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Branch and Bound Methods
for Search Problems

Alan R. Washburn

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943

1. Introduction

This paper summarizes computational experience with branch-and-bound (B+B)
algorithms for solving two search problems. B+B methods often involve a quality/quantity
tradeoff in calculating bounds, an aspect that will be explored. The results may therefore
be of some general interest. Additionally, the two search problems are of inherent interest
in themselves. The first (section 2) involves search for a moving target by one searcher,
and the second (section 3) involves search for a stationary target by multiple searchers

with different capabilities.

2. Path-constrained Search for a Moving Target

2.1 Preliminaries

The target track is X = (X, ..., X7) where X;€ C represents the position of the target
at time i. C is a finite set of cells, and the single searcher as well as the target must at all
times be in one of them. The positive integer T is the fixed amount of time available for
search. If the searcher’s track is 0 = (0, ..., O7), then the probability of not detecting

track X is some given function 7n(X, 0), and the searcher’s object is to minimize the




nondetection probability Y f(X¥)(X,0), where f{ ) is a given probability mass function.
In other words, the probab’i{]ity law governing the target’s motion is assumed known.

If there were (say) ICl =9 cells and T = 10 detection opportunities, there would in
principle be 910 possible tracks, too many to permit even evaluating the objective function,
much less optimizing it. Since interesting problems can be even larger, special structures
must be imposed to permit optimization. Essentially all work to date has been based on the

assumptions that

nX, ¥) = exp(-Z(X, ¥)), ¢y
and that
T T
Z(X,¥)= Y W(X,.)¥(X,,.0)= Y, Y W(x,)¥(x,?) )
=1 t=1 xeC

¥ (X,, 1) being an indicator function for the event (X, = 0,); i.e. W(x, £) = 1 if and only if
o, =x. The ¥ and o notations for a searcher path are equivalent; each will be used in the
sequel when convenient. The search effectiveness function W(x, ¢) is assumed to be non-
negative for all xe C, 1 < ¢ <T. Formulas (1) and (2) include the important instance where
W(-, -) is a constant W, in which case Z(X, W)/W is the number of times N that the searcher
and the target occupy the same cell. Letting QS = exp(-W), n(X, ¥) is then (QS)V. Thus
QS can be identified as the probability of overlooking the target even when the correct cell
is searched. The overlook probability can be made to depend on time and location through
the function W(.,-), but the independence assumption is inherent in the exponential
detection function.

The usual way of constraining the searcher’s path is to fix the searcher’s position to be
0p at time 0 and then require that a searcher in cell x at time ¢ must proceed to cell in
S(x, ) at time ¢+ 1. The set S(x, ) is a subset of C corresponding to the “Forward
neighbors” of x; xe C, 0 < ¢ < T. It is also useful to define $*(x, f) to be the set of cells at

time 7 — 1 from which it is possible to be inx at #, so forxe Cand 0< ¢t < T, S*(x, t + 1) =




{ylxe Sy, 1)}. For xe C, ye C, and 1 <¢<T, let u(x, y, ?) be 1 if the searcher visits x at ¢
and y at £ + 1. Then the problem of minimizing the nondetection probability can be stated

as the nonlinear programming problem NLP1, with 7= 0:

min E(n(X,¥))
subject to

Y ¥(x,7+1)=1 and ¥(x,7+1)=0 forxe S(c7.7) 3

xeS(04,7)
Zu(x,y,t)z‘l’(x,t}, t<t<T, xe€C ()]

yeS(x,r)

Y u(y.x.t)=¥(x,t+1); 1<t<T, xeC 5)

yeS* (x,1+1)
Y(x, 1) and u(x,y,f)=0orl, xeC,yeC,1<t<T. 6)

Constraint (3) requires the searcher to start at some cell in §(o,, 7), while constraints
(4) - (6) require him to move from one legal cell to another. If 7>0, it should be
understood that Oy, ..., O, is specified to be a legal beginning of a searcher track, with
only the part after 7 to be optimized. The E( ) in the objective function denotes expected
value, so the objective function is a weighted sum of exponentials of the form (1), one
term for each potential target track.

2.2 Branch and Bound for NLP1

The following basic B+B algorithm is a slight modification of Stewart’s [7]. It is
assumed that the bound computed in step 2 reduces to the exact nondetection probability
when the searcher’s entire path is specified (7 = T). K(7) is “the set of continuations yet to

be explored,” and g" is “the best nondetection probability yet found.”




1) Set 7=0, initialize ¢* to be any number exceeding 1, and let 6, = 6.

2) Obtain a lower bound ¢ on the nondetection probability, subject to the searcher’s path
following oy, ..., 6, up to time 7.

3) Ifg<q"and 7 <T, then Branch; i.c. let K(t + 1) = §(0,, T), increment 7, let o, be any
cell in K(7), and return to 2. Otherwise, the current path has now been fathomed.

4) Ifg<q"and 7=T,let ¢* = g and save the path gy, ..., Or.

5) If 1=0, stop. The last saved path is optimal and g" is its nondetection probability.

6) Delete o, from K(7). If K(7) is now empty, decrement 7 and return to step 4. If not, let

O, be any cell in K(7) and return to step 2.

If the bound in step 2 is too loose, then no fathoming will occur. The object is to find
relaxations of NLP1 that are easy to solve, but still provide sharp bounds. Fortunately
NLP1 has several relaxations that considerably simplify it. Three of the most important are
described below.

