
SIAM J. MATRIX ANAL. APPL.
Vol. 40, No. 1, pp. 210--234

STABLE COMPUTATION OF GENERALIZED MATRIX
FUNCTIONS VIA POLYNOMIAL INTERPOLATION\ast

JARED L. AURENTZ\dagger , ANTHONY P. AUSTIN\ddagger , MICHELE BENZI\S , \mathrm{A}\mathrm{N}\mathrm{D}

VASSILIS KALANTZIS\P

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Generalized matrix functions (GMFs) extend the concept of a matrix function to
rectangular matrices via the singular value decomposition. Several applications involving directed
graphs, Hamiltonian dynamical systems, and optimization problems with low-rank constraints require
the action of a GMF of a large, sparse matrix on a vector. We present a new method for applying
GMFs to vectors based on Chebyshev interpolation. The method is matrix free and requires no
orthogonalization and minimal additional storage. Comparisons against existing approaches based
on Lanczos bidiagonalization demonstrate the competitiveness of our approach. We prove that our
method is backward stable by generalizing the proof of the backward stability of Clenshaw's algorithm
to the matrix case.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . generalized matrix functions, Chebyshev polynomials, Clenshaw's algorithm, graph
theory

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65F60, 15A16, 05C50

\bfD \bfO \bfI . 10.1137/18M1191786

1. Introduction. First introduced in [22], generalized matrix functions (GMFs)
extend the notion of matrix functions from square matrices to rectangular ones using
the singular value decomposition (SVD). Although they are perhaps less well known
than their ``standard"" counterparts, GMFs arise in a variety of applications, including
communication metrics for directed graphs [3, 12], matrix exponentials of Hamiltonian
systems [14, 15], including the graph wave equation [10, 27], and regularization of
ill-posed problems [21]. For additional theory and applications of GMFs see, for
instance, [1, 2, 28] and the references therein. In all these applications, the quantity
of interest is the action of a GMF on a vector. For small matrices, one can proceed
directly by computing the full SVD of the matrix. Algorithms based on Lanczos

\ast Received by the editors June 7, 2018; accepted for publication (in revised form) December 10,
2018; published electronically February 12, 2019. The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne National Laboratory (``Argonne""). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under contract DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or on behalf of the Government. The
Department of Energy will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

http://www.siam.org/journals/simax/40-1/M119178.html
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the first author was supported by the Spanish Ministry of Economy and

Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R\&D (SEV-
2015-0554). The work of the second author was supported by the U.S. Department of Energy, Office
of Science, under contract DE-AC02-06CH11357. The work of the third author was supported by
the National Science Foundation (DMS-1719578). The work of the fourth author was supported
by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S.
Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy
Sciences programs (DE-SC0008877).

\dagger Instituto de Ciencias Matem\'aticas, 28049 Madrid, Spain (jared.aurentz@icmat.es).
\ddagger Department of Mathematics, Virginia Tech, Blacksburg, VA 24061 (apaustin@vt.edu).
\S Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy (michele.benzi@sns.it).
\P IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598 (vkal@

ibm.com).

210

http://energy.gov/downloads/doe-public-access-plan
http://www.siam.org/journals/simax/40-1/M119178.html
mailto:jared.aurentz@icmat.es
mailto:apaustin@vt.edu
mailto:michele.benzi@sns.it
mailto:vkal@ibm.com
mailto:vkal@ibm.com

COMPUTING GENERALIZED MATRIX FUNCTIONS 211

bidiagonalization have been proposed in [4] for large and sparse matrices.
In this paper, we present a new method for applying a GMF of a large, sparse

matrix to a vector. Our method, which is based on Chebyshev interpolation, is
``matrix free""---it needs only a routine that computes the action of the matrix (and its
transpose) on a vector---and uses only a small amount of additional memory, making
it easy to parallelize and well suited to large-scale problems. Similar techniques have
been used to accelerate the solution of large symmetric eigenvalue problems by using
multicore and GPU processors [5, 6, 18]. We verify the efficacy of our method with
numerical experiments, which show our method to be superior in terms of memory
usage and, for certain problems, compute time.

We also prove that our method is backward stable by generalizing the proof of
the backward stability of Clenshaw's algorithm to the matrix case. The proof we
give can, with minimal modification, be used to establish backward stability for the
Chebyshev interpolation methods that are so popular for computing eigenvalues and
(matrix) functions of symmetric matrices. To the best of our knowledge, this is the
first backward stability result for these methods to be established, and our analysis
therefore fills an important gap in the literature. We verify this stability result with
numerical experiments.

2. Functions of matrices. We begin by recalling some basic facts about both
standard and generalized matrix functions. We then use these to establish the prop-
erties of GMFs that form the foundation for our algorithm.

2.1. Standard matrix functions. For simplicity, let A be an n\times n Hermitian
matrix with eigenvalues \lambda 1, . . . , \lambda n, and write A = Q\Lambda Q\ast in eigendecomposed form,
where Q is unitary and \Lambda = diag(\lambda 1, . . . , \lambda n). Given a complex-valued function f ,
recall that the (standard) matrix function f(A) is obtained by applying f to the
eigenvalues of A: f(A) = Qf(\Lambda)Q\ast , where f(\Lambda) = diag

\bigl(
f(\lambda 1), . . . , f(\lambda n)

\bigr)
. Note that

if n = 1, so that A = \lambda 1 is a scalar, then f(A) = f(\lambda 1). In this sense, the definition
of f(A) can be viewed as an extension of f to matrix arguments.

Observe that if p is any polynomial that interpolates f in the eigenvalues \lambda 1, . . . \lambda n,
then p(A) = f(A). We refer to this result as the polynomial interpolation theorem
for standard matrix functions and note that it can be used as the basis for a rigorous
and more complete definition of f(A) than the one given in the preceding paragraph;
see [19, Chapter V], [24, p. 5].1 Note also that p(A) = Aj when p(x) = xj for any
nonnegative integer j; thus, the definition of powers of A obtained via matrix functions
is consistent with that obtained via repeated matrix multiplication.

This last observation means that, given p such that p(A) = f(A), we can explicitly
compute f(A) once we have represented p in some basis. The problem with this
approach is that we cannot find p without knowing all the eigenvalues of A, and this
is not practical if A is large. Instead, we take p to be a polynomial that approximates
f on some interval (or other set) that contains the eigenvalues of A; the better the
approximation of p to f , the better the approximation of p(A) to f(A). If f is
sufficiently smooth, finding a p that yields an accurate approximation is an easy task.
This idea was pioneered by Druskin and Knizhnerman in [17]. More broadly, this
idea forms the basis for Krylov subspace methods, polynomial preconditioning, and
filtering techniques for large-scale eigenvalue problems.

1If A is diagonalizable, the same definition works, even if the eigenvector matrix is not unitary.
For nondiagonalizable A, the polynomial will need to interpolate derivatives of f as well.

212 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

2.2. Generalized matrix functions. Just as standard matrix functions are
defined by applying functions to eigenvalues, generalized matrix functions are defined
by applying functions to singular values. Let B be an m \times n matrix of rank r \leq
min(m,n) with singular values \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma r > 0, and write B = U\Sigma V \ast in a
(compact) SVD, where the m\times r matrix U and n\times r matrix V each have orthonormal
columns and \Sigma = diag(\sigma 1, . . . , \sigma r). Given a scalar function f , we define the generalized
matrix function

f\diamond (B) = Uf(\Sigma)V \ast ,

where f(\Sigma) = diag
\bigl(
f(\sigma 1), . . . , f(\sigma r)

\bigr)
, a standard matrix function. If B = 0, we set

f\diamond (B) = 0. Note that in general f\diamond (B) \not = f(B) if B is square and indefinite; thus,
GMFs are not strictly generalizations of their standard counterparts. Nevertheless,
the terminology has stuck, and we continue to use it here.

