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Katz Distributions, With Applications to
Minefield Clearance

Alan Washburn

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943

1. Introduction

Consider a region S that contains M mines. Suppose that an action is taken to remove
the mines from S, that Y mines are removed, and that a query is made about the number of
mines X = M - Y that remain in S. If M is known, then, since Y is also known, so0 is X. In
the common case where M is unknown, however, there is bound to be some uncertainty
about the numbcr of mines that remain after the clearance operation, and therefore about
whether S has been sufficiently “sanitized”. A quantitative analysis of the situation will
require a probability distribution for X, which will in turn depend on the prior probability
distribution for M. If the distribution of M is of a particular type, the Katz type that is
shortly to be described, then the distribution of X will be of the same type, a simplifying
feature. Katz distributions also have some other appealing properties. so there are reasons
to begin a minefield clearance analysis by assuming a Katz distribution for M. The purpose
of this paper is to summarize some of these properties.

The clearance action is assumed to be nonexhaustive, by which is meant that the
operation cannot guarantee to remove every mine (if it were exhaustive, then of course X

would be 0 regardless of M). Instead, the clearance action will be assumed to remove




every mine independently with known probability p, with 0 < p < 1. the usual assumption
in studying minefield clearance. In general p depends on the amount of clearance effort,
sweep widths, and perhaps other parameters, but the nature of that dependence is not of
concern here. Parameter p will be referred to as the “level” of clearance.

Although minefield clearance is the motivating application, of course the “mines”
could actually be ore pockets, oil strikes, unexploded ordnance, piles of doggie-doo
(domestic minefield), or whatever. The basic idea is that an imperfect attempt is made to
find a scattered collection of objects.

Section 2 defines Katz distributions and summarizes what is already known about
them. Other properties of Katz distributions are derived in Sections 3 and 4, particularly in
Theorem 1 where it is shown that X still has a Katz distribution after Y is observed.
Although Sections 2 - 4 will continue to refer to the objects being studied as “mines”, the
material in those sections is really just a collection of 'abstract but possibly useful facts
about Katz distributions. The implications for models of minefield clearance are addressed

in Section 5.

2. Katz Distributions (definition)
Katz (1965) describes a probability distribution xy, xq, ... with the property that

a+fj. .
Xj.f.l/x]‘:T'_%; j20. n

The distribution (1) will be referred to as a “Katz distribution with parameters o and f”,
provided & and B meet certain requirements that will be specified in the next paragraph.
Given xp, equation (1) determines xy, xp, ... . Since the sum xg + x; + ... must be 1, xg is
determined implicitly.

The parameter o must be nonnegative, since it is the ratio x;/xy, and B must be less

than 1 to enforce convergence to 0 for large j. If B <0, then (1) will eventually produce




negative probabilities unless —a/f is an integer. To prevent this possibility, —o/B is

required to be an integer when f is negative. The restrictions on parameters are thus that
20, B<1, and -o/fisaninteger when < 0. (2)

Let the generating function be g(z;a,8) = Zx jzj . Katz (1965) showed that
J=0
s By =[a-p)/a-p)*"*, @)
with (3) being interpreted as exp(—oz) (the limit as B approaches 0) if § = 0. It follows that
the initial probability must be

xo =80, B)=(1- ). (4)
If M is a random variable with a Katz distribution with parameters o and f (hereafter

abbreviated M ~ K(a, B)), then

E(M)=p=af(1-B) and Var(M)=0> = af(1-B)*. (5)
It is not hard to establish that a Katz distribution is
+ if B<0, a binomial distribution with —a/f trials and success probability §/(8 - 1),
* if f=0, a Poisson distribution with mean ¢, or

 if B> 0, a negative binomial distribution. If o/f is an integer, this is the distribution
of the number of failures until the a/Bth success when the failure probability is j.
However, the “number of successes” o/f can actually be any positive real number
in this case.