Convex. If binary constraints (6) are replaced by simple non-negativity requirements,
NLP1 is a convex program for which Kuhn-Tucker conditions are necessary and sufficient

for optimality.

Linear. Since ¢2>1-Z for Z>0, a lower bound can be obtained by minimizing

T
1- EZ(X,¥)) which is equivalent to maximizing . E(W(X,,r)¥(X,,t)). The interpre-
=1

tation is that one is maximizing the mean number of detections. This is a longest route
problem where the reward for visiting (x, 1) is W(x, )Prob(X,=x), a relatively simple
optimization problem.

The bounds obtained by this relaxation will be sharp as long as the maximized
objective function is small, so one can expect NLP1 to be easiest to solve when the

prospects of detection are slim.




A slight sharpening of the bound achieved by this method is possible if Z(X, YY) is
always an integer multiple of some quantity A > 0, as will be the case if W(x, f) is always a
multiple of A. In that case let f = (1 — exp(-A))/A, which is smaller than 1, or otherwise let
f=1. Then eZX. W) 21 -fZ(X, V). The rewards in the longest route problem can be
multiplied by f, which will result in a sharper bound.

Distribution of Effort (DOE). Constraints (3)-(5) are network constraints, the
structure of which can already be exploited, but a further simplification results if the

searcher is permitted to occupy any cell at time ¢ that is reachable from the last constrained
cell o,. The set S, of such cells can be obtained from the recurrence Si41= Uxes S(x,1);
4

t > 1, with S; = {6,}. Then (3) - (5) can be replaced by

Y ¥(x =1 7<t<T. ™

xeS;
Note that (7) is already implied by (3) — (5), so that the replacement is truly a relaxation.
This relaxation has the advantage that the u-variables disappear from the formulation. A
further relaxation could be obtained by substituting C for S, but there seems to be no

computational advantage in doing so.

2.3 The Markov Specialization

The three relaxations described in section 2.2 cannot in themselves make B+B a
practical technique as long as evaluation of the objective function still requires
enumeration of all possible target tracks. Consider a problem with 9 cells and 10 time
periods. The Linearity relaxation requires as data only the marginal probabilities P(X, = x),
a total of 9 x 10 numbers, to determine a candidate solution W(x, f). Evaluating
E(n(X, )), however, would still require evaluation of a probability and an exponential for
each track, a potentially explosive amount of computational effort. If NLP1 is to be
solvable as a practical matter, either the number of tracks must be constrained or some

structure must be imposed that obviates the need to enumerate them. Tactical decision




aids have been based on the idea that target motion can be modeled with a track
population on the order of 1000, so proceeding on the former course would be a
reasonable choice. Nonetheless, all B+B computational work to date has been based on
the Markov specialization of NLP1, a structural assumption that makes it unnecessary to
enumerate paths. The rest of this report also concerns that specialization.

The main advantage of the Markov assumption is that it permits the operation of the
FAB (Forward and Backward) algorithm. The FAB algorithm uses the two functions

P(Y, x, 1) = Prob(X, = x and no detection before 1), (8)

and O(¥, x, 1) = Prob(no detection after ¢, given X, = x), &)

as well as the relation that

ND = Prob(no detection) = Y P(¥,x,f)exp(-W(x,))¥(x,1)) O(¥,x,1).  (10)

X

Formula (10) is valid for t=1,...,T even without the Markov assumption, but it is
especially useful in the Markov case because

a) P(Y, x, t)is easily calculated given W(y, u) forye Cand u < ¢

b) Q(¥, x, 1) is easily calculated given W(y, u) foryeCand u > ¢

c¢) neither P(Y, x, 1) nor Q(¥, x, #) depends on ¥(y, 1) for any ye C.
The import of ¢) is that W(:, #) can be changed to increase the objective function as long as
the searches before and after ¢+ remain feasible, thus permitting an iterative (FAB)
algorithm for gradually decreasing the objective function. FAB requires repeated
evaluations of P(-, -, -) and Q(, -, ), so a) and b) are also important. See [2, 10] for the
details of these evaluations. The main use of FAB has been in computing an improving
sequence of search plans for NLP1 and its various relaxations. The limiting FAB search
plans might reasonably be termed “locally optimal”, since a certain class of small

perturbations cannot improve the objective function.




It turns out that each search plan in the FAB sequence has associated with it a global
lower bound on the nondetection probability; this is shown in Washburn [8] for the DOE
relaxation of NLP1, and in Appendix A of this report for NLP1 itself. The availability of
these lower bounds makes FAB potentially useful in B+B. Specifically, one might use

FAB in step 2 to find a locally optimal extension 0y, 1, ..., O, With an associated lower
bound g as well as nondetection probability §. B+B has no use for § as stated, but step 2

could be extended as follows: “If §<gq*, let ¢*=§ and save the path
Oy, ..., o7.” This extension is potentially valuable in making fathoming easier in step 3.
Thus FABing could be viewed as a method of producing lower bounds that has the side
benefit of reducing ¢* quickly. It could also be viewed as redundant effort, since each of
the path extensions produced by FAB will eventually be considered (implicitly or
explicitly) by the B+B procedure in any case. Plainly the important question is whether
locally optimal extensions are worth the computational trouble.

