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Abstract 
 
Military weapon systems are often built using 

embedded, non-IP (Internet Protocol) based computer 
systems that are not regularly updated and patched 
due to their isolation. As adversaries expand their 
capability to exploit and penetrate these systems, we 
must be able to verify they are not susceptible to cyber-
attack. Currently, cyber red teams are employed to 
assess the security of systems and networks in isolated 
environments, however, this method can be costly and 
time-consuming, and the availability of red teams is 
limited. To address this need and resource shortfall, 
we have developed the Cyber Automated Red Team 
Tool (CARTT) that leverages open source software and 
methods to discover, identify, and conduct a 
vulnerability scan on a computer system’s software. 
The results of the vulnerability scan offer possible 
mitigation strategies to lower the risk from potential 
cyber-attacks without the need for a dedicated cyber 
red team operating on the target host or network. 
 
Keywords: Red team, cyber, network, security, 
software vulnerability 
 
1. Introduction  
 

The cybersecurity posture of a military 
organization’s computer devices, specifically those 
without Internet connectivity, is often overlooked. 
According to operational testing conducted by the 
Government Accountability Office (GAO), the 
“[Department of Defense] routinely found mission-
critical cyber vulnerabilities in systems that were under 
development, yet program officials GAO met with 
believed their systems were secure and discounted 
some test results as unrealistic” [1]. More importantly, 
the GAO noted that they discovered vulnerabilities that 
likely only represent a small fraction of the total 
number of cybersecurity threats. 

The GAO further stated that the service branches 
conduct cybersecurity assessments on new weapon 
systems with support from the National Security 

Agency (NSA) and U.S. Cyber Command, although 
these two organizations are not primarily responsible 
for identifying vulnerabilities in new weapon systems. 
Furthermore, the 2019 Secretary of the Navy 
Cybersecurity Readiness Review states that “phishing 
attacks, poor cyber hygiene, and failure to update and 
patch software are the root cause of the vast majority 
of cyber incidents” [2]. The military’s current policy 
effectively allows the “commander to ‘make the call’ 
on the risk mitigation for his/her installation, facility, 
or vessel” [3]. Commanders often rely on red teams to 
conduct cybersecurity assessments of their networks 
and systems. Regrettably, an in-depth and independent 
assessment of a computer network conducted by a 
cyber red team may be unfeasible due to time, 
financial, and personnel expertise constraints. 

The key contribution of this work is a portable 
cyber red teaming tool called Cyber Automated Red 
Team Tool (CARTT) that is designed to identify and 
assess cybersecurity vulnerabilities on computer 
systems not directly connected to the Internet, and to 
provide users with recommendations to mitigate the 
cyber threats associated with these vulnerabilities. 
CARTT is designed to overcome the resource 
limitations of current red teams conducting remote 
cybersecurity assessments on cyber-physical systems. 
Ideally, CARTT could be widely deployed as a cheap, 
convenient, and effective cybersecurity tool that would 
enhance computer systems security by complementing 
other defense-in-depth measures. 

This paper represents work in progress on 
automating the actions of red teams by automatically 
executing a series of commands to search and identify 
hosts on a target network, and then automatically 
scanning those hosts for vulnerabilities. Following this, 
CARTT will provide recommendations to mitigate the 
cyber threats based on the identified vulnerabilities, 
and automatically launch cyber exploits against those 
threats in order to fully “red team” the target network. 

The rest of this paper is organized into four 
sections: background, CARTT system design, CARTT 
system implementation, and conclusions. 
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2. Background  
 

The DoD continuously faces attacks from 
Advanced Persistent Threats (APTs) that are 
sophisticated, well-resourced, and highly motivated, 
and whose goal is to extract or compromise sensitive 
data. An APT can conduct an attack over several years 
and target “highly sensitive economic, proprietary, or 
national security information” [4]. In 2018, the GAO 
released a report to the U.S. Senate Committee on 
Armed Services detailing the increasing number of 
threats the DoD is facing due to a large number of 
complex computerized weapon systems developed for 
use against the U.S. arsenal [1]. The report outlined 
several steps the U.S. government can take to create 
robust weapon systems and provide a defense-in-depth 
approach against advanced cyberspace threats. The 
DoD Office of the Director, Operational Test & 
Evaluation (DOT&E) also provided a similar analysis 
of the risk of adversarial cyberspace operations in their 
FY17 annual report. The report stated that although 
“DoD cyber defenses are improving, … [they] are not 
enough to stop adversarial teams from penetrating 
defenses, operating undetected, and degrading 
missions” [5]. The report also noted that troops have a 
false sense of security during large-scale exercises 
because the cyber environment is not hostile enough to 
accurately depict the actual threat faced by most DoD 
systems against an APT [3], [5]. The concern is that 
DoD forces are not appropriately training against the 
cyberspace capabilities of peer or near-peer 
adversaries. 