In what sense is f\diamond an extension of the scalar function f to matrix arguments?
If B = \beta is a real scalar, then we can obtain an SVD of B by taking U = sign(\beta),
\Sigma = | \beta | , and V = 1. We therefore have f\diamond (\beta) = f\diamond (B) = sign(\beta)f(| \beta |), and so for
real scalars x,

(1) f\diamond (x) =

\left\{

f(x), x > 0,

0, x = 0,

 - f(- x) x < 0,

an odd function. More generally, f\diamond is odd as a function of matrices because if U\Sigma V \ast

is an SVD of B, then (- U)\Sigma V \ast is an SVD of - B, and

f\diamond (- B) = (- U)f(\Sigma)V \ast = -
\bigl(
Uf(\Sigma)V \ast \bigr) = - f\diamond (B).

The reason this happens is that f\diamond (B) depends only on the positive singular values of
B; therefore, only the values of f on the positive real axis matter. This inherent odd
symmetry is a distinguishing feature of GMFs and will recur repeatedly throughout
this paper.

Since our aim is to develop techniques for applying GMFs to vectors by using
polynomials, we need a way to compute p\diamond (B) for polynomials p; and for it to be
applicable to large matrices, it cannot rely explicitly on the SVD of B. The challenge
here is that it is not generally true, for instance, that p\diamond (B) = Bj when p(x) = xj , as
would be the case for a standard matrix function. Indeed, B may be rectangular, so
Bj may not even be defined. It is therefore not immediately obvious how to express
a polynomial GMF at all, much less in a form that avoids reference to the SVD.

Nevertheless, if p is an odd polynomial, then p\diamond (B) can be easily computed by
using just matrix multiplication by B and B\ast . To see this, observe that if p is odd,
then p(x) = q(x2)x for some polynomial q, and (see next sentence) we have

p\diamond (B) = q(BB\ast)B = Bq(B\ast B),

where q(BB\ast) and q(B\ast B) are standard matrix functions. This can be seen by using
the SVD of B:

q(BB\ast)B = q(U\Sigma 2U\ast)U\Sigma V \ast = Uq(\Sigma 2)\Sigma V \ast = Up(\Sigma)V \ast = p\diamond (B).

The equality involving Bq(B\ast B) may be established similarly.
The preceding discussion leads us to state the following theorem, which makes

precise the correspondence between GMFs and odd scalar-valued functions.

COMPUTING GENERALIZED MATRIX FUNCTIONS 213

Theorem 2.1 (generalized polynomial interpolation theorem). Let B be an m\times n
matrix, and let f be a scalar function. There is an odd polynomial p such that p\diamond (B) =
f\diamond (B).

Proof. Take p to be any odd polynomial that interpolates the odd scalar-valued
function defined in (1) at the singular values of B.

As was the case with standard matrix functions, we cannot compute the polyno-
mial p in the theorem without knowing the singular values of B. This is not practical
if B is large. Instead, we will choose p to approximate f on an interval that contains
the singular values. The theorem shows that we can restrict our attention to odd
polynomials p, which gives us a means of computing p\diamond (B) without the SVD of B.

We close this section by observing that if p is the odd polynomial of minimal
degree such that p annihilates B when applied to it in the generalized sense, then any
odd power GMF of B can be written as an odd polynomial GMF of degree no larger
than that of p by constructing an odd interpolant to the odd power in the roots of
p. This parallels the fact that any power of a square matrix, taken in the standard
sense, may be expressed as a polynomial function of the matrix of degree no larger
than that of the matrix's minimal polynomial.

3. Computing generalized matrix functions. We now describe our algo-
rithm for computing GMFs in detail.

3.1. Chebyshev interpolation. To build the polynomial approximations to f
that form the basis for our method, we use Chebyshev interpolation---interpolation
in Chebyshev points. Given a function f defined on [- 1, 1], the degree-k Chebyshev
interpolant to f is the unique polynomial pk of degree at most k that satisfies

pk(xi) = f(xi), i = 0, . . . , k,

where xi = cos(i\pi /k), i = 0, . . . , k, the k + 1 Chebyshev points of the second kind.
Chebyshev interpolants have two desirable properties. First, for smooth f , the

error in the approximation pk \approx f decreases rapidly as k increases. More precisely,
if \| \cdot \| \infty denotes the supremum norm on [- 1, 1] and if f is analytic in some open
region of the complex plane containing [- 1, 1], then there exist \rho > 1 and a positive
constant C such that \| pk - f\| \infty < C\rho - k [31, Chapter 8]. That is, for analytic f , the
approximation error decays with k at a geometric rate.

The second property is that the expansion of pk in the basis of Chebyshev poly-
nomials of the first kind can be computed efficiently from the function values at the
Chebyshev points by using the discrete cosine transform (DCT). Recall that the
Chebyshev polynomials of the first kind are the polynomials Ti defined via the recur-
rence

(2) T0(x) = 1, T1(x) = x, and Ti+1(x) = 2xTi(x) - Ti - 1(x), i \geq 1.

By appropriately choosing coefficients \alpha 0, . . . , \alpha k, we may write

(3) pk(x) =

k\sum

i=0

\alpha iTi(x),

the Chebyshev expansion of pk. The \alpha i are related to the function values f(xi) via a
linear map that can be applied in O(k log k) time by using the DCT [31, Chapter 3].

214 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

3.2. Clenshaw's algorithm. A polynomial represented in a Chebyshev basis
can be evaluated by using Clenshaw's algorithm [11], a generalization of Horner's
method that can be applied to evaluate any expansion in which the basis is defined
by a three-term recurrence. In this section, we develop a variant of this algorithm
for evaluating the approximations p\diamond (B) to f\diamond (B) that we obtain from Chebyshev
interpolation. We give an algorithm for computing the product p\diamond (B)w for a vector
w, since this is what is needed in applications.

The results of section 2 tell us that for p\diamond (B)w to be computable via matrix
multiplication with B (and B\ast), p should be odd. Since Ti is even or odd according
to whether i is even or odd, the even-indexed coefficients in the expansion (3) for odd
p will be identically zero. Thus, we write

(4) p(x) =

k\sum

i=0

\alpha 2i+1T2i+1(x),

where the degree of p is now 2k + 1.
There is a version of Clenshaw's algorithm tailored to evaluating expansions of

the form (4) that avoids evaluating the even-degree Chebyshev polynomials [26, sec-
tion 2.5, Problem 7]. One way to derive it is as follows. By substituting 2i - 1 for i
and setting j = 2 in the standard identity

(5) 2Ti(x)Tj(x) = Ti+j(x) + T| i - j| (x),

we obtain a three-term recurrence for the odd-degree Chebyshev polynomials:

(6) T2i+1(x) = 2T2(x)T2i - 1(x) - T| 2i - 3| (x), i \geq 1.