The Markov specialization also permits an effective generalization of the Linear bound
discussed earlier. Suppose that the searcher’s path up to time 7 is fixed, let

T
Z, =Y W(X,,t)¥(X,.t), and Z, = zw X;,t)¥(X,,t). Then Z(X, ¥) = Z, + Z,, with
=1 t=7+1

Z, representing the past and Z, the future. Since the target’s motion is Markov, Z, and Z,

are independent when X ; is given, and therefore

E(e % e % |X, =x)= E(e™% |X; = x)E(e™%*|X; =x). (11)
Let P* (x,7) = E(e~%*|X; = x) Prob(X, = x). (12)

P*(x,7) can be obtained from the FAB function P(¥,x, 7) by multiplying by
exp(-W(x, ¥ (x, 1)); the + superscript is intended to convey the idea that the effect of

search at time 7 is included. Then the nondetection probability is

ND=E(e™%*%)= 3 P*(x,1)E(e % [x, =2x). (13)

xeC




Bute 2+ 21- fZ*, where f<1 is the factor introduced earlier in describing the Linear

relaxation. Therefore

ND2 Y P*(x,7)-f i Y E(W(X,.t)¥(X,. )X, = x)P* (x,7). (14)

xeC t=1+1 xeC
But E(W(X,,0)¥(X,,t)X; = x)=W(0,,1)Prob(X, = 0,|X; = ). (15)
Now let R(o.t)=f Y W(0,.t)Prob(X, = 6,|X; = x)P* (x,7) (16)
xeC

be the searcher’s reward for visiting cell o, at time 7. A lower bound on ND can now be
obtained by minimizing the right hand side of (14), which amounts to finding the search
path continuation that maximizes the total reward at times 7+ 1, ..., 7, a relatively easy
longest path optimization problem.

Appendix B describes one more bound that is worthy of consideration if the Markov
motion is ergodic. This Ergodic bound is based on bounding the factors in (16), thus
obviating the need for longest path computations. The Ergodic bound can be- expected to
be less sharp than the Linear bound obtained from (16), but more easily computed.

Obviously there are a great many ways of bounding NLP1, particularly in the Markov
specialization. Some methods that have been used in the past are reviewed in the next

section.

2.4 Review of Previous Computational Experience with B+B

All discussions in this section concern the Markov specialization. The Linear, Convex,
and DOE relaxations are as described in section 2.2.

Stewart [7] was the first author to consider B+B for NLP1. He considers the Linear
relaxation, but finds the resulting bounds “...too weak to be usefully effective...”. He is
then led to the DOE relaxation, employing the FAB algorithm to “solve” it. He
acknowledges that the resulting B+B solutions are potentially non-optimal because FAB

solutions of the DOE relaxation are themselves non-optimal, but rejects making the




additional Convex relaxation (FAB solutions would then be optimal) because the resulting
bounds are again weak. In Stewart [6], computational results are given for a one-
dimensional problem where the searcher has two options (right or left) at each time, and
T = 10. The true optimal solution was found in 101 out of 105 test problems.

Eagle and Yee [3] use the Convex relaxation of NLP1 to obtain bounds. The
relaxation has a nonlinear objective function and network constraints. It is solved by an
iterative method where at each stage a linear approximation to the objective function is
made. An attractive feature of this method is that each of these minimizations results in a
solution feasible in NLP1, thus permitting ¢* to be quickly reduced. The procedure is
tested on a problem where the searcher moves in a 3 x 3 grid, having four choices in the
center cell or a smaller number on the edges, and T = 10. Searcher and target start in
opposite corners, the idea being that the searcher must transit to the vicinity of the target
before starting to search. Solution times are a few minutes. Solution times are also a few
minutes in larger S x 5 and 7 x 7 problems, the surprising lack of a sharp increase being
explained by the fact that searcher and target continue to start in opposite corners.

Martins [S] pursues the idea of using bounds that are easily evaluated, rather than
sharp. He uses the Linear relaxation in the form of equations (13) — (16), so calculating a
bound takes the form of a longest path problem. The resulting procedure does more
branching than the Eagle-Yee procedure on the same test problems, but still has run times
that are smaller by a factor of about 4 in problems where W(x, ) =1 for all (x, 9); i.e.
where the overlook probability is exp(-1) = .632. Martins’ procedure is even faster with
larger overlook probabilities, an expected result because the Linear relaxation is closer to
NLP1 in that case.

Evidently there is something to be said for all three of the relaxations described in
section 2.2. In addition, no experiments have yet been made using FAB bounds of the type
described in the Appendix. These observations prompt the experiments reported in the

next section.




2.5 Results of Experiments
All of the experiments reported here are for C = {1, ..., N}, a one-dimensional set of

cells. The target moves right and left with probability .3, or remains stationary with

probability .4. In boundary cells where motion would take the target outside C, the target
remains stationary instead. The target’s initial cell is specified, as is the cell that the
searcher must examine at time 1. First the searcher examines the given cell, then each
party moves to a new position, then a second search is made at time 2, etc., until finally
the last search is made at time T. If the searcher’s current position is xe C, then the
searcher’s next position can be any ye C such that lx—yl < 1. The overlook probability

OS =exp(-W(x, f)) is constant for all xeC, 1<¢t<T. Problem 1 has N=9, T= 10,

QS =.6, and both parties starting in cell 5, in which case the optimal nondetection

probability ND* is .26639607 and an optimal searcher track is 5555456654. Problem 1 is

large enough to be interesting, but small enough to permit extensive experimentation on a

486 (8MHz) PC.

Four lower bounds are considered:

1) ERGO. The random walk chosen for the target has stationary distribution
(1/N, ..., 1/N), and W(x, 7) is constant, so computation of the ergodic bound as
outlined in Appendix B is trivial.