The Katz class includes no other distribution, so it can be thought of as the union of three
familiar types.
Since the mean and variance are more familiar parameters than ¢ and S, the solution of

(5) for azand B in terms of u and 02 may be useful:

| B=1-p/c? and a=p*/c?. (6)




Clearly £ 2 0 and 02 > 0 in (6), but some nonnegative (i, 0) pairs are impossible because
of the restriction that —a/f3 must be an integer when J is negative. This restriction is not
imposed by Katz (1965), who simply zeros all probabilities after (and including) the first
that (1) would make negative. Unfortunately, this tactic falsifies equations (3) — (6). For
example suppose o¢=1 and f=-2. Then (1) has x}/xy =1 and xp/x; =-1/2, so Katz
would take xp = x; = 1/2, x; = 0 for i 2 2. The mean of this distribution is u = 1/2, not 1/3
as would be obtained by (5). The fact that (3) — (6) are false when B <0 and —&/f is not
an integer is not recognized in Katz (1965), nor in subsequent restatements such as
Johnson and Kotz (1969).

Since f= 1- wo?, all (u, 62) pairs where 0 < < 02 are possible. This covers

situations where there is great uncertainty about the number of mines present.
3. Useful Katz Properties

3.1 Sample-Observe-Subtract (SOS)
The main property that makes Katz distributions useful in minefield clearance is that
the class is closed under the kind of SOS operations described in the introduction.

Formally,

Theorem 1: Let M be the number of mines, suppose M ~ K(a, B), let Y be the number
of mines removed when each mine is removed with probability p, independently of the
others, and let X=M —Y be the number of mines remaining (not removed). Then,
conditional on the event (¥ = y) being given, X ~ K(a’, §’), where o’ and B’ are given

by (10) withg=1-p.

Proof: Let x; = Pr(M = j) and x; =Pr(X = j|Y =y); j=0,.... Then




xj Pr(¥ =y)=Pr(Y =y and X = j)
=Pr(Y=yand M =y+ ) (N
=Pr(Y=)M=y+j)Pr(M=y+j,
But Pr(Y = )|M = y+ ) is the binomial probability of y successes in y + trials, so, letting

g=1-p,

* + j 1 .
X; Pr(Y=y)=(yyj)pquxy+j; j=0,... (8)

Taking the ratio of successive terms in (8), the factor Pr(¥ = y) cancels and

K/ = {y+j+1} . {a+/3(y+j)}. ™

Jj+1 y+j+1
The first { } factor in (9) is a ratio of combinatorial coefficients, and the second is by
assumption xy.;,1/xy,;. The two (y +j +1) factors in (9) cancel, so (9) is again a linear
function of j divided by j + 1, as was to be shown. If @ and 3 satisfy (2), it is easy to check

that the same is true of the revised parameters &’ and ’, where

o’ =qgle+fy) B =4B. (10)

This concludes the proof. O

Glazebrook and Boys [1995] introduce a larger class of distributions that is still closed

under the SOS operation. Binomial distributions are generalized to “light tailed”

distributions, negative binomial distributions are generalized to “heavy tailed”

distributions, and the Poisson distribution continues to play its central role. The Katz class
can be regarded as a two-parameter subset with convenient analytic properties.

Theorem 1 resolves a certain minefield paradox. Suppose that a minefield is cleared to

the .5 level, and that ¥ mines are removed in the process. One might argue that ¥ mines

must remain, since only half have been removed. But how can it be that the number

estimated to remain should jncrease with the number cleared, since clearance is by its




nature subtractive? The paradox disappears when one realizes that clearance to a known
level provides both gvidence and removal. When > 0, the evidence part dominates and
the estimated number remaining does indeed increase with the number removed. When
B <0, the removal part dominates. In the Poisson case 8= 0, the r:umber removed does
not affect the distribution of the number that remain.

Since clearance is a process carried out in time, it is likely that clearance times
Ty, ..., Ty, will also be known when (Y =y) is observed. If the magnitudes of these times
influence the posterior distribution of M, then the clearance times, as well as the number of
mines cleared, should be accounted for. However, there is no effect of this kind as long as
the clearance level p is calculable, regardless of the initial distribation of the number of

mines. The proof of this statement can be found in Appendix A.