The recently released National Cyber Strategy 
(NCS) goes further by naming Russia, China, Iran, and 
North Korea as APTs that have used cyberspace to 
steal intellectual property, participate in economic 
espionage, and “sow discord in our democratic 
processes” [6]. The DoD’s cyber strategy agrees with 
the NCS assessment and takes the extra step of 
defining its role in cyberspace as securing any sensitive 
data contained within DoD systems, deterring cyber-
attacks against the United States, and conducting 
offensive cyberspace operations, if deemed necessary 
[7]. Both of these strategic documents demonstrate the 
importance of identifying the threats facing the DoD, 
reducing vulnerabilities, and ultimately protecting the 
national interests of the United States. 

 
2.1. DoD Cyber Red Teams 
 

A DoD cyber red team is authorized to mimic an 
adversary’s behavior by conducting exploitation 
techniques or cyber-attacks against a specific target or 
government capability [8]. DoD cyber red teams can be 

tasked to expose a target’s vulnerabilities; degrade, 
disrupt, or deny a user’s ability to access a particular 
cyber environment; test the techniques and skills of a 
defensive cyber force; and, support operational security 
surveys. In the DoD, the NSA is the designated 
certification authority that manages the formal 
certification process for cyber red teams, while U.S. 
Strategic Command maintains its accreditation [8]. 
Since FY16, the demand for cybersecurity assessments 
in the DoD has doubled as more weapon systems 
require an in-depth evaluation per the annual National 
Defense Authorization Act [9]. However, the DoD has 
recently faced a shortfall in providing enough certified 
cyber red teams that can realistically depict adversarial 
threats because of limited resources to thoroughly 
conduct proper evaluations [5]. The reasons for this 
shortfall are manifold.  

It can take as long as seven years for military 
members to be adequately screened and to receive the 
extensive training required to become proficient in 
cyber red team operations [10]. However, in 2017 
DOT&E observed that military personnel assigned to 
cyber billets are kept to a regular duty station rotation 
cycle, typically leaving after three years. This prevents 
them from gaining the required cyber experience to 
transition from journeyman to master during a cyber 
tour [5]. Further exacerbating the problem, many 
journeymen leave the DoD shortly after fulfilling their 
initial military service obligation and are quickly hired 
by the civilian sector to serve as contractors for the 
DoD [5], [9]. The assessment also recognized the 
importance of retaining skilled civilian and contractor 
personnel through selective hiring practices and job 
continuity [5]. It recommended keeping personnel who 
can fully understand a government computer system 
and quickly recognize abnormalities on a network. 

Regrettably, even though DoD cyber red teams are 
trained to mimic an adversary’s behavior, in practice, 
they typically cannot fully exploit a target system due 
to restrictions imposed on them by a local military 
commander. For example, the commander will set 
forth Rules of Engagement that specifically prevent a 
red team from “[doing] any harm to the system” [11]. 
This apprehension from DoD leaders stems from a lack 
of understanding of the benefits of using a red team to 
expose their network’s vulnerabilities. Combatant 
commanders trained in traditional military tactics are 
often reluctant to build realistic cyber threat scenarios 
and incorporate them into their regular training 
regimen due to the fear that the cyberspace operations 
may interrupt the command’s primary training 
objectives. Additionally, most DoD personnel forgo 
any emphasis on cybersecurity defense by treating it as 
an administrative function rather than a warfighting 
capability [9]. 

Page 6696



 

2.2. Related Work 
 

It is reasonable to conduct a thorough vulnerability 
assessment of a small network manually, but it 
becomes prohibitively cumbersome to assess a large 
and complex network due to the time, effort, and skill 
required, therefore an automated approach would be 
preferred. Today, there are several open-source 
vulnerability assessment tools available for download, 
such as Open Vulnerability Assessment System 
(OpenVAS), Nexpose Community, and Nikto. All of 
the available commercial and open-source tools have 
their strengths and weaknesses ranging from the user 
interface to the number of platforms supported and 
their ability to succinctly provide a detailed report of 
the discovered vulnerabilities. However, few products 
can integrate multiple tools and then objectively 
analyze their results simultaneously [12]. 