2) MEAN. This is the same bound utilized by Martins, and is named after the fact that
the mean number of future detections is maximized.

3) FAB. This is the FAB bound for NLP1 with no relaxations. The subroutine
computing the lower bound also returns the feasible nondetection probability
associated with the FAB path. The function Q(¥, x, ¢) is initialized to 1.0 for all x, 0,
but never reset. Thus each call to FAB starts with the leftover Q( ) from some
previous call.

4) FABC. This is the FAB bound for NLP1 with the Convex and DOE relaxations.
FABC and FAB both utilize the same function Q( ) in the same way.

10




Table 1 shows the performance of the four bounds on Problem 1 for two initial
segments. Segment (5) is an example of a hard bounding problem (since only the starting
point is specified), and segment (5, 6, 7, 8, 9) is an example of an easy bounding problem
(since the searcher seems determined to move away from the target’s starting position as

fast as possible).

TABLE 1. Relative Performance of Four Bounds

segment = (5) segment = (5,6,7,8,9)
time (sec) i lower upper | time (sec) ; lower upper
ERGO 1 -.26400 —_ 1 27764 —
MEAN 1.9 06457 — 1.1 37523 —
FAB 34 19600 | .26726 1.9 37141 | .39079
FABC 59 24108 —_ 24 38658 —

It can be observed in Table 1 that the bounds are listed in order of difficulty of
computation. MEAN takes longer than ERGO because it must solve a longest route
problem. FAB takes longer than MEAN because it must solve a longest route problem in
addition to FAB computations. FABC does not need to solve a longest route problem
because of the DOE relaxation, but nonetheless takes longer than FAB because the
Convex relaxation implies a need for logarithms and exponentials. FAB and FABC each
do only a single FAB iteration; doing two iterations would double the time required and
produce only slightly better bounds.

It may also be observed in Table 1 that MEAN produces a better bound than ERGO.
This must be true in general because ERGO operates by bounding terms in the sum
computed by MEAN. FABC also produces a better bound than either MEAN or FAB in
Table 1, but that is not true in general. Table 2 shows the results of an experiment where
the bounds were tested on variations of Problem 1. There are 9322 paths with
1< 1< 10 in Problem 1. For each of those paths, the number of instances where one

bound is greater than another (excepting ERGO) by at least 10-6 is shown in columns 2-4

11




of Table 2, the code being that instances of the reverse of the column heading are shown
in ( ). When QS = .6, MEAN beats FAB 7431 times, FAB beats MEAN 537 times, and
the two are essentially equal (they must be exactly equal when 7=9) 9322 — 7431 - 537 =

1354 times.

TABLE 2. Relative Performance of Four Bounds (Cont’d.)

QS | MEAN> FAB | FAB > FABC | MEAN > FABC { ERGO | MEAN ;| FAB ;| FABC
1 9277 (45) 185 (9137) 9186 (136) 44 8 27 18
.6 7431 (537) 14 (7762) 5917 (2039) 104 20 57 20
9 | 3256 (1836) 0(3982) 1920 (3166) 31 3 4 1

All four bounds must in every instance be smaller than the feasible nondetection
probability returned by FAB. The last four columns show the average excess of this
quantity over the bound, times 10,000. The two variations are cases where the single look
detection probability is very small (QS =.9) or large (QS =.1). The overall situation is
complicated, but note that the MEAN bound is surprisingly good, with its only real
competition coming from FABC. Other than the “byproduct” of a feasible nondetection
probability, FAB has little to recommend it.

Table 3 shows the run times in seconds for the EXHAUST method (exhaustion) and
for four B+B procedures on the same three variations of Problem 1. All four B+B
procedures begin with a single call to FAB to establish a good initial feasible path. ERGO
is fastest when QS = .6, followed closely by MEAN. This situation is reversed when QS is
small. All procedures except exhaustion solve the problem very quickly when QS =.9.

TABLE 3. Run Times for Five Procedures (seconds)

QS | EXHAUST | ERGO | MEAN | FAB | FABC
1 14 1.4 1.3 4.0 4.7
6 14 .6 8 2.5 2.1
9 14 A1 1 .1 1

12




EXHAUST is competitive in Table 3 except when QS is small. The FORTRAN
implementation of EXHAUST exploits the Markov assumption just like the four bounds
do, hence its quickness.

2.5.1 Hybrid Procedures

When attempting to fathom a starting segment, it often happens that a computed
bound is not quite large enough to prevent branching. In that case it is tempting to
compute some other bound, especially a sharper one, on the grounds that a little additional
effort may prevent the branch. Consider a class of such hybrid procedures where bound B
is calculated if and only if bound A comes within & of fathoming the segment, where 62 0.
Bound B will never be evaluated if §=0, but its evaluation becomes more likely as &
increases. When & is sufficiently large, failure of bound A always results in evaluation of
bound B.

To test the usefulness of hybrid procedures, several experiments were made on a
larger problem (Problem 2) where N = 15, T = 16, and both parties start in cell 8. For each
hybrid procedure (A, B), five values of 6 (0, .005, .02, .045, .08) were tested to determine
which one gave the lowest run time. In practice .08 is essentially infinite, since further
increase does not change the sequence of evaluations. Results are shown in Table 4, using
the code that the best value of & is shownin () ifitisnot 0.

