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TRIGONOMETRIC INTERPOLATION AND QUADRATURE IN
PERTURBED POINTS∗

ANTHONY P. AUSTIN† AND LLOYD N. TREFETHEN‡

Abstract. The trigonometric interpolants to a periodic function f in equispaced points converge
if f is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if f
is continuous. What if the points are perturbed? With equispaced grid spacing h, let each point
be perturbed by an arbitrary amount ≤ αh, where α ∈ [0, 1/2) is a fixed constant. The Kadec 1/4
theorem of sampling theory suggests there may be trouble for α ≥ 1/4. We show that convergence
of both the interpolants and the quadrature estimates is guaranteed for all α < 1/2 if f is twice
continuously differentiable, with the convergence rate depending on the smoothness of f . More
precisely, it is enough for f to have 4α derivatives in a certain sense, and we conjecture that 2α
derivatives are enough. Connections with the Fejér–Kalmár theorem are discussed.
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1. Introduction and summary of results. The basic question of robustness
of mathematical algorithms is “What happens if the data are perturbed?” Yet little
literature exists on the effect on interpolants, or on quadratures, of perturbing the
interpolation points.

The questions addressed in this paper arise in two almost equivalent settings: in-
terpolation by algebraic polynomials (e.g., in Gauss or Chebyshev points) and periodic
interpolation by trigonometric polynomials (e.g., in equispaced points). Although we
believe essentially the same results hold in the two settings, this paper deals with just
the trigonometric case. Let f be a real or complex function on [−π, π), which we take
to be 2π-periodic in the sense that any assumptions of continuity or smoothness made
for f apply periodically at x = −π as well as at interior points. For each N ≥ 0, set
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K = 2N + 1, and consider the centered grid of K equispaced points in [−π, π),

(1) xk = kh, −N ≤ k ≤ N, h =
2π
K
.

There is a unique degree-N trigonometric interpolant through the data {f(xk)}, by
which we mean a function

(2) tN (x) =
N∑

k=−N

cke
ikx

with tN (xk) = f(xk) for each k. If I denotes the integral of f ,

(3) I =
∫ π

−π
f(x) dx,

the associated quadrature approximation is the integral of tN (x), which can be shown
to be equal to the result of applying the trapezoidal rule to f :

(4) IN = h

N∑
k=−N

f(xk) =
∫ π

−π
tN (x) dx = 2πc0.

It is known that if f is continuous, then

(5) lim
N→∞

|I − IN | = 0,

and if f is Dini-continuous, for which Hölder or Lipschitz continuity are sufficient
conditions, then

(6) lim
N→∞

‖f − tN‖ = 0.

Moreover, the convergence rates are tied to the smoothness of f , with exponential
convergence if f is analytic. Here and throughout, ‖ · ‖ is the maximum norm on
[−π, π).

The problem addressed in this paper is the generalization of these results to
configurations in which the interpolation points are perturbed. For fixed α ∈ (0, 1/2),
consider a set of points

(7) x̃k = xk + skh, −N ≤ k ≤ N, |sk| ≤ α .

Note that since α < 1/2, the x̃k are necessarily distinct. Let t̃N (x) be the unique
degree-N trigonometric interpolant to {f(x̃k)}, and let ĨN =

∫
t̃N (x)dx be the cor-

responding quadrature approximation. As in (4), this will be a linear combination of
the function values, although no longer with equal weights in general.

Let σ > 0 be any positive real number, and write σ = ν + γ with γ ∈ (0, 1]. We
say that f has σ derivatives if f is ν times continuously differentiable and, moreover,
f (ν) is Hölder continuous with exponent γ. Note that if σ is an integer, then for f
to “have σ derivatives” means that f is σ − 1 times continuously differentiable and
f (σ−1) is Lipschitz continuous. We will prove the following main theorem, whose
central estimate is the bound on ‖f − t̃N‖ in (9). The estimates (8)–(9) are new,
whereas (10) follows from the work of Kis [11], as discussed in section 3. Numerical
illustrations of these bounds can be found in [1].
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Theorem 1. For any α ∈ (0, 1/2), if f is twice continuously differentiable, then

(8) lim
N→∞

|I − ĨN | = lim
N→∞

‖f − t̃N‖ = 0.