One solution is to use a vulnerability assessment 
framework that can integrate the devices and 
applications that communicate by sorting scan results 
through a management interface and then setting 
management policies [12]. The Metasploit Framework 
(MSF) is an example of such an open-source tool that 
accomplishes this by discovering exploits and releasing 
payloads onto a target system. Furthermore, it is 
designed to use third-party vulnerability assessment 
tools to scan for vulnerabilities on an individual system 
or a network of targets [13]. 

In 2015, researchers from Northern Kentucky 
University developed a semi-automated system called 
Pentest box that scans and reports network 
vulnerabilities by using a miniaturized computer to 
host all of the necessary equipment needed for the 
penetration tester, cybersecurity professional, or 
system administrator [14]. In this case, the researchers 
were attempting to reduce the cost of conducting white 
hat hacking, or ethical penetration testing, of an 
organization’s information systems. They used 
Raspberry Pi computers as a cost-effective alternative 
to a commercial penetration testing device, with the 
intent of discovering vulnerabilities and protecting a 
company’s information technology assets. 

The Pentest box runs Kali Linux and primarily uses 
Network Mapper (NMAP), MSF, and OpenVAS as its 
penetration testing tools. To automate the penetration 
testing process, it runs a script that conducts a 
reconnaissance scan of the local area network (LAN), 
and then sends any hosts, open ports, and known 
vulnerabilities it discovers to the MSF database. These 
researchers, however, did not experiment any further 
than the reconnaissance phase of the Cyber Kill Chain, 
and only built a simple web interface with minimal 
assessment functionality. 

The Mayhem Cyber Reasoning System is yet 
another vulnerability analysis tool, recently developed 
by researchers at Carnegie Mellon University. Mayhem 
is slightly different from previous vulnerability 
analysis tools in that it autonomously searches and 
fixes vulnerabilities in executable programs without 
the need for human intervention [15]. Mayhem works 
by “actively managing execution paths without 
exhausting memory, and reasoning about symbolic 
memory indices,” which means it searches for bugs at 
the binary level by using hybrid symbolic execution 
and index-based memory modeling [16]. Specifically, 
Mayhem searches for exploits by determining whether 
a computer bug can redirect an instruction pointer, 
whether or not malicious code can be implanted in 
memory, and if that code can then be executed. 
Mayhem was shown to manipulate open-sourced 
fuzzing tools to search for bugs at the binary level 
during the 2016 Defense Advanced Research Projects 
Agency (DARPA) Cyber Grand Challenge, but the 
overall process was slow with only 65 out of 131 bugs 
found in 24 hours [15]. Unfortunately, Mayhem resides 
in a large server rack which makes it infeasible to use 
as a portable vulnerability analysis or red teaming tool. 

A DoD team at the Naval Information Warfare 
Center (NIWC), formerly Space and Naval Warfare 
Systems Command (SPAWAR), leveraged the 
University of California, Santa Barbara’s Python-based 
Angr framework and cyber reasoning system, along 
with open-source virtualization tools, to perform 
limited automated analysis on embedded systems and 
Industrial Internet of Things (IIoT) devices [17]. They 
intended to conduct an automated IIoT firmware 
analysis in search of malicious content. 

To accomplish this, NIWC researchers first 
extracted the firmware from an IIoT device and then 
emulated the software in a separate operational 
environment not directly connected to the original 
hardware. Afterward, the team used Angr and Driller 
to perform static, dynamic, and symbolic analysis. 
Additionally, the NIWC team used American Fuzzy 
Lop (AFL), OpenPLC, Firmadyne, and QEMU to 
expose firmware vulnerabilities, mitigate them, and 
ultimately improve the overall security posture for IIoT 
devices. This approach led to previously undiscovered 
authentication bypass and non-existent stack protection 
vulnerabilities in numerous IIoT devices. 

Although this is not an exhaustive list, there are a 
large number of academic papers and research projects 
that are actively attempting to automate the process of 
identifying, assessing, and mitigating the risks 
associated with automated vulnerability assessments. A 
summary of related work is provided in Table 1. 
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Table 1. Summary of related work 

 
3. CARTT System Design 
 

CARTT was designed to be used by individuals 
without expert knowledge of red teaming techniques, 
or penetration testing. To this end, it automates the 
various phases of a red teaming event, so that they may 
be performed by network administration users who are 
not qualified cyber red team members.  