Clenshaw's algorithm then yields the following recurrence for p(x) when p is odd:

(7) \gamma k+1 = \gamma k+2 = 0, \gamma i = \alpha 2i+1x+ 2T2(x)\gamma i+1 - \gamma i+2, i = k, . . . , 0,

where p(x) = \gamma 0.
To convert this into an algorithm for p\diamond (B)w, we need a three-term recurrence

for the vectors T \diamond
2i+1(B)w. Lemma 3.1 shows how to modify (6) using the SVD of B.

Lemma 3.1 (three-term recurrence for T \diamond
2i+1(B)w). Let B be an m\times n matrix, and

let w be a vector of length n. The vectors T \diamond
2i+1(B)w satisfy the following recurrence

relation:

T \diamond
2i+1(B)w = 2T2

\Bigl(\surd
BB\ast

\Bigr)
T \diamond
2i - 1(B)w - T \diamond

| 2i - 3| (B)w, i \geq 1.

Proof. Let B = U\Sigma V \ast be the SVD of B. We have T \diamond
j (B)w = UTj(\Sigma)V

\ast w and

T2(
\surd
BB\ast) = 2BB\ast - I = 2U\Sigma 2U\ast - I. Therefore, the identity to be established is

equivalent to

UT2i+1(\Sigma)V
\ast w = 2(2U\Sigma 2U\ast - I)UT2i - 1(\Sigma)V

\ast w - UT| 2i - 3| (\Sigma)V
\ast w.

Factoring out U and V \ast w on both sides and replacing 2\Sigma 2 - I with T2(\Sigma), we see
that this will hold if

T2i+1(\Sigma) = 2T2(\Sigma)T2i - 1(\Sigma) - T| 2i - 3| (\Sigma).

This is just (6) with \Sigma in place of x. Since \Sigma is square and diagonal, the equality
holds, completing the proof.

COMPUTING GENERALIZED MATRIX FUNCTIONS 215

The following theorem shows how to modify Clenshaw's algorithm from (7) to
compute p\diamond (B)w for odd p.

Theorem 3.2 (Clenshaw's algorithm for generalized matrix functions). Let B
be an m\times n matrix, and let p be an odd polynomial of degree 2k + 1 with Chebyshev
expansion given by (4). Given a vector w of length n, we have p\diamond (B)w = g0, where
g0 is computed via the recurrence

gk+1 = gk+2 = 0, gi = \alpha 2i+1v + 2(2BB\ast - I)gi+1 - gi+2, i = k, . . . , 0,

and v = Bw.

Proof. Apply Clenshaw's algorithm to the three-term recurrence in Lemma 3.1,
and note that T2(

\surd
BB\ast) = 2BB\ast - I.

We emphasize that the recurrence in Theorem 3.2 uses only the action of B and B\ast

on vectors; there is no need to form the matrix BB\ast explicitly. Therefore, for problems
involving large sparse matrices, we can compute generalized matrix functions using
only matrix-vector multiplication.

Note that one can arrive at Theorem 3.2 in a manner different from the one
presented by taking the standard Clenshaw algorithm, zeroing the terms involving
the even coefficients, and simplifying the recursion.

3.3. Scaling. The polynomial approximations we developed in section 3.1 are
interpolants on the interval [- 1, 1]; their accuracy away from that interval is not
guaranteed. Therefore, if B has singular values outside of [0, 1], our polynomial ap-
proximation to the GMF may no longer be accurate. To deal with this, we scale B
by an upper bound \beta for the largest singular value \sigma 1 of B. Note that once \beta is
computed, it can be used in approximating f\diamond (B) for multiple functions f .

One can compute an acceptable \beta in several ways; in our implementation, we
use Lanczos bidiagonalization. Since this algorithm produces rapidly converging ap-
proximations to \sigma 1, we need only a few Lanczos steps to get an approximation to \sigma 1

sufficiently accurate to construct \beta . Moreover, since \sigma 1 is the only singular value of
B that we need, we do not need to perform any (re)orthogonalization.

If one has access to the entries of B, an alternative way to choose \beta is to ap-
ply Gerschgorin's theorem to BB\ast . Upper bounds obtained this way are, however,
typically considerably less sharp than the bounds one can obtain through Lanczos
bidiagonalization.

3.4. Summary of algorithm. A summary of our method for approximating
f\diamond (B)w using polynomial interpolation is given in Algorithm 1.

Algorithm 1. Computing f\diamond (B)w.

Require: Matrix B, function f , vector w, and an approximation tolerance \varepsilon > 0
(1) Compute \beta such that \sigma 1 \leq \beta using Lanczos bidiagonalization, where \sigma 1 is the
largest singular value of B.
(2) Let h(x) = f\diamond (x\beta)---see (1)---and compute p such that \| p - h\| \infty < \varepsilon \| h\| \infty
using Chebyshev interpolation of h on [- 1, 1].
(3) Compute p\diamond (\beta - 1B)w using Clenshaw's algorithm (Theorem 3.2).
return p\diamond (\beta - 1B)w

216 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

4. Backward stability. Clenshaw's algorithm (7) is a backward stable method
for evaluating scalar polynomials. One might therefore expect that the variant of it
given in Theorem 3.2 is backward stable as well. This is indeed the case; however,
because of the noncommutativity of matrix-matrix and matrix-vector multiplication,
the backward error assumes a nonstandard form. Since T2i+1 is odd, there is a degree-i
polynomial qi such that T2i+1(x) = qi(x

2)x. Thus, we can rewrite p\diamond (B)w as

(8) p\diamond (B)w =

\Biggl(
k\sum

i=0

qi(BB\ast)\alpha 2i+1

\Biggr)
Bw.

We will show that the version of Clenshaw's algorithm in Theorem 3.2 is backward
stable in the sense that there exist anm\times nmatrix \delta B andm\times mmatrices \{ \delta A2i+1\} ki=0

such that

fl
\bigl(
p\diamond (B)w

\bigr)
=

\Biggl(
k\sum

i=0

qi(\widetilde B \widetilde B\ast) \widetilde A2i+1

\Biggr)
\widetilde Bw,

where \widetilde B = B + \delta B, \widetilde A2i+1 = \alpha 2i+1I + \delta A2i+1, and fl
\bigl(
p\diamond (B)w

\bigr)
is the output of

Clenshaw's algorithm in floating-point arithmetic.
To state our result, we introduce the following notation. Let I be the m \times m

identity matrix, and let M = 2BB\ast - I. Let \{ gi\} ki=0 be as in Theorem 3.2, let
\{ \alpha 2i+1\} ki=0 be as in (4), and define the block matrices

g =

\left[

gk
...
g1
g0

\right]
 , A =

\left[

\alpha 2k+1I
\alpha 2k - 1I

...
\alpha 1I

\right]
 , L =

\left[

I
 - 2M I
I - 2M I

I - 2M I
. . .

\right]

.

Observe that g satisfies the linear system

(9) Lg = ABw,

and therefore, since g0 = p\diamond (B)w,

p\diamond (B)w = eT0 g = eT0 L
 - 1ABw,

where eT0 =
\bigl[
0 \cdot \cdot \cdot 0 I

\bigr]
. (We may invert L because it is square and lower trian-

gular with all diagonal entries nonzero.) Let u be the unit roundoff. Given matrices
X and Y , if there is a constant C > 0 such that \| X\| 2 \leq

\bigl(
Cu+O(u2)

\bigr)
\| Y \| 2, we say

that X is small relative to Y and write X \preceq Y .