3.2 Simple Sampling

Theorem 1 governs the case where the number of mines removed (Y) is observed.
There are also circumstances where Y is not observed. One examyle is where M is the
number of mines in region S, but only some fraction g of S (call it 3 ) is of concern. If g is
interpreted to be the probability that any given mine will be in §’, then the number of
mines X in §’ is the number remaining after sampling M at the level g, but without

observing the results of the sample. Theorem 2 states that X is still Katz.

Theorem 2: Let M be the number of mines, suppose M ~ K(a, B), and let X be the
number of mines in the sample when each mine is included with probability g,

independently of the others. Then X ~ K(a’, B’), where &’ and B’ are given by (14) with

p=1l-q




Proof: Since X is binomial when M is given,

> JiN o
E(z%)= Zx,-Z(f)q‘pf“z’ (11)

j=0 =0

=Y xj(qz+pY (12)
j=0

=g(qz+ p;a, B). (13)

Equation (12) is obtained from (11) by combining the factors g’ and z', and then
employing the Binomial Theorem. Equation (13) is obtained from (12) by recalling the
definition of the generating function g( ). After recalling (3) and rearranging (13), X can be

shown to be Katz with parameters

,__0q ,__Pa
o' = p=—. (14)
1-fp 1-PBp
If e and B satisfy (2), then so do &’ and B’. O

Of course, the number of mines Y removed from M is als¢ Katz, but with p and ¢

reversed in (14).

3.3 Simple Initial Threat (SIT)

Uncertainty about the number of mines implies uncertainty about whether the
minefield is safe for a transitor to cross. The simplest quantification is to define the
parameter

t = probability that a given mine kills the transitor, (15)
and then assume that all mines act independently. For example, suppose that mines are
distributed uniformly and independently in a minefield with width W, that each mine
actuates with probability B if the transitor’s straight line path takes it to within A/2 of the
mine, and that the transitor will be killed with probability D, conditional on actuation.

Then, as long as W>>A and the transitor’s path is near the center of the minefield




(ignoring edge effects, in other words), the parameter ¢ is ABD/W. However, ¢t does not
need to be calculated in that way — the calculation could involve actuation curves,
navigation errors, and edge effects as in Odle (1977).

The transitor is assumed to encounter the mines one at a time. As long as the transitor
survives, the probability that the next mine kills it is by assumption ¢, independently of any
others. The probability that all M mines fail to kill the transitor is therefore (1 — )M, and

the probability that the first transitor to enter the minefield is killed is -

SIT =1 - E((1 - n)M). (16)
If M ~ K(a, B), equation (16) can be evaluated by recalling that E(zM) = g(z; e, ) and
substituting 1 — ¢ for z; that is, SIT = 1 — g(1 — £; @, ). If clearance is carried out before
the transitor enters the minefield, then of course o’ and B’ from (10) or (14) would be

substituted for o and .

3.4 Threat to Following Transitors

The second and following transitors are much harder to deal with analytically than the
first. Odle (1977) gives formulas for several multi-transitor measures, but derivation is
non-trivial even when the number of mines is known. An exception is the “catastrophic
failure” probability c,, the probability that none of n transitors are sunk. Let O, be the

catastrophe probability for a single mine. Then c,, is simply Q) for m independent mines.

If M ~ K(a, B), then the (average) catastrophe probability is

ca(@, B) = E(QY ) = 2(Qn; . B), (17
where g() is the generating function given by (3). Odle gives the formula when M is
Poisson, a special case. As in the case of SIT, the important thing is that the generating

function of M be known.




Q, would be (1 - )" if each transitor’s track were chosen independently of the others,
but multiple transitors are usually assumed to attempt to follow the same track. In that
case the computation of Q, can become a significant task in itself, particularly if
navigation errors are involved, but the degree of difficulty has nothing to do with the
distribution of the number of mines present.