In Table 4, the fastest B+B procedure when QS = .6 is simply ERGO with no backup,
since neither (ERGO, MEAN) nor (ERGO, FABC) ever employs the backup bound (the
two computer programs are still distinct, however, so the run times are somewhat
different). The B+B based on MEAN is a close runner-up. The run time of FABC when
not backed up is 533 seconds (not shown), decreasing to 452 seconds when backed up by
MEAN at é = .005. The (FABC, MEAN) hybrid is not a contender, nor is (FAB, FABC),
nor is EXHAUST.

13




TABLE 4. Run Times (seconds) for Hybrid B+B Algorithms

on Problem 2
A B QS=.6 QSs=.9
EXHAUST — 1305 1305

ERGO MEAN 157 12
ERGO FABC 168 5(6=.08)
MEAN FABC 197 4 (6=.08)

FAB FABC 821(6=.005) | 6(6=.08)
FABC MEAN 452 (6=.005) 4

When QS =.9, the sharpness of the FABC bound comes into play; the last four B+B
procedures all place heavy reliance on it and produce short solution times. In order to
distinguish between them, three of the four were tested on Problem 3, which has N = 19,

T =20, and both parties starting in cell 10. Results are shown in Table 5.

TABLE 5. Run Times (seconds) on Problem 3

A B QS=.9 {QS=.93|QS=.95
FABC — 111 10 1
ERGO FABC 117 11 1
MEAN FABC 136 14 1

Pure FABC has the shortest run times, and run times decrease rapidly as QS increases.
The decrease in run times is mostly because the increasing sharpness of the FABC bound
requires fewer initial segments to be fathomed. In the case of pure FABC, this number
decreases from 34512 to 2580 to 132 as QS increases from .9 to .93 to .95. The other two
procedures have slightly smaller segment numbers, but with greater fathoming cost per
segment.

One might examine the above calculations and conclude that hybrid procedures are not
a good idea, since, in all cases examined, a pure procedure is at least as good as any
hybrid. However, hybrid procedures exhibit a robustness that pure procedures lack. The

author’s favorite is MEAN backed up by FABC. MEAN is chosen, rather than ERGO, for

14




reasons not related to the data presented above. The ERGO bound is based on
max; P(Y¥, j, 1), regardless of the location of the searcher, whereas the initial term in the
MEAN bound will be P(¥, j, 1) for some j near the searcher. The difference is slight if the
searcher starts out near the target, as in all results reported here, but the ERGO bound will
be almost useless in the “transit” phase if the searcher must first move to the vicinity of the
target. For example, consider the problem where N=19, T=20, OS5 = .6, and where
searcher and target start at opposite ends of C. The (MEAN, FABC) procedure solves the
problem in a small fraction of a second, whereas (ERGO, FABC) takes over 4 seconds.
Thus, MEAN is preferred to ERGO for robustness reasons.

Figure 1 shows performance of the (MEAN, ERGO) hybrid B+B procedure on a
variety of problems where there are N = 19 cells, with searcher and target each starting in
cell 10. The number of time periods T ranges from 14 to 25, and the overlook probability
ranges from .60 to .93. The quantity graphed is run time R in seconds. It can be seen that
the logarithm of R is a linear function of T. The slope is about .35; R increases by a factor
of 10-35 =2.24 when T is incremented by unity. It is neither surprising nor encouraging
that R increases exponentially with T, but somewhat encouraging that the factor of
increase is smaller than the maximum number of cells to which each segment can branch
(3). Figure 1 makes it clear that this factor of increase is nearly independent of QS, at least
over the range considered (the slope actually increases slightly with OS).

Run time R has a surprisingly strong dependence on QS. When T =20, the ratio
(R when QS = .6)/(R when QS =.93) is 732. This ratio would be 1.0 if solutions were
found by exhaustion, so the B+B procedure has a strong preference for problems where

QS is large.
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Figure 1. Run time in seconds versus number of time periods for
various values of the nondetection probability S

.2 rl imal Solution

Any B+B procedure can easily be adapted to find solutions that are nearly optimal,
rather than exactly optimal. If step 3 in section 2.2 is modified to begin “If ¢ + d < ¢*...”,
where d 2 0, then the last saved path will be within d of optimality.

Depending on the bounds being employed, permitting d to be positive can make a
large reduction in the run time. Figure 2 shows the results of testing the (MEAN, FABC)
hybrid under the same circumstances as in Figure 1, except that QS = .6 in all cases and d
is permitted to be positive. Thus the top curve is the same in both Figures. Very small
values of d do not have much effect on run time, but somewhat larger values can reduce it
drastically. In the test problem, increasing d from .01 to .02 resulted in decreasing run time

by an order of magnitude. Finding solutions that are optimal to within .02 is a much easier
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problem than finding solutions that are optimal. This tendency continues as d is increased;
when d =.03, for example, solution requires only 5 seconds (not shown) even when
T =25. As d increases, fathoming becomes so easy that only a small number of initial
segments needs to be considered.
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Figure 2. Run time in seconds versus number of time periods for
various values of the optimality tolerance d
The strong decrease of run time with d is perhaps the best hope for solving search
problems that are large enough to be of practical interest. Exact solutions of such
problems are unlikely to be possible, but B+B methods can provide solutions that are

nearly optimal in a well-defined sense.
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3. Search with Multiple Asset Types
3.1 Introduction

It was assumed in section 2 that search was conducted by a single agent who could
only be in onc place at any given time. Generalization to multiple identical agents is
straightforward. Intuitively, multiple agents are equivalent to a single agent with freedom
to spread himself out, so one would expect to find that the DOE relaxation is sharp,
depending somewhat on starting conditions for the multiple agents. This sanguine view of
things should not obscure the accompanying combinatorial explosion, however; the
prospect is one of proving that the DOE relaxation is sharp only after considerable
computational difficulty.