More precisely, if f has σ derivatives for some σ > 4α, then

(9) |I − ĨN |, ‖f − t̃N‖ = O(N4α−σ).

If f can be analytically continued to a 2π-periodic function for −a < Im x < a for
some a > 0, then for any â < a,

(10) |I − ĨN |, ‖f − t̃N‖ = O(e−âN ).

Our proofs are based on combining standard estimates of approximation theory,
the Jackson theorems, with a new bound on the Lebesgue constants associated with
perturbed grids, Theorem 2. Our bounds are close to sharp, but not quite. Based
on extensive numerical experiments presented in section 3.3.2 of [1], we conjecture
that 4α can be improved to 2α in (9) and (12); for (12) the result would probably
then be sharp, but for (9) a slight further improvement may still be possible. For
the quadrature problem in particular, further experiments presented in section 3.5.2
of [1] lead us to conjecture that ĨN → I as N → ∞ for all continuous functions f
for all α < 1/2. This conjecture is based on the theory of Pólya in 1933 [14], who
showed that such convergence is ensured if and only if the sums of the absolute values
of the quadrature weights are bounded as N →∞. Experiments indicate that for all
α < 1/2, these sums are indeed bounded as required. On the other hand, ĨN → I
cannot be guaranteed for any α ≥ 1/2, since in that case the interpolation points may
come together, making the quadrature weights unbounded.

Theorems 1 and 2 suggest that from the point of view of approximation and
quadrature, α = 1/4 is not a special value. In section 4 we comment on the significance
of the appearance of this number in the Kadec 1/4 theorem and more generally on
the relationship between approximation theory and sampling theory, two subjects that
address closely related questions and yet have little overlap of literature or experts.

All the estimates reported here were worked out by the first author and presented
in his D. Phil. thesis [1]. This work was motivated by work of the second author with
Weideman in the review article “The exponentially convergent trapezoidal rule” [16].
It is well known that on an equispaced periodic grid, the trapezoidal rule is exponen-
tially convergent for periodic analytic integrands [4, 16]. With perturbed points, it
seemed to us that exponential convergence of a suitably generalized rule should still
be expected, and we were surprised to find that there seemed to be no literature on
this subject. A preliminary discussion was given in [16, sec. 9].

Section 2 reduces Theorem 1 to a bound on the Lebesgue constant, Theorem 2.
Sections 3 and 4 are devoted to comments on problems with α ≥ 1/2 and on the link
with sampling theory and Kadec’s theorem, respectively. Section 5 outlines the proof
of Theorem 2.

2. Reduction to a Lebesgue constant estimate. A fundamental tool of
approximation theory is the Lebesgue constant: for any linear projection L : f 7→ t,
the Lebesgue constant is the operator norm Λ = ‖L‖. For our problem the operator is
the map L̃N from a function f to its trigonometric interpolant t̃N through the values
{f(x̃k)}, and the norm on L is the operator norm induced by ‖ · ‖, the ∞ norm on
[−π, π). We denote the Lebesgue constant by Λ̃N .
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Fig. 1. Experimental evidence for the conjecture that (12) holds with N2α in place of N4α.
The solid lines depict the value of Λ̃N versus the grid size K = 2N + 1 for α = 1/16, 2/16, . . . , 7/16
for a particular choice of perturbed points x̃k that is conjectured in [1] to yield the maximum value
of Λ̃N . The bottom line corresponds to α = 1/16 and the top line to α = 7/16; the thick black line
is for α = 1/4. The dashed lines depict asymptotic growth rates of O(N2α) for their matching solid
lines.