There appear to be no simple, closed-form formulas other than (17) when multiple-
transitors are present, even when the number of mines is known. There are practical
methods for calculating the casualty distribution and other statistical measures (Odle,
1977), but the methods do not simplify when the number of mines has a Katz (or even a
Poisson) distribution.

A simple upper bound on E,, the expected number of casualties out of n transitors,
can be obtained by observing that the number of casualties cannot exceed M, and therefore
that E,, cannot exceed E(M). If each mine causes a éasualty with probability at most D

whenever it detonates, then a better bound is

E,<D EWM). (18)
If M ~ K(a, B), then E(M) is given by (5). Since E,, is necessarily a nondecreasing function

of n, (10) is sharpest for large values of n. Of course, E; = SIT.

4. Sums and Partitions

Throughout this section there are n independent mine populations M; with
M;~ K(a;, B, i=1,...,n It will be assumed that ;> 0, since otherwise M;=0 and
population i could be omitted. The total number of mines is M = M| +...+ M,. The
clearance level for the ith population is p;, with g; = 1 — p;. The number of type i mines
cleared is Y;, with Y = Y| +...+ Y, and the number remaining is X;, with X =X +...+ X,,.

Of course X; + ¥; =M, and X + Y = M. These mine populations might be different kinds of



mines in one minefield, the numbers of mines in different minefields, or any other partition

of M into n parts.

4.1 Sums
If all of the mine populations have Katz distributions, does the total number of mines

M also have a Katz distribution?

Theorem 3: If §; = f for all i, then M ~ K(a, ff), where @ = ¢ +...+ . Otherwise, M

does not have a Katz distribution.

Proof: Since the M; are all independent, the generating function of M is
- a;/B;
g(2)=TT[(1-B:)/(1-Biz) """ (19)
i=1 _

If B; = B for all i, then (19) reduces to g(z) = [(1 -p)/(1- Bz)]a/ p , the generating function

of a Katz random variable. Otherwise, (19) does not have the required form and M is

therefore not Katz. O

Corollarv 1:  If ¢;,8; = B for some parameter f, i = 1, ..., n, and if Y; is observed for

i=1,...,n,then
n
X~K Z(aiqi'*'ﬁyi)’ﬂ .
i=1
Proof: According to (10), X;~K(a;q;+BY;,q;B;) when Y, is given. Since

qiﬂi = f3, the conclusion that X has a Katz distribution then follows from Theorem 3. |

10




Corollary 2: Suppose ¢;= (U/B;-D)/(1/f-1) for some [ i=1,...,n Then
X ~ K(orot, B), where

atot = iﬁ(ai/ﬁi) (20).

i=1
If instead p; = (1/8; = 1)/(1/B— 1) fori =1, ..., n, then ¥ ~ K(arro, B).

Proof: The condition on g; enforces B; =B and a] = Bla/B; in (14), which

applies when the number of mines cleared is not observed. The conclusion then follows

from Theorem 3. If the condition on p; holds, then the same logic applies to Y, the number |

of mines not removed. 0

If X and Y in corollary 2 are both to have Katz distributions, then it is necessary that p;
and g; both be proportional to (1/B; - 1). This is not possible unless f§; =0 for all i (in
which case 8 is also 0 — this is the Poisson case), or if f; and p; are both independent of i.
Either of these conditions also ensures that X will be Katz in the SOS condition where Y;
is observed for all i as in corollary 1.

If the only possibilities in clearance are that the clearance of eaéh type is either
observed or not observed, then the number of mines of each type remains Katz after
clearance, and indeperidence is preserved between populations. Other kinds of
observations, however, can destroy this Katz structure. One example would be an
observation that the total number of mines X cannot exceed some limit because of logistic
considerations. Of more concern is the possibility that ¥ might be observed, without
knowing all of its components.

To be precise, suppose that Y is known without knowing the identity of any of the
mines that have been cleared. Are the residual numbers X; still independent and Katz under
this condition? The answer is yes if ¥ = 0, since the observation that ¥ = 0 is equivalent to

the observation that Y; =0 for all i. The answer is also yes if p = 1, since in that case

11




X; = 0 for all i. One might hope that the answer would still be yes evenif p<1and Y >0,
provided f;=p for all i, since the latter condition is sufficient for ¥ to be Katz.
Unfortunately, this is not true. Appendix B shows that conditional independence fails
unless B = 0.