To avoid this possibility, in this section the multiple agents are assumed to be
significantly different. To keep computation times within bounds, only a single time period
is considered. Thus the problem considered here is a generalization in one sense, and a

restriction in another. To be precise, the problem to be solved is NLP2:

minimize 3 P, exp(-—yj )

jeC
where
M
yj =2 Wi, i) a7
i=1
dxisb; i=l.,M (18)
jeC
x;;20 and integer. (19)

The interpretation of variable x;; is “number of type i assets assigned to cell j,” with data b;
being the number of type i assets available. Data P; is the probability that the target is in
cell j, and the objective function is the nondetection probability. Use of the exponential

function implies that the assets all have independent chances of detection.
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NLP2 also has other interpretations. For example, x;; might be “number of assets of
type i assigned to kill targets of type j,” and the objective function might be “average
surviving value in the target set.” Alternatively, xjj might be “number of minesweepers of
type i assigned to sweeps of type j”, and the objective function might be “total number of
unswept mines”. The essential feature is that assignment of assets to roles (cells)
determines a “potential” y; for each role, with the objective function being a separable,
convex function of the potentials.

Although time is not considered explicitly in this section, one could solve NLP2 in
period 1, use Bayes Theorem to determine new occupancy probabilities for period 2,
conditional on the failure of search in period 1, solve NLP2 again in period 2, etc. The
resulting multi-period “myopic” search plan is not necessarily optimal, but is usually not
far off. This is the implied mode of operation in Search and Rescue software such as
CASIE III (National Association for Search and Rescue (NASAR, PO Box 3709, Fairfax,
VA 22038)).

3.2 Bounds

There has been very little work with NLP2. It is an optimization problem with a
strictly convex objective function and linear constraints, which would make it relatively
easy among nonlinear problems were it not for the requirement that x;; be integral. The
B+B strategy employed here will be to fix some of the x;; and optimize with respect to the

others. Two bounds will be evaluated:

LINEAR
Let yj= fj+ zj, where fj is the fixed part and zj the free part. Since
exp(-y;) 2 exp(:fj) (1 —z;), a lower bound can be obtained by maximizing Zsz j» Where

jeC
Pj= Pjexp(+fj), a linear function of the free variables. All remaining assets of type i
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should be assigned to whichever index j maximizes W(i, )P}, so evaluation of the bound

is trivial.

CONVEX
In this scheme the integer requirement (19) is omitted for free variables, and the

resulting convex minimization problem is solved using the method of Washburn [9].

CONVEX bounds are always better than LINEAR bounds, but are harder to compute.

A B+B procedure can be based either on fixing assets or units. In the former case one
M

fixes x;; for all j and certain assets i. In the latter case there are simply Zb ; units, each of
i=1

which is either fixed or not. The asset-based procedure is conceptually simpler because
fixed assets are essentially eliminated from the problem, but the unit-based procedure has
proved to be superior computationally. Only the unit-based procedure will be described
further.
M
LetU= Zbi be the total number of units present, and order the units from 1 to U,

i=1
with lower numbered units corresponding to lower numbered asset types. Let 7 be a
“marker” such that units whose index exceeds 7 are free, while the rest are fixed. All are
free when 7 = 0, and all are fixed when 7= U. If k is a fixed unit, let F(k) be the cell that k
is assigned to. F(k) is required to be nondecreasing within each asset type; this
requirement implements the assumption that all units of each asset type are identical. For
example, suppose N=5, M =3, b=(2, 3, 4), U=9, and 7=4. Then the “segment”
(FQ1), ..., Fw)) = (5, 5, 2, 3) indicates that both units of the first asset are assigned to cell
5, units of the second asset are assigned to cells 2 and 3, and 5 units, including all 4 of
type 3, are unassigned. The next segment will either be (5,5,2,4)0r (55,23, 3),
depending on whether (5, 5, 2, 3) is fathomed or not. All B+B procedures, including

exhaustion, are implemented within this framework. Each procedure starts with a null
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segment and terminates when the segment is again null, as in the B+B algorithm of section
2.2. Segments where 7= U will be called “complete”, or “incomplete” ift<U.

Since the LINEAR bound always results in integer allocations, each attempt to fathom
with LINEAR also results in an easily evaluated feasible value that might set a record, as
in step 4 of the B+B algorithm in section 2.2. The CONVEX allocations are not
necessarily integer, but a feasible value can still be (and is) obtained by rounding them.
Thus each attempt to fathom with either LINEAR or CONVEX results in a feasible value,
as well as a bound.

3.3 Computational Results

Table 6 shows unit overlook probabilities q;j= exp(-W(i, j)) for the base case. These
numbers have been arbitrarily selected in the middle of the interval (0,1). There are 5 cells
in the base case with (Pj) = (30, 40, 100, 10, 100). These “probabilities” could be
normalized to sum to 1 without affecting the optimal allocation, but are not normed in the

results given below. The vector b in the base case is (2, 3, 2, 4, 3) a total of 14 units. The

best (x;) is
0 1 0 1 0]
0 010 2
0 0002
31000
0 0 3 0 0

and the associated minimized objective function is 8.38.