CARTT functions through a GUI that is at a level 
of abstraction above the CLI, which is the normal 
sphere of operation for red team operations. The 
CARTT frontend gives the user a set of options to 
conduct various portions of the vulnerability scan and 
assessment, while the backend runs Python scripts with 
the previously mentioned tools on a Kali Linux 
distribution. The front-end GUI design is intended to  
 

 

 
be simple and to support the overall goal of CARTT’s 
red teaming tasks. 

We have developed CARTT as a framework that 
leverages open source tools used for host discovery, 
OS fingerprinting, vulnerability scanning, and user 
feedback, and can seamlessly combine these tasks into 
a single user-friendly device. CARTT was designed to 
test DoD networked and embedded devices not directly 
connected to the Internet, to include mission and non-
mission critical computer systems onboard aircraft, 
ground vehicles, ships, and submersibles. It is assumed 
that the targeted devices may receive occasional 
software or firmware updates via a standalone 
intermediary device such as a laptop or a USB flash 
drive. 

CARTT uses open-source frameworks and tools to 
reap the cost, security, and flexibility benefits of 
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crowd-sourced and peer-reviewed software. The goal is 
to leverage the open-source community’s ability to 
continually check for flaws in software, rather than 
attempting to provide cybersecurity through 
obfuscation or behind a private company’s intellectual 
property copyright. 

Penetration testing distributions are frequently used 
to simulate a cyber-attack on a friendly system 
designated as a target. Currently, there are several 
open-source distributions used by ethical computer 
hackers and security experts wishing to conduct 
security evaluations on vulnerable computer systems.  

Unfortunately, all of these distributions require an 
intimate knowledge of the pre-installed tools, which 
can be daunting for a novice user or someone 
unfamiliar with penetration testing. Also, the 
distributions often require the user to be comfortable 
navigating through the Command-Line Interface (CLI) 
of a Unix system, as opposed to a user-friendly 
Graphical User Interface (GUI). To reduce the user’s 
learning curve and to make the system more 
comfortable to use, CARTT uses GUI-based scripts to 
execute tasks for conducting its red team assessment 
on a target device. This shields novice users from 
becoming overwhelmed by the Unix CLI and 
automates portions of the red team process. This 
research focused on using Kali Linux as the primary 
CARTT distribution due to its high number of pre-
installed tools, available support documents, and robust 
online community. 

Scanning and enumerating a networked 
environment is an essential step in determining which 
services, ports, and applications are accessible and 
available. Techniques that allow a red team member to 
discover active hosts and services on a network include 
ping sweeps, port scanning, banner grabbing, and OS 
fingerprinting. One of CARTT’s first functions is to 
determine the type of host it is scanning through a 
simple set of user commands. Ideally, a preliminary 
scan will allow CARTT to accurately identify the OS 
on each host by analyzing numerous markers 
historically aligned with an OS’s default settings. 
Many conventional operating systems can be passively 
identified by examining captured Transmission Control 
Protocol (TCP) packets. For example, p0f is a 
fingerprinting tool that compares a packet’s Time To 
Live (TTL) value, IP header flags, Maximum Segment 
Size (MSS), and window size to ascertain what type of 
OS is actively communicating with other devices on a 
network [18]. 

Alternatively, there are more active approaches 
used by other network scanning tools for OS 
fingerprinting. For instance, NMAP compares the 
responses it receives from TCP and User Datagram 
Protocol (UDP) packet requests against a database of 

over 2,600 known OS fingerprints [19]. Nonetheless, 
quickly discovering hosts on a network and accurately 
identifying their OS enables CARTT to tailor its 
vulnerability scan, decrease the number of unnecessary 
follow-up scans, and ultimately reduce the number of 
false positives. 

CARTT has the advantage of being able to connect 
directly onto a target host or network, thereby 
increasing the speed and accuracy of its vulnerability 
scan which allows it to bypass the potentially 
cumbersome process of attempting to gain initial 
access onto a target system. However, this does not 
guarantee complete and unfettered access to the host. 
An adequately defended host or network will deny a 
potential attacker, whether acting with malicious intent 
or not, from accessing any valuable data. From here, a 
variety of available tools can be used to automatically 
scan for vulnerabilities, including OpenVAS, Nessus, 
Core Impact, and Nikto. To keep CARTT as a practical 
and inexpensive tool, we used the open-source 
vulnerability scanner OpenVAS, eschewing the pricey 
licensing fees of Nessus and Core Impact. 

