted the disease, but is not yet infective. The 

SEIR+ model is a modification of SEIR that might be used as a model for an 
Ebola epidemic in the USA. We will first briefly review the SEIR model and 
then explain the modifications. 

The SEIR model has four variables: S is the susceptibles, E is the 
exposed, I is the infected, and R is the removed. The differential equations 
are 

,ISS α−=�  

,EISE β−α=�  

,IEI γ−β=�  

.IR γ=�  
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As usual omit R and let ( )., IE=X  This is then a special case of 

EPIMOD where 

[ ].0,1,
0

,
10
11

,
0

1 =⎥⎦
⎤

⎢⎣
⎡
α

=⎥⎦
⎤

⎢⎣
⎡

γ
γβ

=−≡⎥⎦
⎤

⎢⎣
⎡

γ−
ββ−

= − pcATA  (29) 

Employing (8), we find that 

( ) γα+= 00 IEa   and  .0 γα= Sb  (30) 

As long as b is smaller than 1 and ( )ba −1  is much smaller than 1,                 

any epidemic with a small number of initially infected victims (both 
compartments have the same ultimate impact) will have a small value for the 
case fraction. Note that parameter β is not involved in (30). It is also not 
involved in (22), so the LINMOD generating function and case distribution 
are the same as for SIR. 

The SEIR assumption is that the E compartment is not contagious (there 
is no E term in the first equation). An E has to wait for a time that averages 
β1  before he becomes infective and can expose other susceptibles, and even 

then he will have only a time that averages γ1  before he disappears from the 

infected population and can cause no further harm. 

SEIR+ is a modification of SEIR that is intended to be a model for the 
possible spread of Ebola in the USA. It is not an arbitrary example, but rather 
one that is as realistic as this medically amateur writer can make it, inspired 
by the USA epidemic that actually occurred in September of 2014. Some of 
the parameters are characteristic of the disease, and are consistent with            
West African epidemic(s) (Quammen [13]). Other parameters, notably the 
transmission rate, are little more than guesses. To emphasize that the model 
is entirely my own, I will switch from the usual “we” to “I” in describing it. 

I assume that the Ebola-vaccinated fraction of the population is 
negligible, so essentially all of the USA population starts out in the 
susceptible category. I also assume that the main tactical countermeasure is 
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isolation of the victims from the susceptibles. This can only be done once the 
victims are recognized as such, which is initially difficult with Ebola because 
initial symptoms (mild temperature, nausea, …) are similar to the flu. 
Advanced symptoms (high temperature, pain, vomit, bleeding…) are more 
suggestive of Ebola, as well as more dangerous because the disease is spread 
by contact with bodily fluids. I assume that any victim known to have Ebola, 
regardless of the stage of the disease, will be isolated and therefore play no 
further role in its spread. This was not true at first in West Africa, where 
isolation facilities were sometimes overwhelmed, but I assume that it will be 
true in the USA, at least initially. I therefore define E and I as follows: 

• E is the population that has unidentified Ebola and is at most mildly 
symptomatic. 

• I is the population that has unidentified Ebola and is highly 
symptomatic. 

I assume that all of the I-compartment is infective. There are conflicting 
reports about whether the E-compartment is infective, possibly because of 
vagueness in the word “mildly” in its definition. I assume that a fraction q of 
the E-compartment is infective, as well as all of the I-compartment. 

The SEIR+ equations are, as usual omitting the one for R: 

( ),qEISS +α−=�  

( ) ,EEqEISE μ−β−+α=�  

.IIEI δ−γ−β=�  (31) 

Countermeasures to Ebola are represented by the parameters μ and δ, 
each being the rate at which victims in one of the compartments are 
recognized and isolated. Recognizing victims in the E compartment would 
require a test for Ebola that is quick and inexpensive, a test that does not 
exist as of this writing. My baseline estimate of μ is therefore 0. Recognizing 
victims in the I compartment is easier, either by medical staff or by the 
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victims themselves, so my baseline estimate of δ is positive. Only the sum 
δ+γ≡g  is significant, but it is convenient to retain both parameters 

because δ is controllable, while γ is not. SEIR+ is an upper triangular model. 
The SEIR model is a specialization where .0=δ=μ=q  

My baseline values for the parameters are given in () in the following 
list: 

• β is the rate at which an E becomes an I, a disease property (0.1/day). 

• μ is the rate at which an E is discovered to have Ebola (0/day). 

• γ is the rate at which an I dies or recovers, a disease property (0.2/day). 

• δ is the rate at which an I is discovered to have Ebola (0.1/day). 

• q is the fraction of Es that are infective (0.2). 

• 0S  is 320,000,000, the current population of the USA. 

• 0E  is the initial number of exposed individuals (1). 

• 0I  is the initial number of infected individuals (0). 

• m is the initial mean number of susceptibles infected by each I, per day 
(0.32/day). 

• ,day10 9
0

−==α Sm  the transmission rate. 

I estimated parameter m by asking my friends how many people they 
thought they would give Ebola to per day, given that they were infective but 
did not know it, and given that Ebola is spread by bodily contact. Their 
answers varied a lot, but 0.32/day seemed to be in the collective ball park. 
Then I simply divided by 0S  to estimate the transmission rate α. I am not 

proud of this method, and suspect that my estimate of α is the worst of all 
those in the list. The transmission rate depends as much on social habits 
(there is less touching and very little funereal laying on of hands in the USA) 
as it does on the nature of Ebola, so extrapolating from the West African 
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experience would be risky. In fact, I have difficulty imagining how to get a 
good estimate of α without first having an extensive Ebola epidemic in the 
USA. This is especially unfortunate because results are very sensitive to this 
parameter, as will be seen. 