Theorem 4.1 (backward stability of Clenshaw's algorithm). Let B, w, and p
be as in Theorem 3.2, and assume \| B\| 2 \leq 1 and u < 1. Let \{ \widehat g\} ki=0 be the perturbed
versions of the iterates \{ gi\} ki=0 computed by using Theorem 3.2 in floating-point arith-

metic. There exist a matrix \widetilde B = B + \delta B, \delta B \preceq B, and a block matrix \delta \widetilde L such that

(10) (\widetilde L+ \delta \widetilde L)\widehat g = A \widetilde Bw,

where

\widehat g =

\left[

\widehat gk
...
\widehat g1
\widehat g0

\right]
 , \widetilde L =

\left[

I

 - 2\widetilde M I

I - 2\widetilde M I

I - 2\widetilde M I
. . .

\right]

,

COMPUTING GENERALIZED MATRIX FUNCTIONS 217

and \widetilde M = 2 \widetilde B \widetilde B\ast - I. Furthermore, if | | \delta \widetilde L\widetilde L - 1| | 2 < 1, there exist m \times m matrices

\{ \delta A2i+1\} ki=0, \delta A2i+1 \preceq \sum k
j=i | j - i+ 1| | \alpha 2j+1| , i = 0, . . . , k, such that

(11) \widetilde L\widehat g = \widetilde A \widetilde Bw,

where

\widetilde A =

\left[

\alpha 2k+1I + \delta A2k+1

\alpha 2k - 1I + \delta A2k - 1

...
\alpha 1I + \delta A1

\right]
 .

In other words, the iterates \widehat gi (and, in particular, \widehat g0) obtained by running the
algorithm of Theorem 3.2 in floating-point arithmetic exactly satisfy a perturbed
version of the linear system (9), and if the perturbation is sufficiently small, it can be
pushed onto the coefficients \{ \alpha 2i+1\} ki=0 in the sense described in the first paragraph
of this section. Since the proof of this result is lengthy and technical, we defer it to
the appendix.

The backward error \delta B in B found by Theorem 4.1 is small relative to B. The
backward error \delta A2i+1 in the coefficient \alpha 2i+1, on the other hand, is asserted to be
small only relative to a weighted sum involving all higher-degree coefficients. The
following corollary shows that when the coefficients decay geometrically, \delta A2i+1 is in
fact small relative to \alpha 2i+1 on its own.

Corollary 4.2. If there exists \rho , 0 \leq \rho < 1, such that the coefficients \{ \alpha 2i+1\} ki=0

satisfy
| \alpha 2k+1| \leq \rho | \alpha 2k - 1| \leq \cdot \cdot \cdot \leq \rho | \alpha 1| ,

then \delta A2i+1 \preceq \alpha 2i+1, i = 0, . . . , k.

Proof. By Theorem 4.1,

\delta A2i+1 \preceq
k\sum

j=i

| j - i+ 1| | \alpha 2j+1| \leq | \alpha 2i+1|
k - i\sum

j=0

| j + 1| \rho j .

That \delta A2i+1 \preceq \alpha 2i+1 now follows from the fact that the sum is finite.

5. Numerical experiments. Theorem 4.1 tells us that Clenshaw's algorithm
is stable and thus that Algorithm 1 is a reliable method for approximating gener-
alized matrix functions. In this section we report on several numerical experiments
that verify the error bounds in Theorem 4.1, and we compare Algorithm 1 with the
Lanczos-based methods presented in [4].

5.1. Backward stability. In our first set of experiments, we used extended
precision to verify numerically that the algorithm of Theorem 3.2 is backward stable
and that the error bounds predicted by Theorem 4.1 and Corollary 4.2 are correct.

We fixed the dimensions of the matrix B to be m = 3 and n = 2, and we set the
degree of p to 201, that is, k = 100. We then chose B and w randomly with entries
normally distributed with mean 0 and standard deviation 1. We picked the coefficients
of p randomly from a normal distribution with mean 1 and standard deviation .01.
Thus, we had a set of coefficients such that each satisfied | \alpha 2i+1 - 1| \leq .04, 99.99\% of
the time. By Theorem 4.1,

\| \delta A2i+1\| 2 \preceq
k\sum

j=i

| j - i+ 1| | \alpha 2j+1| \approx | \alpha 2i+1|
k - i\sum

j=0

| j + 1| = O
\bigl(
(k - i+ 1)2

\bigr)
| \alpha 2i+1| ,

218 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

101 81 61 41 21 1

10−16

10−15

10−14

10−13

10−12

10−11

O (101− i)2
)

i

‖δ
A

2
i+

1
‖ 2

/
|α

2
i+

1
|

Fig. 1. Relative backward error from running Clenshaw's algorithm for polynomials whose
coefficients are all close to 1. Note that the value of i decreases from left to right.

101 81 61 41 21 1
10−17

10−16

10−15

10−14
O(1)

i

‖δ
A

2
i+

1
‖ 2

/
|α

2
i+

1
|

Fig. 2. Relative backward error from running Clenshaw's algorithm for polynomials whose
coefficients decay at a geometric rate, | \alpha 2i+1| \approx (1/2)i. Note that the value of i decreases from left
to right.

so the relative backward error in each coefficient \alpha 2i+1 grows quadratically with k -
i + 1. Figure 1 shows the distributions of the relative errors in each coefficient from
performing this experiment 10 times together with the asymptotic quadratic error
bound. The experimental results neatly match our theoretical predictions.

Next, we performed the same experiment but multiplied the same randomly gen-
erated coefficients by the geometrically decaying factor \rho i = (1/2)i. Corollary 4.2
asserts that the relative backward errors should be uniformly bounded. Figure 2
shows the distributions of the relative errors in each coefficient from performing the
experiment 10 times. The uniform boundedness is readily apparent.

5.2. Comparison with Lanczos-based methods. We compared the runtime
for approximating f\diamond (B)w using Algorithm 1 and the Lanczos-based method from [4,

COMPUTING GENERALIZED MATRIX FUNCTIONS 219

section 5.4]. The Lanczos-based method uses Golub--Kahan bidiagonalization [20,
section 10.4] to compute an approximate truncated SVD of B. After k steps of the
bidiagonalization process started with the vector w, we have an m \times (k + 1) matrix
Uk and an n\times (k+1) matrix Vk, both with orthonormal columns, a (k+1)\times (k+1)
diagonal matrix \Sigma k, and an m\times n matrix Rk such that

(12) B = Uk\Sigma kV
\ast
k +Rk.

The vector f\diamond (B)w is then approximated as

f\diamond (B)w \approx Ukf(\Sigma k)V
\ast
k w.

Since the approximation is a linear combination of the columns of Uk and since
the columns of Uk form an orthonormal basis for the Krylov subspace

\scrK k+1(BB\ast , Bw) = span\{ Bw, (BB\ast)Bw, . . . , (BB\ast)kBw\} ,

there exists an odd polynomial pk of degree 2k + 1 such that

p\diamond k(B)w = Ukf(\Sigma k)V
\ast
k w.

Thus, the Lanczos-based method also constructs an odd polynomial approximation
to f\diamond (x). Since the Lanczos polynomial pk satisfies

pk = argmin
q \mathrm{o}\mathrm{d}\mathrm{d}

\mathrm{d}\mathrm{e}\mathrm{g}(q)\leq 2k+1

\| q\diamond (B)w - f\diamond (B)w\| 2

we know that for a given k, the Lanczos-based method will be at least as accurate as
Algorithm 1 when the errors are measured in the Euclidean norm.