Lebesgue constants are linked to quality of approximations by the following well-
known bound. If Λ̃N is the Lebesgue constant associated with the projection L̃N :
f 7→ t̃N and t∗N is the best approximation to f of degree N , then

(11) ‖f − t̃N‖ ≤ (1 + Λ̃N )‖f − t∗N‖.

It follows that if Λ̃N is small, then t̃N is a near-optimal approximation to f . If f has
a certain smoothness property for which the optimal approximations t∗N are known
to converge at a certain rate, this implies that the interpolants t̃N converge at nearly
the same rate.

Applying (11), we prove Theorem 1 by combining a bound on the Lebesgue con-
stants Λ̃N with bounds on the best approximation errors ‖f − t∗N‖. Our estimates of
best approximations are standard Jackson theorems, going back to Dunham Jackson
in 1911 and 1912. The nonstandard part of the argument, which from a technical
point of view is the main contribution of this paper, is the following estimate of the
Lebesgue constant, the proof of which is outlined in section 5.

Theorem 2. There is a universal constant C such that

(12) Λ̃N ≤
C(N4α − 1)
α(1− 2α)

for all α ∈ [0, 1/2) and N ≥ 2. For α = 0 this bound is to be interpreted by its
limiting value given, for example, by l’Hôpital’s rule, Λ̃N ≤ 4C logN .

The logN bound for an equispaced grid with α = 0 is standard, so the substantive
result here concerns α ∈ (0, 1/2). This is what we can prove, but as mentioned in the
previous section, based on numerical experiments, we conjecture that (12) actually
holds with N4α replaced by N2α. Figure 1, based on computations in Chapter 3 of [1],
presents some of this data. We refer the reader to that source for further details.

Given Theorem 2, we prove Theorem 1 as follows.
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Proof of Theorem 1, given Theorem 2. The Jackson theorems of approximation
theory relate the smoothness of a function f to the accuracy of its best approxima-
tions [8, 12]. According to one of these theorems, given, for example, as Theorem 41
of [12], if f is a periodic function on [−π, π) that has σ derivatives for some σ > 0 in
the sense defined in section 1, then

(13) ‖f − t∗N‖ = O(N−σ).

Combining this with Theorem 2 gives (9). The bound (10) follows similarly from the
estimate

(14) ‖f − t∗N‖ = O(e−âN )

for any 2π-periodic function f analytic and bounded in the strip of half-width â > 0
about the real axis; see, for example, equation (7.17) of [16].

Regarding the constant C in Theorem 2, we note that all of our arguments are
explicit, and if they are combined together, one finds that for sufficiently large N ,
C is bounded by 72π(3/2 + 5/ log 5) ≈ 1042. This estimate is of course pessimistic.
Numerical evidence suggests that C ≈ 0.8 is sufficient not only for (12) as written but
also for the same bound with N4α replaced by N2α.

3. α ≥ 1/2, confluent points, and analytic functions. Our framework (7)
for perturbed points can be generalized to values α ≥ 1/2. For α ∈ [1/2, 1), two grid
points may coalesce, so one must assume that f ′ exists in order to ensure that there
are appropriate data to define an interpolation problem (in this case, trigonometric
Hermite interpolation). Similarly for α ∈ [1, 3/2), three points may coalesce, so one
must assume f ′′ exists, and so on analogously for any finite value of α. (We wrap
grid points around as necessary if the perturbation moves them outside of [−π, π);
equivalently, one could extend f periodically.)

Looking at the statement of Theorem 1 but considering values α ≥ 1/2, one notes
that the assumption of σ > 4α derivatives is enough to ensure that the necessary
derivatives exist for the interpolation problem to make sense; the conjectured sharper
condition of σ > 2α derivatives is also (just) enough. This coincidence seems sug-
gestive, and we consider it possible that Theorem 1 and its conjectured improvement
with 2α may in fact be valid for arbitrary α > 0, not just α ∈ (0, 1/2). We have not
attempted to prove this, however. As a practical matter, trouble can be expected in
floating-point arithmetic as sample points coalesce, so we regard the case α ≥ 1/2 as
somewhat theoretical.