If §; = 0 for all i, then the X; are still Poisson and independent when Y is given because
the information in Y is irrelevant; the distribution of X; has nothing to do with the number
of miﬁes cleared. Thus, it is only in the Poisson case where the individual populations

remain independent and Katz when Y alone is observed.

4.2 Partitions and MCK Distributions
If M ~ K(a, P), then a closed form expression for the probability mass function of M,
validif B<0or >0, is

(=2/B),,

m!

P(M=m)= -7 (-p™; m=o0. @1

The notation (x),, is taken from Feller (1957) where (x),, is defined to be x(x-1) ...
(x-m+1) for m>1, with (x)g=1 (m is a nonnegative integer, but x can be any real
number). The limit as § — 0 produces a Poisson distribution, so in that sense (21) is valid
for all (e, P) satisfying (2). If M; ~ K(e;, p), and if My, ..., M, are all independent, then
M ~ K(a, P) according to Theorem 3. Let M = (M, ..., M), and m = (my, ..., my). Then

ﬁP(Mi =m;)

P(M"=m']M=m)=i=lP(M=m) 5 mp20,m=my+...+my. (22)

All of the factors involving (1 — ) and (-f) raised to powers cancel in (22), leaving
n (~0i/B),

PM=mM =m)= i=1 —; m; 20,m=my+..+my, (23)

12




The distribution (23) will be referred to as a “multivariate conditional Katz distribution
with parameters ¢, f, and m”, or MCK for short. The MCK distribution is a multivariate
hypergeometric distribution when f < 0, or a multinomial distribution in the limit as 8 — 0
(Johnson and Kotz, 1969). When f>0, the MCK distribution has been called a
multivariate Polya-Eggenberger distribution (Johnson and Kotz, 1977) on account of its
relationship to certain urn-sampling schemes, or simply the multivariate Polya distribution
(Janardin and Patil, 1970). Thinking of M; as the number of balls in an urn leads to a
practical way of generating M in a Monte Carlo simulation, since only a single Katz

sample of the total M is really required. This is the gist of Theorem 4.

Theoremd4: Let M~ K(a, ), where a= o +...+ a,, ;20 for 1<i<n. The pair
(e, P) is assumed to satisfy (2) for 1 < i < n. Consider the following procedure for placing
M balls in n urns. For k=0, ..., M — 1, the k + 18t ball is placed in urn i with probability p;,

where

a; + Pk;
ad B i 24
Pi a+ Bk (24)
and where k; is the number of balls already in um i. If M; is the number of balls finally

placed in urn i, then M; ~ K(q;, f), and all of the M; are independent of each other,
i=1,...,n E O

Proof: LetM=(My, ..., M), and m = (my, ..., my). It will be shown by induction
that P(M =m|M =m) is given by (23) for m 2 0. Since (23) is equivalent to (22), the

theorem follows upon removing the condition on M.

Let Q(m) be P(M =m|M =my+..+m,), and note that Q(Q) = 1, a special case of
(23) where m; +...+ m, = 0. Suppose Q(m) is given by (23) for all m such that my +...
+ my, = k; let ¢; be an n-vector all of whose components are zero except for component i,

which is 1; and let k;=m; - 1, i =1, ..., n (if k; < 0, then the corresponding term may be




omitted from (25) below). Then, conditioning on the ball configuration after k balls have

been placed,

Ot+ﬁk,-
o+ Bk

Q(m) = i O(m —e¢;) (25)
i=1

n
where m is now any configuration such that Z”’i =k+1. Q(m - ¢;) on the right hand
i=1