It follows that the Lanczos-based method should need a lower-degree polynomial
than Algorithm 1 to attain a given level of error. Nevertheless, Algorithm 1 may
still be more efficient because its cost scales better as k increases. The dominant
operations in Algorithm 1 are the matrix-vector multiplications and vector additions
in Clenshaw's algorithm. Assuming that matrix-vector multiplication takes O(m+n)
flops, as is generally the case for sparse matrices, Algorithm 1 has an asymptotic cost
of O

\bigl(
(m+n)k

\bigr)
flops. For the Lanczos-based method to be stable, one must ensure the

orthogonality of the columns of Uk and Vk, which we do via full reorthogonalization.
Taking k steps of the algorithm therefore requires O

\bigl(
(m+ n)k2 + k3

\bigr)
flops, and this

becomes increasingly expensive as k gets large.

5.2.1. Experimental setup. For a given matrix B, vector w, function f , and
tolerance \varepsilon , we computed polynomial approximations p\diamond (B)w to f\diamond (B)w such that

\| p\diamond (B)w - f\diamond (B)w\| 2 \leq \varepsilon \| f\diamond (B)\| 2 \| w\| 2
using three methods: Chebyshev, Lanczos dynamic, and Lanczos fixed.

The Chebyshev method is Algorithm 1. We estimated the leading singular value
of B using Golub--Kahan bidiagonalization without reorthogonalization with w as the
starting vector, exiting when the leading singular value had converged to a relative
tolerance of 10 - 3. We computed the upper bound \beta by adding the residual norm
to this estimate, as is done in [18].2 We then used the Chebfun software package

2This technique worked robustly for our set of test matrices, but for others (or for other choices
of starting vector) it may fail with the coarse convergence tolerance that we have used [32]. If this
happens, one solution is to take more bidiagonalization steps, although this increases the cost.

220 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

[16] to construct a Chebyshev interpolant p of degree large enough to ensure that
\| p - h\| \infty < \varepsilon \| h\| \infty and evaluated p\diamond (B)w using Clenshaw's algorithm. All runtimes
we report for this method include the times required to estimate the leading singular
value and to construct the interpolant.

In the Lanczos dynamic method, we ran Golub--Kahan bidiagonalization with full
reorthogonalization using w as the starting vector. We checked convergence at every
step, a process that requires computing the SVD of a k \times k matrix, and considered
the result converged when

\bigm\| \bigm\| p\diamond k - 1(B)w - p\diamond k(B)w
\bigm\| \bigm\|
2
< \varepsilon \| p\diamond k(B)w\| 2 .

Since the optimal (minimal) value of k needed to reach convergence cannot be known
ahead of time, we consider this a realistic way to implement this method in practice.

The Lanczos fixed method is the same as Lanczos dynamic except that it uses
the optimal k found during the Lanczos dynamic computation. Thus, the Lanczos
fixed method yielded exactly the same results as the Lanczos dynamic method but
ran more quickly, since it did not check convergence at each step.

The experiments were performed on the Mesabi Linux cluster at the Minnesota
Supercomputing Institute.3 We performed each experiment using MATLAB running
on a single compute node with two Intel Haswell E5-2680v3 processors and 64 GB of
memory.

Note that we use only odd functions f in all of our experiments. While our choices
for f are driven by the applications considered, it is reasonable to ask whether it is
worthwhile to consider even f as well. To this end, we recall from section 2.2 that
since f\diamond (B) is defined using the SVD of B, the behavior of f on the nonnegative real
axis is all that matters. Therefore, the only material difference between an odd f
and an even f is the behavior of f at the origin, as any function defined on [0,\infty)
that assumes the value 0 at the origin has an odd extension to the entire real line.
Noting that the definition of GMFs excludes contributions from zero singular values,
this means that there is effectively no such thing as an ``even GMF.""

5.2.2. Graph metrics. One of the key applications of GMFs is to communi-
cation metrics for directed graphs. In [3, 4], it is shown that f\diamond (B)w with w =\bigl[
1 1 \cdot \cdot \cdot 1

\bigr] T
and f(x) = sinh(x) can be used to obtain a vector of total hub com-

municabilities for each node in the directed graph with adjacency matrix B. The
early article [25] proposes a measure of centrality based on the matrix resolvent. This
approach is reviewed in modern linear-algebraic terms in [9], and [4] explicitly con-
nects it to GMFs. Here, the function to be applied is f\alpha (x) = \alpha x/

\bigl(
1 - (\alpha x)2

\bigr)
, where

\alpha \in (0, \sigma - 1
1), and \sigma 1 is the largest singular value of B. Again, the relevant choice for

w is the vector with all entries equal to 1.
Using the three methods (Chebyshev, Lanczos dynamic, and Lanczos fixed), we

computed f\diamond (B)w for each of these metrics for each of the test matrices in Table 1.
These matrices are adjacency matrices for a variety of directed graphs, and all of them
are publicly available as part of the SuiteSparse Matrix Collection [13].4 We used a
tolerance of \varepsilon = 10 - 5. For the resolvent-based metrics, we used values of 0.125/\sigma 1,
0.500/\sigma 1, and 0.850/\sigma 1 for \alpha , following the experiments in [4].

Figures 3--6 plot the ratios of the runtimes of each method to the runtime of the
Chebyshev method. Table 2 reports the degrees of the polynomials computed in the

3https://www.msi.umn.edu
4https://sparse.tamu.edu

https://www.msi.umn.edu
https://sparse.tamu.edu

COMPUTING GENERALIZED MATRIX FUNCTIONS 221

Table 1
Test matrices for computing graph metrics, along with their dimension m and number of

nonzero entries. (All matrices are square, m = n.)

Matrix Dimension Number of nonzeros

SNAP/soc-Slashdot0902 82,168 948,464

SNAP/amazon0302 262,111 1,234,877

SNAP/web-Stanford 281,903 2,312,497

SNAP/web-NotreDame 325,729 1,497,134

SNAP/amazon0312 400,727 3,200,440

SNAP/amazon0505 410,236 3,356,824

SNAP/amazon0601 403,394 3,387,388

SNAP/web-BerkStan 685,230 7,600,595

SNAP/web-Google 916,428 5,105,039

so
c-
S
la
sh
d
ot
0
90
2

am
az
on

03
02

w
eb
-S
ta
n
fo
rd

w
eb
-N

o
tr
eD

a
m
e

am
az
on

03
12

am
az
on

05
05

am
az
on

06
01

w
eb
-B

er
k
S
ta
n

w
eb
-G

o
og
le

0

0.5

1

1.5

re
la
ti
ve

ru
n
ti
m
e

f(x) = sinh(x)

Chebyshev
Lanczos dynamic
Lanczos fixed

Fig. 3. Plot of relative runtimes for approximating sinh\diamond (B)w using the three methods.