Fortunately, OpenVAS is designed to work as a 
module within the MSF which allows a CARTT user 
the opportunity to create targets and run vulnerability 
scans from a single CLI. Of note, launching OpenVAS 
using a traditional command-line argument within Kali 
Linux automatically starts a web-based GUI called the 
Greenbone Security Assistant (GSA). The GSA 
contains several tabs to facilitate vulnerability scans, 
including configuring targets, filtering results, and 
identifying the OS of each host. 

Other open-source frameworks provide a high level 
of automation for red teams wishing to conduct 
vulnerability scans. For example, AutoSploit 
introduced in 2018 is a tool that collects vulnerable 
targets via the Shodan, Censys, and Zoomeye online 
search engines, and attempts to run MSF modules to 
exploit them by creating “reverse TCP shells and/or 
Meterpreter sessions” [20]. However, this framework 
would fail to be a useful CARTT vulnerability 
scanning tool due to its requirement to use databases 
found on the Internet at runtime. Alternatively, a 
Windows OS specific tool called PowerSploit released 
in 2014 was PowerShell’s first offensive security 
framework [21]. Although PowerSploit contains a 
repository of capabilities that leverages the 
functionality of Windows PowerShell, CARTT will 
use a Unix based framework to reduce the complexity 
of swapping between PowerShell and Unix commands, 
and increase its compatibility with other tools. 

OpenVAS, through the Greenbone network, uses 
the National Vulnerability Database (NVD) which is 
maintained by the National Institute of Standards and 
Technology (NIST) as a repository to aid in the 
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automation of vulnerability management. Specifically, 
the NVD provides OpenVAS with an updated 
collection of Common Vulnerabilities and Exposures 
(CVEs), misconfigurations, and security flaws to help 
red team members quickly analyze hosts.  

Unfortunately, no single vulnerability scanner can 
identify all potential vulnerabilities on a target system. 
For example, an information security specialist was 
able to demonstrate that OpenVAS and Nessus failed 
to detect 51.6% of known vulnerabilities in the CVE 
database; however, he admitted that this discrepancy 
could be that the vulnerability assessment vendors are 
ignoring old software vulnerabilities that only exist in 
outdated or deprecated OS distributions [22]. This does 
not mean the information provided by a vulnerability 
assessment tool should be rejected, but rather its results 
should be seen as a subset of the possible 
vulnerabilities maintained in a threat database. 

Interestingly, CARTT also needs to receive 
periodic CVE updates via the Internet to provide the 
most current and relevant protection against cyber 
threats. A potential “Catch-22” situation arises for 
CARTT since there exists the possibility that it could 
inadvertently infect an isolated and malware-free 
system during a routine vulnerability scan (if the 
CARTT device were itself infected with malware). 
However, the possibility of this threat is low and 
should not hinder a user from conducting a red team 
analysis on a target system. The purpose of CARTT is 
to expose vulnerabilities and harden DoD computer 
systems. Thus, the benefits of taking an active 
cybersecurity approach outweigh the risks associated 
with possibly infecting the target host or network. 
CARTT is only one layer in a comprehensive defense-
in-depth strategy that employs physical, technical, and 
administrative security controls.  
 
4. CARTT System Implementation  
 

CARTT was implemented using a Kali Linux 
distribution due to the latter’s wealth of pre-installed 
penetration testing tools. The initial test system was 
built using a LAN of VMs within the Cyber Battle Lab 
(CYBL), a Type I hypervisor physically located at the 
Naval Postgraduate School (NPS) campus. The VMs 
used in this experimental system ran various Windows 
and Linux distributions, including Windows 7 
Professional (Service Pack 1), Windows XP 
Professional (Service Pack 3), and Ubuntu 8.10 
(Intrepid Ibex) running a Linux 2.6.27-7 kernel. 

Microsoft ceased providing software support for 
Windows XP in 2018 and has publicly stated that 
Windows 7 will no longer be receiving support or 
security updates after January 2020 [23], [24]. 

Similarly, Ubuntu 8.10 reached its end-of-life support 
in 2010 [25]. Despite this, using these OSs for our 
testing provided valuable research potential for several 
reasons. First, Windows 7 still commands over a third 
of the market share for global desktop OS usage 
according to NetMarketShare which “tracks [the real-
time] usage share of web technologies” by filtering out 
web robots to discern real users on the Internet [26]. 
Second, according to the Secretary of the Navy’s 
Cybersecurity Readiness Review released in March 
2019, the USS Gerald R. Ford (CVN-78) aircraft 
carrier, commissioned in July 2017, was installed with 
Windows XP [2]. The concern here is that the U.S. 
Navy’s newest aircraft carrier is operating with 
software that Microsoft has explicitly stated “will still 
work but [the computer] might become more 
vulnerable to security risks and viruses,” due to the 
overall lack of cybersecurity support, especially when 
using Internet Explorer [23]. Further, small embedded 
devices typically employ Linux kernels because they 
are free and lightweight (in terms of memory usage and 
total lines of code), so we tested an older Ubuntu OS 
distribution. Finally, many of the cybersecurity 
vulnerabilities on these older OS versions have been 
well documented and cataloged by the NVD which 
feeds into several common vulnerability management 
systems, including OpenVAS. 