side of (25) is by assumption given by (23), and it is now only a matter of some algebra to
conclude that Q(m) on the left hand side is also given by (23). Since m is arbitrary except
for its sum, this completes the inductive proof. O
Comment: When =0, (24) makes p; = a/a for every ball. The fact that a Poisson
random variable produces independent Poisson parts when partitioned in this manner is
well known (e.g. Ross (1993)). When f# 0, if each ball is placed in urn i with probability
aj/a, instead of according to (24), then by Theorem2 M;~ K(a},Bi), where
o = a;/(1-B(1-a;/a)) and B = B(a;/@)/(1- B(1-a;/cx)). E(M) is still e/(1 - ),
but it is not true that M;~ K(a;, P), and furthermore My, ..., M, are not mutually

independent. These latter properties require that the balls be allocated according to (24).

5. Tactical Decision Aids (TDA’s) for Minefield Clearance

Barring the possibility of exhaustive search, any mine clearance campaign has got to
cope with the problem of deciding when to stop. Stopping after a fixed time is of course
an option, but it makes sense to let the stopping time depend on results achieved to date,
particularly when there is as much initial uncertainty as is usually the case in mine
clearance. As a minimum, therefore, any decision aid for mine clearance should be able to
display the “status” of a clearance effort in terms that support the stopping decision, or,
more generally, decisions about what should be done next. The natural status of a

minefield is the risk that it poses to the traffic against which it was designed. In simplest

14




terms this risk is measured by SIT. SIT depends strongly on ne number of mines
remaining, so it is hard to resist the conclusion that the number of mines initially present
must be an input, even if the number is so vaguely known that the input must be a
probability distribution. Without some input or assumption about the number of mines
initially present, it is hard to imagine how a basically subtractive clearance activity could
result in sufficient knowledge about the number of mines remaining to support a
computation of SIT.

In spite of the above considerations, current (1996) mine clearance TDA'’s typically do
not require the number of mines present to be an input. There are a variety of reasons for
this, but the only important point is that the reader should understand that the necessity for
a distribution for the number of mines to be an explicit input is arguable.

Even if) one accepfs the idea that the number of mines M must be thought of as a
random variable, it does not necessarily follow that M should have a Katz distribution,
since Bayes Theorem could just as well be applied to a general distribution. A general
distribution would require storing 1000 numbers if the maximum conceivable number of
mines were 999. A Katz distribution requires only 2, but performing a Bayesian update on
a general distribution_ is trivial with a modem computer; in a different context,
NODESTAR (Stone and Corwin, 1995) performs such updates with 106 'states, rather
than only 103. Using a general distribution would also have the advantage that any
observation with a known conditional probability law could be the basis of a Bayesian
update, which is not true in the Katz case. The idea of using general distributions does not
become computationally unwieldy until multiple random variables must be described
jointly. If there were for example 3 mine types, the number of each of which does not
exceed 999, then there would be 109 joint possibilities. Today’s computers cannot perform

Bayesian updates on that scale. The Katz assumption provides no relief from this kind of

15




explosion, since there is no useful theory for multiple Katz random variables unless they
are all independent.

On the other hand, it is also true that very little is lost by restricting input distributions
to be of the Katz type. The two Katz parameters are sufficient fur qﬁanﬁfying the center
and spread of a distribution, and it is hard to imagine knowing enough about the number
of mines to need more detail. In fact, the Katz restriction may be operationally welcome,
since the entire distribution is determined from only two estimated numbers. With these
thoughts in mind, one TDA (MIXER) proposed by the author (Washburn, 1995) employs
Katz distributions exclusively, requiring the user to quantify uncertainty by providing a
mean and standard deviation for each mine type.

Katz distributions also have some computational advantages compared to the general
case. At any point in a clearance operation where the clearance leve. and the number(s) of
mines cleare& are known, it is easy to compute revised Katz parameters (formula (10)) and
then SIT (formula (16)) while the comparable operations in the general case would require
extensive computation. The Katz divisibility properties described in Theorem 4 could also
prove handy. If a region containing M mines must be divided into two parts, then Theorem
4 describes how the number of mines in the two parts can be independent, Katz, and still
sum to M. The comparable operation in the general case may be difficult or impossible.
Perhaps most important, the availability of an analytic expression for SIT opens up the
possibility (as in MIXER) of posing the mathematical problem of minimizing SIT subject
to constraints on the clearance effort, a computational problem that would be much more
difficult in the general case.