Chebyshev method and the number of steps taken by the Lanczos-based methods.
With a few isolated exceptions, the Lanczos-based methods generally converged more
quickly than the Chebyshev method for these examples. The reason is that the
functions sinh(x) and f\alpha (x) are largest on the largest singular values of B, and only
a few steps of the Lanczos bidiagonalization process are needed for the approximate
SVD B \approx Uk\Sigma kV

\ast
k from (12) to accurately capture the part of B associated with

these singular values.
This fact is observed in [4, section 5.4] and can be understood by considering

the extreme case where f(\sigma 1) = 1 but f(\sigma) \approx 0 for all other singular values \sigma of B.
For f\diamond (B) \approx Ukf(\Sigma k)Vk to be a good approximation in this case, the k-step Lanczos

222 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

so
c-
S
la
sh
d
ot
0
90
2

am
az
on

03
02

w
eb
-S
ta
n
fo
rd

w
eb
-N

o
tr
eD

a
m
e

am
az
on

03
12

am
az
on

05
05

am
az
on

06
01

w
eb
-B

er
k
S
ta
n

w
eb
-G

o
og
le

0

0.5

1

1.5

re
la
ti
ve

ru
n
ti
m
e

f\alpha (x) = \alpha x/
\bigl(
1 - (\alpha x)2

\bigr)
, \alpha = .125/\sigma 1

Chebyshev
Lanczos dynamic
Lanczos fixed

Fig. 4. Plot of relative runtimes for approximating f\diamond
\alpha (B)w, \alpha = .125/\sigma 1, using the three methods.

so
c-
S
la
sh
d
ot
09
02

am
az
on

03
02

w
eb
-S
ta
n
fo
rd

w
eb
-N

ot
re
D
am

e

am
az
on

03
12

am
az
on

05
05

am
az
on

06
01

w
eb
-B

er
k
S
ta
n

w
eb
-G

o
og
le

0

0.5

1

1.5

re
la
ti
ve

ru
n
ti
m
e

f\alpha (x) = \alpha x/
\bigl(
1 - (\alpha x)2

\bigr)
, \alpha = .500/\sigma 1

Chebyshev
Lanczos dynamic
Lanczos fixed

Fig. 5. Plot of relative runtimes for approximating f\diamond
\alpha (B)w, \alpha = .500/\sigma 1, using the three methods.

COMPUTING GENERALIZED MATRIX FUNCTIONS 223

so
c-
S
la
sh
d
ot
0
90
2

am
az
on

03
02

w
eb
-S
ta
n
fo
rd

w
eb
-N

o
tr
eD

a
m
e

am
az
on

03
12

am
az
on

05
05

am
az
on

06
01

w
eb
-B

er
k
S
ta
n

w
eb
-G

o
og
le

0

0.5

1

1.5
re
la
ti
ve

ru
n
ti
m
e

f\alpha (x) = \alpha x/
\bigl(
1 - (\alpha x)2

\bigr)
, \alpha = .850/\sigma 1

Chebyshev
Lanczos dynamic
Lanczos fixed

Fig. 6. Plot of relative runtimes for approximating f\diamond
\alpha (B)w, \alpha = .850/\sigma 1, using the three methods.

Table 2
Degrees of polynomial approximations used by the Chebyshev method and Lanczos step counts

for the examples in section 5.2.2. Note that for f\alpha , the fact that \alpha is scaled by \sigma 1 ensures that the
degree chosen by the Chebyshev method will not vary from matrix to matrix, as the polynomial that
gets computed in each case is exactly the same.

Matrix
sinh f\alpha , \alpha = 0.125/\sigma 1 f\alpha , \alpha = 0.005/\sigma 1 f\alpha , \alpha = 0.850/\sigma 1

Degree Steps Degree Steps Degree Steps Degree Steps

SNAP/soc-Slashdot0902 51 8 5 4 9 5 21 7

SNAP/amazon0302 21 13 5 4 9 6 21 11

SNAP/web-Stanford 93 8 5 4 9 6 21 7

SNAP/web-NotreDame 59 11 5 4 9 5 21 8

SNAP/amazon0312 33 13 5 4 9 6 21 9

SNAP/amazon0505 35 12 5 4 9 6 21 9

SNAP/amazon0601 35 13 5 4 9 6 21 9

SNAP/web-BerkStan 117 11 5 4 9 6 21 8

SNAP/web-Google 47 16 5 4 9 6 21 11

process need only produce an estimate \sigma k,1 to \sigma 1 that is good enough to guarantee
f(\sigma k,1) \approx f(\sigma 1) to within the desired tolerance. Since Lanczos approximates leading
singular values rapidly, this can usually be achieved for small k. In practice, f need
not be so extreme for this to make a difference: the function f\alpha considered above with
\alpha = 0.125/\sigma 1 is nearly linear over the relevant domain. For a function that grows
exponentially like sinh(x), the convergence can be very rapid.

Recall that the Chebyshev method requires an estimate of the leading singular

224 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

value and that we find this using the same process that underlies the Lanczos-based
methods (but without reorthogonalization). The Chebyshev method and the Lanczos-
based ones therefore all start in the same way. Because of this, it is difficult for the
Chebyshev method to beat the Lanczos-based ones in situations like the one described
in the preceding paragraph: by the time the Chebyshev method has the information
it needs to build the polynomial, the Lanczos-based ones are most of the way toward
finding the answer.5

It is instructive to consider the alternative extreme case where f(\sigma \ell) = 1, \ell > 1,
where \sigma \ell is the \ell th singular value of B, but f(\sigma) \approx 0 for all other singular values
\sigma , including \sigma = \sigma 1. Now the Lanczos-based methods will need to approximate \sigma \ell

instead of \sigma 1, and depending on how the singular values of B are distributed, this can
be (and typically is) a much more difficult task: it takes many more Lanczos steps to
approximate interior singular values than extreme ones. In contrast, the Chebyshev
method is insensitive to the singular value distribution: the polynomial approximation
is constructed to be uniformly accurate at all singular values simultaneously. It thus
stands to reason that the Chebyshev method should see greater success in applications
where the function assumes significant values on the interior singular values, and we
will see an example of this in the following section.

The Chebyshev method is notably more efficient than the Lanczos-based methods
for the hyperbolic sine function applied to the amazon0302 matrix. We suspect that
this is a consequence of the fact that the leading singular values of this matrix are more
strongly clustered than those of the other matrices. In addition to interior singular
values, the Lanczos process has difficulty isolating singular values that are clustered
together. Matrices with clustered or slowly decaying singular values therefore present
another class of problems for which the Chebyshev method may be more effective.

5.2.3. Graph wave equation. The GMF sin\diamond appears in applications involving
exponential integrators for Hamiltonian systems, such as various forms of the graph
wave equation [10, 27]. Given an undirected graph, we consider the equation

\"u(t) = - Lu(t),

where L is the graph Laplacian and u is a function on (the vertices of) the graph,
represented as a vector. Wave equations of this form may be obtained via a method-
of-lines discretization of the wave equation for a metric graph using finite differences.
If B is any (oriented) incidence matrix for the graph, then L = BBT , and if we define
\.v(t) = BTu(t), we have \biggl[

\.u(t)
\.v(t)

\biggr]
=

\biggl[
0 - B
BT 0

\biggr] \biggl[
u(t)
v(t)

\biggr]
.