The EPIMOD parameters are 

[ ] [ ].01;;0,1;
0 0 =⎥⎦

⎤
⎢⎣
⎡
α
α

==⎥⎦
⎤

⎢⎣
⎡

−
βμ−β−

= pcxA
q

g
 (32) 

Define four dimensionless parameters ( ) ≡≡μ+β≡ WmgGqmQ ,,  

( )μ+ββ  and ( ) .1 WQG −−≡Δ  In the baseline model these are 0.64, 

0.9375, 1, and –0.6625, respectively. Using (8) we find that 

( ) ( ) .; 000 SGIbEaGGQWb +=+=  (33) 

Parameter Δ is negative if and only if the basic reproductive number b 
exceeds 1. That number b is 1.71 in the baseline case, characteristic of the 
early stages of the West African epidemic (WHO [12]). Given a and b, the 
deterministic case fraction f can be computed from (8); it is 0.694 in the 
baseline model. 

The deterministic solution of the EPIMOD differential equations can be 
obtained by numerical integration. Figure 2 graphs E and I as a function of 
time measured in days after the arrival of the single exposed individual. Both 
compartments rise abruptly to a peak after about 1 year, and then collapse. At 
the peak there are almost 10 million victims in compartment I, and almost 30 
million in compartment E. At the end of the epidemic most of the population 
of the USA would have contracted Ebola. The epidemic would be even 
worse in reality because isolation facilities would be completely 
overwhelmed, thus falsifying my optimistic assumption that known Ebola 
cases can all be isolated. 
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Figure 2. Exposed (dashed) and Infected (solid) in the nominal case. Time is 
measured in days on the horizontal axis. 

The USA recently had an epidemic of exactly this type. I refer to the 
epidemic that started on September 20, 2014 when T. E. Duncan arrived 
mildly symptomatic in Texas after having been infected with Ebola in 
Liberia. Two nurses were subsequently infected while he was hospitalized, 
but neither those nurses nor T. E. Duncan himself ever gave Ebola to anyone 
else. In other words, the epidemic fizzled, albeit not directly. This might be 
taken as evidence that my model is wrong, and that Ebola epidemics on the 
scale of the one described above are not a threat in the USA. However, it 
would be premature to conclude that without knowing the fizzle probability. 

Equations (24) for the LINMOD fizzle probabilities are 

[ ] ( ) ( ) ( ) ,011:1 21111 =−β+−μ+− rrrrmqr  

[ ] ( ) ( ) .011:2 212 =−γ+− rrmr  (34) 

Recall the dimensionless quantities Q, G, W, and Δ that are defined 
above. Solving [2] for 2r  we have ( )12 1 rGGr −+=  and thus =− 21 rr  

( ) ( ) ( ).11 111 rGrrG −+−−  When this is substituted into [1] the factor 

( )11 −r  can be cancelled, after which [1] can be rearranged to the quadratic 

equation 
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( ) .0111
2

1 =Δ+++++− QGQGQrQr  (35) 

The only solution of (35) that is smaller than 1 when 0≤Δ  is 

( )
( )

.
411

12
21

Δ−+−+++

Δ++=
QQGQQGQ

QGr  (36) 

Once 1r  is known, 2r  can be determined by substitution. The fizzle 

probabilities in the baseline case are ( ),65.0,49.0=r  which makes my 

fizzle probability for the 2014 epidemic (T. E. Duncan being the one initial 
victim in the E compartment) 0.49. This is not a small probability, so it is 
plausible that the USA just got lucky when the 2014 epidemic fizzled, and 
that, barring interference that would change model parameters, an Ebola 
epidemic on the scale of Figure 2 could very well happen next time. The 
direct fizzle probabilities from (25) are of course smaller: ( ).38.0,23.0=u  

The 2014 USA epidemic did not fizzle directly. 

The good news is not that my model is necessarily wrong, but rather that 
the epidemic shown in Figure 2 allows time for interference. After 60 days 
there are only 52 cases, a number that would not strain facilities for isolation 
and medical care. Suppose that on day 60 some way were found to increase 
the rate at which E victims are removed from the population and isolated, 
perhaps by massive application of a cheap, fast Ebola test. Change μ from               
0 in the baseline case to ,day1.0  reflecting the idea that about 10% of the                

E compartment will be identified and isolated on each day. Also make 
( ) ( ),6,19, 00 =IE  the numbers of exposed and infective victims on baseline 

day 60, and reset the clock to be 0 on day 60. The effect of this is to reduce 
the number of additional cases from over 223,000,000 in the baseline case to 
a mere 154 in the modified model, thus demonstrating the importance of 
isolating victims in the E-compartment. Reductions in the transmission rate 
have an even more dramatic effect. There are echoes here of the Ebola 
epidemic in West Africa, which in its early stages was forecast to have 
millions of cases in total based on initial observations of transmission rates. 
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The number of cases tuned out to be thousands, rather than millions, 
primarily because of actions taken after the epidemic was well under way 
(Onishi [11]). 

6. Summary 

EPIMOD is a generalization of SIR with an arbitrary number of 
compartments and arbitrary transition rates. We have developed both 
deterministic and stochastic analyses of EPIMOD, in the process introducing 
the LINMOD approximation where the number of susceptibles remains fixed 
throughout the epidemic. Emphasis is placed throughout on estimating the 
average case count, since it is anticipated that minimizing that count will be 
the goal of any countermeasures taken. EPIMOD is used make a rough 
model of the Ebola epidemic started by T. E. Duncan’s arrival in the USA in 
2014, making the point that the epidemic could have been very dangerous 
even though it fizzled. 
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