Appendix B shows that one seemingly innocent observation (tceal mines cleared) can
create analytical havoc when multiple Katz populations are present — the residual mine
populations are not independent. Letting the populations have general distributions would

not relieve this problem, since the general case includes the Katz case. Rigorously
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processing measurements of this sort will require Bayesian updates of joint distributions,
regardless of the nature of the marginal distributions. The point, again, is that there is little
to be gained by permitting marginal distributions to be general, rather than Katz.

The difficulty described in the. paragraph above could be relieved by forcing all
distributions to be Poisson, as noted on page 11. Poisson distributions also have other
important analytic advantages, but unfortunately have only a simple parameter. For
example a Poisson distribution with mean 100 necessarily has a standard deviation of
(only) 10. Inclusion of distributions with >0 (negative bmomml distributions) in the
permitted class seems essential to model the large uncertainty about“mine numbers that is
to be expected.

In summary, the Katz class of distributions is large enough to support mine clearance
TDA'’s, and offers several convenient analytic properties. The Poisson class would be even
more convenient, but is not large enough. Permitting general distributions would lose the
convenient Katz properties, and therefore should be done only if there is some use for the
added flexibility.

In minefields where multiple mine types are present, all theorems proved above require
an independence assumption. If observations that would destroy independence are
contemplated, then, in spite of the implied computational burden, a Bayesian TDA will
have to be based on general, multivariate distributions. In other words, Katz distributions
appear to be the right answer only as long as observations preserve independence between

populations.
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APPENDIX A
Clearance times have no additional value

When the number of mines cleared (Y) is observed, it is likely trrat the clearance times
Uy, ..., Uy will also be observed. These times turn out to have no additional value in
making inferences about the initial number of mines M, whether or not M has a Katz
distribution, and therefore no value for the residual number of mines M — Y. This result
may seem counterintuitive. If one searches for 24 hours, finding 5 mines in the first hour
and nohe thereafter, then intuition argues that there are probably no remaining mines,
whereas there might be more mines if the clearance times were scattered over the whole
clearance period. This intuition would be correct if the probability law F( ) governing the
detection times were unknown, since there is information about F( ) in the clearance times.
If F() is known, however (as it must be if the clearance level is calculable), then the

corollary below states that the clearance times are useless.

Theorem:  Let M be a nonnegative random variable, and let Ty, ..., Ty, be independent
random variables with common distribution function F( ). Let ¢ be aay real number, let ;
indicate the event (T;<1), let Y= I +...+1I), and let U= (Uy, ..., Uy), where
Uy, ..., Uy are the nondecreasing order statistics of those T; for which T; <. If m and y
are nonnegative integers for which 0 <y <m, and if u = (x4, ..., uy) is a real vector, then
either Pr(Y=y, M =m) =0, or

Pr(U=uY=y,M=m)=Pr(U=u|Y = ). (A1)

Proof: Both sides of (A1) are well defined if Pr(Y =y, M = m) > 0. Furthermore,
both are O unless u;<tfori=1,...,y and w;<u;,; fori=1,...,y -1, so suppose that

those conditions hold. Define the event

(y] n (T; >¢). (A2)
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Then

Pr(E,n ) = Pr(M = m){ - dF (u; )}[1 -F@n]™ . (A3)
=1

l

The event (U =u)N(M =m) includes E,,, and other mutually exclusive events that have

the same probability, since the first y of the T; are not necessarily the smallest. If all

components of u are unequal, the number of these events is y!(';l), the number of

permutations of m things taken y at a time. More generally, let there be K distinct

components in u, with n;, being the number of times the kth is repeated. Then there are

(z)(r;n) such events, where (%) is the multinomial coefficient for y things taken ny,

ny, ..., ng at a time. Every subset of {Ty,...,T,} of size y can be assigned to the
components of u in G;) different ways. Thus