Taking the matrix exponential, we are led to the solution
\biggl[
u(t)
v(t)

\biggr]
=

\biggl[
cos(t

\surd
BBT) - sin\diamond (tB)

sin\diamond (tBT) cos(t
\surd
BTB)

\biggr] \biggl[
u(0)
v(0)

\biggr]
,

5It is tempting to say that the Chebyshev method will have an advantage or disadvantage versus
the Lanczos-based methods according to whether the leading singular value estimate is done quickly
or slowly. In reality, the situation is more complicated. For instance, for the sinh function applied
to the SNAP/web-BerkStan matrix, the Chebyshev method spent only about 9\% of its total time
estimating \sigma 1, but it was still slower than the Lanczos-based methods due to the rather large value
of \sigma 1 (approximately 675) and the rapid growth of the sinh function combining to drive up the
degree of the polynomial approximation. On the other hand, for the sinh function applied to the
SNAP/amazon0302matrix, the Chebyshev method spent 95\% of its time estimating the leading singular
value but beat the Lanczos methods by 40--50\%.

COMPUTING GENERALIZED MATRIX FUNCTIONS 225

Table 3
Test matrices for integrating the graph wave equation, along with the dimensions (number of

nodes \times number of edges) of their incidence matrices.

Graph Number of nodes Number of edges

SNAP/ca-HepTh 9,877 25,998

Newman/as-22july06 22,963 48,436

Gleich/usroads-48 126,146 161,950

SNAP/as-Skitter 1,696,415 11,095,298

DIMACS10/delaunay n24 16,777,216 50,331,601

ca
-H

ep
T
h

as
-2
2j
u
ly
06

u
sr
oa
d
s-
48

as
-S
k
it
te
r

d
el
au

n
ay

n
24

1

2

3

4

5

6

7

8

9

re
la
ti
ve

ru
n
ti
m
e

f(x) = sin(x)

Chebyshev
Lanczos dynamic
Lanczos fixed

Fig. 7. Plot of relative runtimes for approximating sin\diamond (B)w using the three methods.

in which sin\diamond (tB) appears prominently. In the special case u(0) = 0, the solution is
precisely u(t) = - sin\diamond (tB)v(0).

We took five graphs whose adjacency matrices belong to the SuiteSparse collec-
tion and constructed the corresponding incidence matrices. The graphs are listed in
Table 3. Note that each incidence matrix is rectangular. We then computed approxi-

mations to sin\diamond (tB)w, w =
\bigl[
1 1 \cdot \cdot \cdot 1

\bigr] T
, t = 1, 4, using each of the three methods

with an error tolerance \varepsilon = 10 - 5.
The results are displayed in Figures 7--8, which, like Figures 3--6, display the ratio

of the runtime of each method to that of the Chebyshev method. In this experiment,
the Chebyshev method fared much better, attaining speedups over the Lanczos-based
methods by factors of approximately 9 and 17 for the SNAP/as-Skitter matrix for
t = 1 and t = 4, respectively. Speedups for the other matrices are more modest but

226 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

ca
-H

ep
T
h

as
-2
2j
u
ly
06

u
sr
oa
d
s-
48

as
-S
k
it
te
r

d
el
au

n
ay

n
24

1

3

5

7

9

11

13

15

17

re
la
ti
ve

ru
n
ti
m
e

f(x) = sin(4x)

Chebyshev
Lanczos dynamic
Lanczos fixed

Fig. 8. Plot of relative runtimes for approximating sin\diamond (4B)w using the three different methods.

still significant. The Chebyshev method is slower than the Lanczos-based methods
only for the Gleich/usroads-48 and DIMACS10/delaunay n24 matrices for t = 1,
and even then only by a marginal amount.

The reason for this success is that, unlike the functions used in the experiments
involving graph metrics, sin(x) and sin(4x) oscillate over the entire range of singular
values, so the contributions to the results stemming from the interior singular values
are significant. This drives up the degrees of the polynomial approximations needed by
each of the methods to achieve the desired error tolerance. As explained in section 5.2,
this situation favors the Chebyshev method because it scales better than the Lanczos-
based ones as the degree increases.

We finish this example by noting that once a Chebyshev interpolant is constructed,
it can be used to apply a GMF to many different vectors, e.g., if one wishes to solve
the graph wave equation for multiple initial conditions. The multiple vectors can be
blocked and processed simultaneously for greater efficiency.

It is also possible to handle multiple initial conditions with the Lanczos-based
methods; however, it is not as simple. As described, these methods must be run from
scratch for each initial condition. It is still possible to take advantage of the greater
efficiency offered by blocking the matrix-vector multiplies; however, the additional
orthogonalization costs make this an expensive proposition. Block Lanczos methods
[4, 7] offer another approach; however, their convergence characteristics are more
complicated than those of the single-vector methods, and the extra orthogonalization
costs will still be high.

COMPUTING GENERALIZED MATRIX FUNCTIONS 227

Table 4
Comparison of minimum memory requirements for the Chebyshev and Lanczos-based methods

for f(x) = sin(x). The last column shows the ratio of memory required for the Lanczos-based method
to that for the Chebyshev method.

Chebyshev Lanczos

Matrix Degree Memory Steps Memory Ratio

SNAP/ca-HepTh 19 703 KB 10 2.9 MB 4.1

Newman/as-22july06 69 1.3 MB 25 14.3 MB 10.6

Gleich/usroads-48 11 4.9 MB 6 13.8 MB 2.8

SNAP/as-Skitter 221 280 MB 88 9.0 GB 32.3

DIMACS10/delaunay n24 15 1.3 GB 7 3.6 GB 2.8

5.2.4. Memory usage. Though the Chebyshev method may not always outper-
form the Lanczos-based methods in compute time, it consistently outperforms them
in memory usage. The dominant memory cost in the Chebyshev method comes from
Clenshaw's algorithm, which in our implementation requires 3 vectors of length equal
to the number of columns of the matrix and 1 vector of length equal to the number
of rows.6 Crucially, the memory requirements for the Chebyshev method are inde-
pendent of the degree of the polynomial being applied. The Lanczos-based methods,
on the other hand, need N vectors of each size, where N is the number of Lanczos
steps. Thus, if the matrix is size m\times n, the Lanczos-based methods will require ap-
proximately N(m + n)/(m + 3n) times as much memory as the Chebyshev method,
ignoring the memory required to store the matrix itself. Thus, the ratio of memory
usage between the Lanczos-based methods and the Chebyshev method should grow
linearly with the number of Lanczos steps.

For large matrices, the difference can be substantial, even when N is small. Ta-
bles 4--5 list the amount of storage needed for the vectors in each of the experiments
involving the graph wave equation conducted in the previous section, computed using
the vector counts in the preceding paragraph and assuming the use of double precision
(8-byte) floating-point numbers. These figures are thus lower bounds on the memory
requirements for the methods. The tables also display the degree of the polynomial
computed in the Chebyshev method, the number of steps needed by the Lanczos-
based methods, and the ratio of the memory usage of the Chebyshev method to that
of the Lanczos-based methods.

In all cases, the Chebyshev method used well less than half of the memory needed
by the Lanczos-based methods. In the extreme case, the Chebyshev method beat the
Lanczos-based methods in memory usage by a factor of nearly 90 when applying
sin(4x) to the SNAP/as-Skitter matrix; that is, the Chebyshev method needed only
a little more than 1.1\% of the memory needed by the Lanczos-based methods. These
savings are clearly significant and may make the Chebyshev method worth considering
even when the Lanczos-based methods might be superior in runtime.

It is possible to improve both the memory usage and the runtime of the Lanczos-
based methods by using the one-sided variant of Lanczos bidiagonalization [29]. In
this variant, one explicitly orthogonalizes only the ``short"" Lanczos vectors in the
bidiagonalization recurrence, leaving the orthogonality of the ``long"" Lanczos vectors

6When estimating the leading singular value with Golub--Kahan bidiagonalization, we need only
two vectors---one each of length equal to each dimension---thanks to the fact that we do not need to
perform reorthogonalization.