Going further, what if we allow arbitrary perturbations of the interpolation points,
so that each x̃k may lie anywhere in [−π, π)? Doing so makes sense mathematically
if f is infinitely differentiable; so in particular, it makes sense if f is analytic, which
implies that it can be analytically continued to a 2π-periodic function on the whole
real line. We are now in an area of approximation theory (and potential theory)
going back to the work of Runge [15] and Fejér [5], in which a major contributor
was Joseph Walsh [6, 17]. For arbitrary xk, convergence will occur if f is analytic
in a sufficiently wide strip around the real axis in the complex x-plane. Repeated
points are permitted, with interpolation at such points interpreted in the Hermite
sense involving values of both the function and its derivatives. If the points xk are
uniformly distributed in the sense that the fraction of points falling in any interval
[a, b) ⊆ [−π, π) converges to (b − a)/2π as N → ∞, then it is enough for f to
be analytic in any strip around the real axis. Such results were first developed for
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polynomial approximation on the unit circle of functions analytic in the unit disk, the
so-called Fejér–Kalmár theorem [5, 10, 17]. The extension to functions analytic in an
annulus was considered by Hlawka [7], and the equivalent problem of trigonometric
interpolation of 2π-periodic functions on [−π, π) was considered by Kis [11]. All these
results may fail in practice because of rounding errors on the computer, however.
For example, Figure 3.7 of [1] shows an example with uniformly distributed random
interpolation points in [−π, π), with rounding errors beginning to take over at N ≈ 20.
For the case of interpolation by algebraic polynomials, this kind of effect is familiar in
the context of the Runge phenomenon, where polynomial interpolants in equispaced
points in [−1, 1] will diverge on a computer as N → ∞ even for a function like
f(x) = exp(x) for which in principle they should converge.

The importance of the uniform distribution of the interpolation points mentioned
above sheds further light on the setting of Theorem 2. The maximum possible ratio
of the length of the largest interval between two of our perturbed points to the length
of the smallest is (1 + 2α)/(1 − 2α); note that the denominator of this expression
appears also in the denominator of the right-hand side of (12). Having a bound on
such a mesh ratio ensures the convergence of many numerical algorithms for solving
differential equations, and one might accordingly wonder if here, too, a bound on the
mesh ratio alone would be enough to ensure good behavior of the interpolants. This is
not so. A family of grids with bounded mesh ratio need not be uniformly distributed
as N → ∞, and if it is not, the Lebesgue constants will increase exponentially with
N .

4. Sampling theory and the Kadec 1/4 theorem. The field of approxi-
mation theory goes back to Borel, de la Vallée Poussin, Fejér, Jackson, Lebesgue,
and others at the beginning of the 20th century, and its central question might be
characterized like this:

Given a function f of a certain regularity, how fast do its approxi-
mations of a given kind converge?

For example, if f is periodic and analytic on [−π, π), then its equispaced trigonometric
interpolants converge exponentially. The same holds if f is analytic in a strip sur-
rounding the whole real line and satisfies a decay condition at ∞, with trigonometric
interpolants generalized to interpolatory series of sinc functions.

The field of sampling theory goes back to Gabor, Kotelnikov, Nyquist, Paley,
Shannon, J. M. and E. T. Whittaker, and Wiener a few years later. Its central
question might be characterized like this:

Given a function f of a certain regularity, which of its approximations
of a given kind are exactly equal to f ?

For example, if f is periodic and analytic on [−π, π), then its equispaced trigonometric
interpolant is exact if f is band-limited (has a Fourier series of compact support) and
the grid includes at least two points per wavelength for each wave number present
in the series. The same holds if f is a band-limited analytic function on the whole
real line, with the Fourier series generalized to the Fourier transform, and again with
trigonometric interpolation generalized to sinc interpolation.