 
4.1. The CARTT GUI 
 

CARTT uses a Python GUI library called Tkinter 
that creates a simple interface between the user and the 
CLI in an attempt to abstract away some of the 
complexities of directly interacting with a system 
prompt (see Figure 1). There are various interactive 
software toolkits available for Python, but Tkinter is 
free, relatively simple to use, and has achieved 
acceptance as the de facto Python GUI platform. 

For the CARTT GUI, each button created by 
Tkinter is used to call a function that initiates a set of 
predetermined commands to be executed on the CLI. 
Although Tkinter creates a simple interface and is 
visually appealing, it negatively impacts the speed, 
precision, and customization provided by a CLI. For 
example, if a CARTT user wants to change the 
standard input or output stream while conducting a 
vulnerability analysis, a change in the CARTT source 
code is required, as opposed to simply updating the 
command string on the CLI. However, we feel that the 
benefit of using CARTT greatly reduces the steep 
learning curve required for CLI usage. Further, the 
controlled nature of the GUI can limit the user’s ability 
to cause unintended, harmful, or destructive effects on 
the target system. 
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Figure 1. CARTT GUI screenshot 
 

4.2. Scenario and CARTT Functionality 
 

In our test scenario, we assumed that a system 
operator is tasked with conducting a regularly 
scheduled cybersecurity vulnerability assessment on 
their command’s automated weapon system. Most 
service members within a DoD command have user-
level privileges on the weapon system and can access 
applications on a variety of individual computer 
systems, but none of the users has direct access to the 
Internet. To perform the vulnerability assessment, 
CARTT can be directly connected by a technician to 
the closed network during regular working hours, 
while system users conduct routine operations. The 
specific operational details of the weapon system are 
irrelevant to this scenario as long as the CARTT user 
can physically connect to the network. Figure 2 shows 
the overall CARTT process flow. 

During the cyber reconnaissance phase, the 
technician begins the first CARTT task by conducting 
a reconnaissance of the target system to determine the 
overall network topography. After the user initiates the 
CARTT utility, Kali Linux leverages the ifconfig 
system utility on the CLI to retrieve a listing of the host 
device’s network interface configuration, including the 
host device’s active interfaces, IP addresses, network 
mask, and hardware Media Access Control (MAC) 
address. CARTT parses this output data in search of its 
newly assigned IP version 4 (IPv4) address in dot- 

 
              Figure 2. CARTT flow diagram 

 
decimal notation. It then re-parses the IPv4 address and 
converts it into /24 Classless Inter-Domain Routing 
(CIDR) notation. We have chosen a /24 CIDR prefix 
since it gives CARTT the ability to scan through 256 
IP addresses; however, the size of the network can be 
manually adjusted to be larger or smaller in the source 
code, based on the CIDR used. After the 
reconnaissance phase, CARTT creates a text file that 
stores the new network address in CIDR notation and 
displays both the CARTT assigned address and the 
network address to the user on the CARTT window 
frame. 

Next, CARTT uses the host’s network address to 
discover all other live hosts on the network through an 
active NMAP scan. Since the goal is to enumerate the 
hosts on the network quickly the -sn option is used, 
which tells NMAP to forgo a port scan and output the 
hosts that responded to the discovery probe queries. 
The -sn or “ping scan” option sends an Internet Control 
Message Protocol (ICMP) echo request by sending a 
“TCP SYN to port 443, TCP ACK to port 80, and an 
ICMP timestamp request” to each host on the /24 
network [27]. This option is preferred and is more 
reliable than sending pings over the broadcast address 
because some devices are configured not to respond to 
broadcast queries. Additionally, the -sn option does not 
have any detrimental performance effects on the host 
during the scan. The results of this ping sweep are then 
recorded in another text file created by CARTT, which 
is subsequently parsed and displayed to the user on the 
CARTT GUI. 