TABLE 6. Overlook Probabilities in the Base Case
cell
1 2 3 4 5

/40000 i .50000 | .90000 i .30000 | .40000
20000 ¢ .30000 | .70000 i .30000 | .40000
40000 i .30000 | .60000 { .40000 | .40000
.10000 i .40000 | .60000 ; .40000 j .30000
.50000 i .30000 | .50000 i .50000 j .50000

asset

D ih Wit |
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To solve the base case, the B+B procedure employing the CONVEX bound (hereafter
simply CONVEX) evaluates 249 segments in a run time of 1 second; only incomplete
segments are counted here, since complete segments do not require an approximation. The
LINEAR B+B evaluates over 7 million such segments and takes 800 seconds to solve the
same problem. Exhaustion evaluates the totality of all 8,505,931 incomplete segments in
600 seconds. The LINEAR procedure turns out to be worse than exhaustion, since at
some computational expense it manages to eliminate practically none of the incomplete
segments.

The LINEAR procedure is not at its best on problems where W(, j) is as large as in

the base case, since the linear approximation is most accurate when W@, j) is small. A
sequence of variations was therefore constructed using the formula g;j=1- p(l—qg-),

where qg is as given in Table 6 and the “shrink factor” p is a power of .5.

Results are shown in Table 7. It is evident that LINEAR performs much better on
problems where W(i, j) is small, but that the same thing can be said of CONVEX.
Experimentation with other starting points has on a few occasions produced problems
where LINEAR performs better than CONVEX, but such instances are narrow, rare, and
always on problems where the overlook probabilities seem impractically large. Given the
availability of a fast way of solving the convex relaxation of NLP2, there seems to be no
role for the LINEAR bound. Experience with a hybrid scheme where CONVEX is called
only if LINEAR fails to fathom does not change this conclusion. The best B+B method for
solving NLP2 appears to be CONVEX.
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TABLE 7. Performance of LINEAR and
CONVEX on a Sequence of Problems where
the Shrink Factor pis (1/2)},i=0, ..., 6.

LINEAR CONVEX
i segments segments time (sec)
0 | 7126977 249 94
1 1256715 55 16
2 199480 4 1
3 17129 99 22
4 1791 1 0
5 323 1 0
6 91 1 0

Performance of CONVEX on larger problems was tested by increasing by from its
baseline value of 2. Figure 3 shows that the run time increases erratically but inexorably as
the problem size increases. The largest run time (40 minutes) was with by =40, as
expected, but there are several instances where run time decreases dramatically as by is
increased. Run time turns out to be much less predictable for the multi-asset problem than
for the problem considered in section 2. When b; = 40 the minimized objective function is
only .002, a tiny fraction of the total cell value of 270, so there is little point to increasing
by beyond 40. In general, it is hard to make statements about how run time depends on
problem size because increasing the number of units will always make the objective
function vanish. One might adjust the W(i, j) to prevent this as the number of units
increases, but unfortunately the run time depends strongly on the magnitudes of these

coefficients, as well as on the number of units.
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Figure 3. Solution time in seconds versus b; for CONVEX

As in section 2, run times can be reduced substantially by calculating solutions that are
only within d of optimality, where d > 0. The effect is particularly dramatic on large
problems. For example, setting d = .01 and increasing by as before results in essentially a
zero run time for by 2 20, even though the run time for b; = 19 is about 20 seconds. There
are two explanations of this welcome but odd behavior:

» CONVEX obtains its feasible value by rounding, and big numbers are
easier to round than small ones.

» A fixed d is a larger percentage of the optimized objective function as
b increases.

In any case, the effect on sufficiently large problems is that a single call to CONVEX

obtains a feasible solution within d of the bound, thus terminating the procedure.
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In conclusion, the best B+B procedure for NLP2 appears to be based on the
CONVEX relaxation, rather than a hybrid. Problems having on the order of 20 units are
solvable in a few seconds, or considerably larger problems if the W(i, j) are small or if only

near optimal solutions are needed.

4. Summary

Efficient Branch and Bound methods require bounds that are both easily evaluated and
sharp. In practice there is often a tradeoff between speed of evaluation and sharpness. The
moving target problem considered in section 2 is a good example of this; the ERGO
bound is fastest, while FABC is sharpest. The best bound to employ turns out to be
strongly dependent on problem parameters, particularly the overlook probability.
Robustness can be achieved by employing a hybrid bound where a sharp bound is
attempted only after the failure of a fast one, the author’s favorite hybrid being the
employment of FABC after the failure of MEAN. A hybrid procedure is generally slightly
slower than a pure procedure based on one of its own components, but the gain in
robustness may be worth the sacrifice.

The problem considered in section 3 is simpler in that the fast LINEAR bound is
(almost) uniformly dominated by the sharp CONVEX bound. There appears to be no good
argument for hybrid bounds in this problem, at least not for the class of parametric
variations considered.