Obviously we have worded these characterizations to highlight the similarities
between the two fields, which in fact differ in significant ways. Still, it is remarkable
how little interaction there has been between the two. What makes this relevant
to the present paper is that our theorems and orientation are very much those of
approximation theory, whereas most of the scientific interest in perturbed grids in the
past has been from the point of view of sampling theory, and the Kadec 1/4 theorem
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is the best-known result in this general area.
Kadec’s theorem is an answer to a question of sampling theory that originates

with Paley and Wiener [13]. The exponentials {exp(iλkx)}, −∞ < k < ∞, form an
orthonormal basis for L2[−π, π] if λk = k for each k. Thus, the sampling theorist
would say that one can recover a function f ∈ L2[−π, π] from its inner products
with the functions {exp(iλkx)}. Now suppose these wave numbers are perturbed so
that |λ̃k − k| ≤ α for some fixed α. Can one still recover the signal? Specifically,
does the family {exp(iλ̃kx)} form a Riesz basis for L2[−π, π], that is, a basis that
is related to the original one by a bounded transformation with a bounded inverse?
Paley and Wiener showed that this is always the case for α < 1/π2, and Levinson
showed that it is not always the case for α ≥ 1/4. Kadec’s theorem shows that
Levinson’s construction was sharp: for any α < 1/4, the family {exp(iλ̃kx)} forms a
Riesz basis [2, 3, 9, 18].

Note that the standard setting of Kadec’s theorem involves perturbation of wave
numbers from equispaced values, in contrast to the results of this paper, which involve
perturbation of interpolation points from equispaced values. In view of the Fourier
transform, however, these settings are related, so one might imagine, based on Kadec’s
theorem, that α = 1/4 might be a critical value for trigonometric interpolation in
perturbed points. Instead, we have found that the critical value is α = 1/2.

We explain this apparent discrepancy as follows. The Paley–Wiener theory and
Kadec’s theorem are results concerning the L2 norm, which in many applications
would represent energy. In our application of trigonometric interpolation, something
related to the L2 norm does indeed happen at α = 1/4. Suppose we look at a 2
norm Lebesgue constant Λ̃(2)

N for the perturbed grid interpolation problem, defined
as the operator norm on L : f 7→ t̃N induced by the discrete `2 norm on the data
{f(x̃k)} and on the Fourier coefficients of the interpolant t̃k. Numerical experiments
reported in section 3.4.3 of [1] indicate that whereas the usual ∞ norm Lebesgue
constant is unbounded for all α, Λ̃(2)

N is bounded as N →∞ for any α < 1/4 but not
always bounded for α ≥ 1/4. (Indeed, Kadec’s theorem may imply this result.) For
α ∈ (1/4, 1/2), we conjecture that Λ̃(2)

N = O(N4α−1).
Thus a sampling theorist might say that for α ∈ [1/4, 1/2), trigonometric inter-

polation is unstable in the sense that it may amplify signals unboundedly in `2 as
N →∞. On the other hand, the approximation theorist might note that the instabil-
ity is very weak, involving not even one power of N . Assuming that the conjectured
sharpening of the estimate (9) of Theorem 1 is valid, one derivative of smoothness
of f is enough to suppress the instability, ensuring ‖f − t̃N‖ → 0 as N → ∞ for
all α < 1/2. The numerical analyst might add that on a computer, amplification of
rounding errors by o(N) is unlikely to cause trouble. For α ≥ 1/2, in strong contrast,
the amplification is unbounded in any norm even for finite N , and trouble is definitely
to be expected.