At this point, CARTT has enumerated through the 
/24 network and displayed all of the active hosts it 
discovered through the ping sweep in a scrollable 
section within the GUI. Next, the CARTT user has the 
option to enter the OS discovery phase. Here, the 

Page 6701



 

previous text file created during the ping sweep is used 
to detect which type of OS the host may be using. 
CARTT uses NMAP’s -O option, which allows NMAP 
to send several TCP and UDP packets to the target 
systems for TCP/IP stack fingerprinting [19]. The 
output from this scan provides a description of the OS, 
vendor name, version number, and device type. This 
information may be useful for a CARTT user to 
identify and understand the types of OSs on their 
network during a large-scale audit. 

Additionally, the CARTT user has the option to 
augment the OS detection phase by conducting a 
passive scan leveraging the TCP/IP stack 
fingerprinting capabilities of p0f. Unlike NMAP’s 
noisy and active scanning methods, p0f’s approach 
passively collects and analyzes traffic generated by a 
target host as it communicates with other devices. It is 
important to note that selecting this option would not 
be an effective method to determine the OS on a 
standalone host since p0f assumes the target host 
shares a telecommunication medium with another 
device. Regardless, the results of the p0f scan are then 
stored in a separate log file for future analysis. 

After the OS detection phase is complete, CARTT 
enters the vulnerability scanning phase by configuring 
and initializing the MSF database through a short 
series of commands to the CLI. Since Kali Linux is a 
widely used penetration testing platform, its software 
developers created strict network service policies that 
attempt to minimize the exposure in potentially hostile 
or hazardous network environments. They do so by 
disallowing any network services to remain 
persistently on or open by default on the Kali Linux 
device, especially after a reboot. To open the services 
required by MSF, CARTT starts an open-source 
relational database management system called 
PostgreSQL and then initializes the MSF database 
[28]. Afterward, msfconsole is launched to provide a 
centralized interface between CARTT and MSF’s 
capabilities to incorporate executing external 
commands. 

Once msfconsole is running, CARTT sends a series 
of commands to configure and initialize OpenVAS. 
Although the OpenVAS command line utility allows 
users to configure targets, run vulnerability scans, and 
retrieve reports, it lacks some functionality provided 
through the more-capable GSA web-based GUI. 
Specifically, whenever a user sets a device as a target, 
the user is required to input the local and remote host 
IP addresses as well as other amplifying information. 
However, the GSA GUI does provide an option to 
import a list of IP addresses which alleviates the user’s 
burden of having to type each alphanumeric string 
manually. Since CARTT is configured to save a list of 
the live or active hosts that it encountered during its 

host discovery phase, the CARTT user can directly 
import the information into the GSA target list and 
initiate a sequential scan of all of the hosts. Although 
this process causes the CARTT user to switch GUIs 
after configuring OpenVAS, it provides the user with a 
scalable solution for scanning large networks. 

A cumulative summary of the vulnerability findings 
becomes available after performing the GSA scan and 
is available for export in various formats including 
text, PDF, XML, and CSV. The report provides a 
listing of each discovered vulnerability with a brief 
explanation of the vulnerability’s impact, affected 
software, available solutions, mitigation actions to 
reduce the overall threat and web links to source 
documents about the vulnerability. Of note, most of the 
recommendations provided by the summary typically 
instruct the user to install updated software on the 
target system. The CARTT user would then be 
responsible for conducting any further research of the 
vulnerability, downloading patches from the Internet, 
and uploading the updated software on the vulnerable 
machines. 
 
4.3. CARTT Testing 
 

We conducted CARTT testing on two identical 
closed networks within the NPS CYBL. The results 
discussed in this research only reference the 
10.2.99.0/24 LAN since the overall network space did 
not affect the outcomes of the vulnerability scan. Each 
target VM on the network was automatically assigned 
an IPv4 address using Dynamic Host Configuration 
Protocol (DHCP); however, a static IPv4 address of 
10.2.99.85 was assigned to CARTT. Within each LAN, 
two separate tests were conducted to determine 
CARTT’s scalability and effectiveness. The first test 
was run as a proof-of-concept with only three hosts, 
while the second was intended to be a larger scale test 
with one hundred hosts. We repeated each experiment 
at least twice, but no noticeable deviations between 
repeated tests were observed during OpenVAS’s final 
vulnerability report. 