Pr(U=u,M =m)= (,y,)(';') Pr(Eym ). (Ad)
Since Pr(Y =y,M =m)=Pr(M = m)(';l)F(t)y [1-F(£)]™ 7, it is a simple matter to take
the ratio Pr(U = u, M = m)/Pr(Y =y, M = m) to obtain i
y | :
Pr(U=ulY =y,M =m)= (’};)H[dF(u,- )/ F@). (A5)
i=1

But the right hand side of (A5) does not depend on m, so it must also be Pr(U =ulY = y).

Conditional on (Y =y) being given, the order statistics U are distributed as if U were the

order statistics of the truncated distribution F( )/F(t), sampled y times. O

Corollary: Either Pr(U=u,Y =y)=0 or P(M=mU=u,¥Y =y)=Pr(M=m|¥ = y).

Proof: LetA=(U=u), B=(Y=y), C=(M=m), and assume Pr(A " B) >0. It
follows that Pr(CJAnB) and Pr(C|B) are well defined, and both are zero if
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Pr(B N C) = 0. If Pr(B N C) > 0, then Pr(A|BN C) = Pr(A|B) > 0 by the theorem, and all
that remains is to write the definition of Pr(CJA N B), cancel equat factors, and observe

that the result is Pr(C|B). O
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APPENDIX B
A counterexample to conditional independence

Suppose M; ~ K(a, B), i=1,2, and let M = X| + X; and a = a; + 0. Each of the M
mines is cleared with probability p < 1, independent of the others. Let ¥; be the number of
mines of type i cleared, let Y=Y] + 1, let X; = M; - Y; be the number of type i mines
remaining after clearance, and let g = 1 — p. It will be shown that X; and X, are not
independent under the condition Y=1, unless B = 0. It suffices to show the same thing
about the events (X; = 0) and (X, = 0).

Let E be the event (X; =0 and X =0 and Y= 1), and let Fy be the event (X; = 0 and
Y = 1). E is the same as the event that exactly one mine is present and that it is cleared, so,

using (21) and the fact that M ~ K(e, B) by Theorem 2,

P(E)= pP(M =1)= pa(1-B)*/P. (BD)
F is the unien of two mutually exclusive events
G =(Xy=1andY;=1and ¥, =0) and
H=(X;=0andX;21and ¥, =1).
P(G) is just pP(Xq = 1) P(Y, =0), but evaluating P(H) requires a suramation:
P(H)=P(X; =0) Y P(X; = j) ipa’™"]. (B2)
j=1
with the factor in [] being a binomial probability. The sum can be evaluated by

_a\VB
differentiating the generating function of X,. Letting y = (l—ﬁ-) , the result is that

1-Bq

P(H) = pP(X =0)(£i,—q]7“2- (B3)

Since P(Y, =0) = y“z and P(X; = 1) = a;P(X; = 0), P(Fy) can be obtained by summing
P(G) + P(H):

P(R)=pP(X; =0)y®2 fy = pl1- H™/Py* 1. (B4)
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where f) = &) + /(1 - Bg). Defining F; similarly to Fy, it follows by symmetry that

P(R)=p(1-B)2/ Py 5, (BS)
where fo = a, + /(1 - Bq).
If the events (X; =0) and (X, =0) are to be independent when the event (Y=1) is

given, it should be true that P(Fy)P(F,)= P(E)P(Y=1), so consider the ratio R =

P(F)P(F)/(P(E)P(Y = 1)). Since P(Y =1)= —1—%}'“, all factors are known and R can
be computed. Most factors cancel, leaving only
= 2
R=(1-Bg) fif] . ~ (B6)

It can be shown using simple algebra that (1 - fBq)fifs 2 a2 for all @y, ap 20, with
equality possible only if f=0. Thus (X;=0) and (X;=0) are not conditionally
independent. A slightly stronger statement is possible: the probability of having 0 mines

remaining, given Y = 1, is larger than the prediction based on conditional independence.
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