5. Proof of the Lebesgue constant estimate, Theorem 2. A full proof of
Theorem 2, filling 20 pages, is the subject of Chapter 4 of the first author’s D. Phil.
thesis [1]. Many detailed trigonometric estimates are involved, and we do not know
how to shorten it significantly. For readers interested in the full details, that chapter
has been made available in the supplementary materials accompanying this paper
(suppl.pdf [local/web 209KB]).

http://epubs.siam.org/doi/suppl/10.1137/16M1107760/suppl_file/suppl.pdf
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Here, we outline the argument. To prove the bound (12) on the Lebesgue constant,

(15) Λ̃N ≤
C(N4α − 1)
α(1− 2α)

,

we begin by noting that Λ̃N is given by

(16) Λ̃N = max
x∈[−π,π]

L̃(x),

where L̃ is the Lebesgue function

(17) L̃(x) =
N∑

k=−N

|˜̀k(x)|,

where ˜̀
k is the kth Lagrange cardinal trigonometric polynomial for the perturbed

grid,

(18) ˜̀
k(x) =

∏
j 6=k

sin
(x− x̃j

2

)/
sin
( x̃k − x̃j

2

)
.

The function ˜̀
k(x) takes the values 1 at x̃k and 0 at the other grid points x̃j , and the

sum (17) adds up contributions at a point x from all the 2N + 1 cardinal functions
associated with grid points to its left and right.

The argument begins by showing that on the interval [x∗−(k+1), x
∗
−k], ˜̀0 satisfies

the bound

(19) |˜̀0(x)| ≤Mk, x ∈ [x∗−(k+1), x
∗
−k], 0 ≤ k ≤ N,

for certain numbers M0, . . . ,MN , independently of the choice of perturbed points
{x̃k}. The points x∗k are defined by x∗0 = 0, x∗−(N+1) = −π, and

x∗k = 2 arctan

(
cos(kh)− cos(αh) + tan(x̃0/2) sin(kh)

tan(x̃0/2)
(
cos(kh) + cos(αh)

)
− sin(kh)

)
, −N ≤ k ≤ N, k 6= 0;

the most important fact about them is that they satisfy the inequalities

(k − α)h ≤ x∗k ≤ (k + α)h, −N ≤ k ≤ N.

Thus, (19) bounds ˜̀0 on certain subintervals of [−π, 0]. By exploiting symmetry, these
bounds yield similar bounds on ˜̀0 on similar subintervals of [0, π] as well as bounds
on the other 2N contributions to L̃ in (17). We are eventually led to the estimate

L̃(x) ≤ 9
N∑
k=0

Mk,

which holds uniformly for x ∈ [−π, π]. The factor of 9 on the right-hand side emerges
due to the particular way in which the symmetry of the problem is exploited; see
Lemmas 16 and 17 in the accompanying supplementary materials for details (suppl.pdf
[local/web 209KB]).

http://epubs.siam.org/doi/suppl/10.1137/16M1107760/suppl_file/suppl.pdf
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For sufficiently large N , the Mk satisfy

(20) Mk ≤
10π

1− 2α
, k = 0, 1,

and

(21) Mk ≤
3π(k + 1)2α

(1− 2α)(k − 1)1−2α , 2 ≤ k ≤ N.

The bound (15) follows for sufficiently large values of N by an estimation of the sums
of (20) and (21) over all k; small values of N are finite in number and thus can be
handled by adjusting the constant C. The numbers Mk are defined by

(22) Mk = max
x∈[−π,0]∩Rk

Pk(x)
Qk

, 0 ≤ k ≤ N,

with

Pk(x) =
N∏
i=1

∣∣∣∣sin(x− (i− α)h
2

)∣∣∣∣× k∏
i=1

∣∣∣∣sin(x+ (i− α)h
2

)∣∣∣∣× N∏
i=k+1

∣∣∣∣sin(x+ (i+ α)h
2

)∣∣∣∣
and

Qk =
N∏
i=1

∣∣∣∣sin( (2α− i)h
2

)∣∣∣∣× k∏
i=1

∣∣∣∣sin( ih2
)∣∣∣∣× N∏

i=k+1

∣∣∣∣sin( (2α+ i)h
2

)∣∣∣∣ .
The set Rk in the definition of the range of the maximum in (22) is the interval

Rk = [(−k − 1− α)h, (−k + α)h].
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