For the first test, the CIDR prefix was set to 
10.2.99.84/30 to ensure that CARTT examined a 
maximum of three outdated, vulnerable hosts. The goal 
was to scope the CARTT scan to a small address space 
before proceeding to a /24 network. After running the 
scan, CARTT accurately found all of the devices on 
the network and made an initial determination of each 
host’s OS. Although CARTT had some difficulty 
uniquely identifying the Windows 7 machine using its 
OS discovery tools, this did not have any detrimental 
effects on OpenVAS’s ability to identify critical 
vulnerabilities on the target device during its 
subsequent vulnerability scan. 

Page 6702



 

The output of the host discovery scan was sent to a 
separate text file for use by the GSA when it runs a 
vulnerability scan within the OpenVAS framework. To 
do so, the CARTT user must manually upload the text 
file as a new target under the GSA “Configuration” 
tab. The GSA then automatically parses the file and 
lists all of the hosts to be scanned as comma-separated 
values. After a vulnerability scan was created and 
launched on the GSA, it iterated through each host and 
stored the discovered vulnerabilities in an exportable 
report. Each scan on the /30 network took about thirty 
minutes which could be a product of the computing 
resources available on the CYBL hypervisor or due to 
the delays that occur as the GSA algorithm iterates 
through its repository of vulnerabilities on each host. 
The GSA source documents do reveal that if a scan is 
run on more than one system at a time, “the scan might 
have a negative impact on either the performance of 
the scanned systems, the network or the [GSA] 
appliance itself ” [29]. 

The second round of tests was conducted using a 
/24 network with one hundred VMs to determine how 
CARTT would perform against a larger subnet. In this 
case, all of the environmental variables remained the 
same except the total number of hosts connected to the 
network due to the modification of the CIDR variable 
in the source code. During these tests, CARTT did not 
have any significant delays in determining how many 
hosts were on a network or identifying the host’s OS. 
As expected, a considerable delay occurred after 
launching the GSA scan. Scanning through one 
hundred VMs in search of known vulnerabilities took, 
on average, about 5.25 hours. 

Although analyzing the amount of time it takes 
CARTT to conduct a scan successfully was not an 
objective of this research, it is nonetheless an essential 
consideration for the CARTT user. Specifically, 
CARTT users would need to understand that scanning 
an extensive network of devices may have secondary 
effects on CARTT’s resources such as losing battery 
power or entering a sleep state due to inactivity which 
could ultimately delay or abort the vulnerability scan. 
Regardless, the GSA worked as anticipated and 
produced similar results during both rounds of tests. 
 
5. Conclusions 
 

The main goal of this research was to develop a 
portable cyber red teaming tool, CARTT, capable of 
identifying and assessing the cybersecurity 
vulnerabilities on DoN computer systems not directly 
connected to the Internet, and of providing users with 
recommendations to mitigate cyber threats against 
those vulnerabilities. CARTT automates a series of 

common tasks used by DoD cyber red teams to 
conduct vulnerability assessments on networked 
systems. From our testing we concluded that CARTT 
can be effectively employed by users with limited 
cybersecurity knowledge to perform vulnerability 
scans on networks, and subsequently receive 
recommendations to mitigate associated cybersecurity 
threats. 

While our approach has been successful, several 
other tools and techniques were considered in this 
research, but not integrated into the prototype due to 
time and resource limitations. Future research could 
target CARTT’s deficiencies and extend its capability 
for automating vulnerability assessments on embedded 
devices without Internet connectivity. 

For instance, NSA maintains a publicly available 
repository of open source software that could be 
incorporated into CARTT’s current functions [30]. 
Their AtomicWatch was designed to be used by 
network administrators to recursively parse through a 
directory of log files and return any “results if a 
positive match is found” [30]. In CARTT’s case, 
AtomicWatch could be used to scan for keywords or 
phrases on the log file created by p0f. Another NSA 
tool called Maplesyrup shows “the low-level operating 
configuration of the system, and can be used to help 
determine the security state of a device” [30]. This tool 
would be used in CARTT to determine security 
settings on Linux devices by displaying the read, write, 
and execute permissions enforced by the kernel, and 
help ascertain whether or not CARTT has access to 
certain regions of memory on the target device. 

To fully assess a target device’s vulnerabilities, we 
acknowledge that it would be relevant to test its 
firmware binary. However, since most firmware 
extraction techniques involve physical interactions 
with the circuit boards and at least a basic knowledge 
of reverse engineering, this was beyond the scope of 
CARTT’s current capabilities. If the firmware image 
could be pulled from a device and uploaded to 
CARTT, then it would be feasible for CARTT to 
perform a vulnerability assessment using a tool such as 
Binwalk on the Kali Linux distribution. 
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