B+B procedures do not prevent an exponential growth of solution time as problem
size increases, so progress in expanding the size of search problems that can be optimally
solved will be slow. A compensating feature is that B+B procedures can be easily adapted
to finding solutions that are almost optimal in a well defined sense. For both problems
considered, requiring the solution to be only within d of optimality, where d > 0, permits

much easier fathoming and results in strongly decreased run times.
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APPENDIX A: Extension of a Result on Bounding
Consider the minimization of g(¥) = exp(-Z(X, ‘¥)), where Z(X, W) is given by (2) and
Y(x, ), xe C, 1 St < Tis a feasible search plan. If ¥ and ¥’ are two different search plans,
then Washburn [8] shows that g(¥") cannot be smaller than g(¥) by an amount that
exceeds

T
AW, ¥)=), ZD(‘P,x,t)[‘P'(x,t)-‘I‘(x,t)], (AD)

=1 xeC
where DY, x, 1) = W(x, ) P(¥, x, t) exp(-W(x, N¥(x, 1)) Q¥, x, 1), with P(¥, x, 1) and
O(¥, x, 1) being as defined in (8) and (9). For every search plan ¥, there is therefore a
global lower bound
q(¥) - maxyACY",Y) (A2)
on the nondetection probability.

Washburn [8] is concerned with the DOE relaxation of NLP1, but in fact (A1) can be
the basis of efficient bounds for NLP1 itself. Consider the case where the search path ¢
0» ---» O is shared by ¥ and W', with the continuation 6%, 1,...,07 possibly differing from
G141» ---» O Then

T
AW, ¥)= Y [D(¥,07.1)- D(¥,0,.1)]-

t=1+1
Let G(x,)=D(¥, x,f)- D(¥, 0, 1). Then selection of W’ to maximize A(W',Y) is
equivalent to solving a longest route problem starting from (0, 7), with the reward for
visiting (x, 1) being G(x, 7).
A somewhat sharper bound is sometimes possible. The development above relies on

the observation that

(%) —q(¥) = E( ) _ e—Z(x,‘i”))= E( e—Z(x,\!’)[l_e—[Z(x,‘P’)—Z(x,‘P)]]). A3)
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Let Y=Z(x,¥) - Z(x,'¥). Then 1-eY<fY, where f is the factor introduced in

describing the Linear relaxation in section 2.2. It follows from (A2) that

a(¥)-q(¥) s E(fre”4xY) (A4)

with the right hand side of (A4) being fACY,¥”’) as given by (A1). Therefore D(¥, x, )
and G(x, f) can also be multiplied by f. This sharpened bound is the one used as the “FAB
bound” reported earlier.

It should be noted that (A2) is valid for any search plan that follows gy, ..., 6; up to
time 7. Now, constraint (3) in NLP1 can clearly be relaxed by replacing = with < without
effect on the optimized objective function, exp(-Z(x, ¥)) being a decreasing function of
Y(x, 1) for all xe C, 1 < ¢ <T. Therefore the NULL continuation of setting ¥(x, {) = 0 for
xe C and ¢ > 7 is permissible in (A2). In that case D(¥, x, ) = W(x, ) P(¥,x, £), and (A2)
is equivalent to the right hand side of (14). In other words, the MEAN bound obtained via
(14) is the same as the bound obtained by the policy of no further search in (A2). There
may be search policies that, from a standpoint of producing good bounds, are superior to
either the FAB or the NULL continuation. However, no means of easily generating such

continuations is currently known.
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APPENDIX B: An Ergodic Bound
Assume that the target’s motion is ergodic with Markov transition matrix
p= (p,-j); ijeC. Then there is a unique probability distribution 2z that solves the vector
equation # = 7. 7 is the “stationary distribution” of p. Furthermore, (q,-j) = (n(f)pj,-/n(i)) is
also the transition matrix of a Markov chain — the time reversed chain [4]. Let 4,(j) =
P(X,=j) and let r,(j) = u,(j)/nj, jeCand 1St<T. Also, let r(t) = maX;e ¢ r,(j). Then the

extent to which r(f) 2 1 measures the deviation of the distribution (&,(); je C) from the
equilibrium distribution 7. Now, since u,,1(i) = ZPJ-,-u, (), it follows that

jeC

r(t+1) = maxuy 1 (i)/7 (i) = max Y, Pjuy (j)/7 () (B1)

! b jeC

But Pji/n(z) is the same as ¢;3/7(j), and u,(N/n() < r(1), so
r(t+1) < max Zq‘}r(t) =r(t). B2)

b jeC
Since Zqij =1 for all i, every transition brings an ergodic chain closer to equilibrium.
jeC
The reward in equation (16) is just

R(o,,t)= fW(o,,t)Prob(X, = 0, and E;), (B3)

where E, is the event that searches up to and including time 7 all fail to detect the target.
Let u,(0,) =Prob(X, =0, and Ep), 1<t<T, and let u, = (4,())); je C be the row vector
that includes the probability of all possible states. u, is defective (sums to Prob(E,), rather
than 1), but nonetheless 4,1 = up for 1<t <T. Therefore, if r =max;e ¢ u1,1()/7(), it
must be true that u,(j) < ra()) for all j and 7 <t < T. Consequently

iR(onr)Sﬁ iW(our)ﬂ(O,)- (B4)

1=1+1 =1+1
Finally let A(1, 0,) be the maximized value of the sum on the right hand side of (B4).
Finding A(t, x) for 1 <¢+<T and xe C is a longest path problem, but it need only be solved
once. Then frA(z, 0,) is an upper bound on the right hand side of (16).
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In operation u,,1()) is just P(¥, j, T+ 1), the same quantity manipulated in the FAB
algorithm, so calculating r simply involves a maximization of ratios. In the simplest case
2(j) = 1/N for je C and W(x, 1) = W for je C and ¢ > 7. In that case the right hand side of
(B4) is fW max;e ¢ P(¥, j, 1+ 1), regardless of the continuation 4.
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