228 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

Table 5
Comparison of minimum memory requirements for the Chebyshev and Lanczos-based methods

for f(x) = sin(4x). The last column shows the ratio of memory required for the Lanczos-based
method to that for the Chebyshev method.

Chebyshev Lanczos

Matrix Degree Memory Steps Memory Ratio

SNAP/ca-HepTh 51 703 KB 24 6.9 MB 9.8

Newman/as-22july06 229 1.3 MB 60 34.3 MB 25.4

Gleich/usroads-48 23 4.9 MB 12 27.7 MB 5.6

SNAP/as-Skitter 811 280 MB 240 24.6 GB 87.8

DIMACS10/delaunay n24 37 1.3 GB 17 9.1 GB 6.8

to be enforced implicitly. The long vectors need not be stored; they can be regenerated
on demand using the recurrence. The disadvantage of this approach is that the
orthogonality of the long vectors may not be adequately enforced if the matrix is
not sufficiently well conditioned, leading to numerical instability.

While the one-sided variant can improve the performance of the Lanczos-based
methods substantially, it is not necessarily sufficient to make them superior to the
Chebyshev method. The Lanczos-based methods will still typically use more memory
(a factor of N min(m,n)/(m+3n) more, in the notation of the first paragraph in this
subsection) than the Chebyshev method, and for large problems, the orthogonalization
costs will still often be large enough for the Chebyshev method to enjoy a substantial
advantage in terms of runtime for GMFs for which interior singular values play a
significant role.

6. Conclusions. We presented a new method for computing the action of a
generalized matrix function on a vector that is based on polynomial interpolation in
Chebyshev points. We proved, for the first time in the literature, that Clenshaw's al-
gorithm for computing the action of a polynomial function (expressed as a Chebyshev
series) of a matrix on a vector is backward stable and verified this result numerically.
We showed experimentally that our method competes with Lanczos-based methods for
working with the GMFs that arise in computing graph metrics and that our method is
a generally superior alternative to Lanczos-based methods for exponential integration
of the graph wave equation. Finally, we showed that our method is considerably more
efficient than Lanczos-based methods in memory usage, even in circumstances where
Lanczos-based methods have the advantage in compute time.

Appendix A. Proof of Theorem 4.1. Our proof of Theorem 4.1 is similar to
the one given for the backward stability of Clenshaw's algorithm in the scalar case
in [30]. Much of the analysis carries over to the vector case, with a few exceptions that
arise from the noncommutativity of matrix-matrix and matrix-vector multiplication.
This noncommutativity is the reason that Theorem 4.1 pushes the error onto both
the matrix B and the coefficients \{ \alpha 2i+1\} ki=0 instead of just the latter.

Recall from section 4 that the iterates \{ gi\} ki=0 generated by the algorithm of
Theorem 3.2 for computing p\diamond (B)w are the solution to the block-Toeplitz linear system
(9), which involves B, w, and the coefficients of p. In our proof, we will need explicit
bounds on the entries of L - 1. We can compute L - 1 explicitly using a recurrence
for the even-degree Chebyshev polynomials. Substituting i = 2i and j = 2 into the

COMPUTING GENERALIZED MATRIX FUNCTIONS 229

identity (5) gives

T2(i+1)(x) = 2T2(x)T2i(x) - T2| i - 1| (x), i \geq 0.

In Theorem 3.2, we saw that the matrix M = 2BB\ast - I can be rewritten as M =
T2(

\surd
BB\ast). Since

\surd
BB\ast is square, we can substitute it into this recurrence to obtain

(13) T2(i+1)(
\surd
BB\ast) = 2T2(

\surd
BB\ast)T2i(

\surd
BB\ast) - T2| i - 1| (

\surd
BB\ast), i \geq 0.

Now, let T be the block-Toeplitz matrix

T =

\left[

T0(
\surd
BB\ast)

T2(
\surd
BB\ast) T0(

\surd
BB\ast)

T4(
\surd
BB\ast) T2(

\surd
BB\ast) T0(

\surd
BB\ast)

...
. . .

\right]
 .

Since both L and T are block-Toeplitz and lower-triangular, the product LT is also
block-Toeplitz and lower-triangular (see, e.g., [8, Chapter 2]). Thus, to compute LT,
we need to compute only the first block column. Using (13) and the definition of L,
we can compute this explicitly:

\left[

I

 - 2T2(
\surd
BB\ast) I

I - 2T2(
\surd
BB\ast) I

. . .

\right]

\left[

T0(
\surd
BB\ast)

T2(
\surd
BB\ast)

T4(
\surd
BB\ast)
...

\right]
 =

\left[

T0(
\surd
BB\ast)

 - T2(
\surd
BB\ast)

0
...

\right]
 .

Since T0(
\surd
BB\ast) = I and T2(

\surd
BB\ast) = 2BB\ast - I = M , the product LT simplifies to

LT =

\left[

I
 - M I

 - M I
 - M I

. . .

\right]

.

Finally, since L - 1 = T(LT) - 1,

(14) L - 1 =

\left[

T0(
\surd
BB\ast)

T2(
\surd
BB\ast) T0(

\surd
BB\ast)

T4(
\surd
BB\ast) T2(

\surd
BB\ast) T0(

\surd
BB\ast)

...
. . .

\right]

\left[

I
M I
M2 M I
...

. . .

\right]
 .

In our argument, we will require the fact that matrix-vector multiplication and
vector addition are backward stable [23]. This means that for a matrix B and vectors v
and w, there exist matrices \delta B \preceq B and \delta I, | | \delta I| | 2 \leq u, such that fl(Bw) = (B+\delta B)w
and fl(v+w) = (I + \delta I)(v+w), where fl(\cdot) indicates that an operation is carried out
in floating-point arithmetic.

Since our error bounds involve block matrices, we find it convenient to introduce
some notation. Given a block matrix H,

H =

\left[

H11 H12 \cdot \cdot \cdot
H21 H22

...
. . .

\right]
 ,

230 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

with all block entries square (such as L, T, and A), we denote by | H| the block matrix

| H| =

\left[

\| H11\| 2 I \| H12\| 2 I \cdot \cdot \cdot
\| H21\| 2 I \| H22\| 2 I

...
. . .

\right]
 .

It is straightforward to show using the definition of matrix-matrix multiplication that
this operation is entrywise submultiplicative:

| L - 1A| \.\leq | L - 1| | A| ,

where \.\leq denotes entrywise inequality.
We are now ready to prove Theorem 4.1, which we do in two steps. In the first

step, we show in Lemma A.1 that there exists \delta B, as well as a block matrix \delta \widetilde L, such
that \widehat g is the exact solution of the perturbed linear system

\Bigl(
\widetilde L+ \delta \widetilde L

\Bigr)
\widehat g = A \widetilde Bw.

In the second step we rewrite the above system as

\widetilde L\widehat g =
\Bigl(
I + \delta \widetilde L\widetilde L - 1

\Bigr) - 1

A \widetilde Bw,

which when compared with (11) implies that \widetilde A = (I+ \delta \widetilde L\widetilde L - 1) - 1A. We then use this

to bound the error \delta A = \widetilde A - A.

Lemma A.1 (rounding error in Clenshaw's algorithm). Let B, w, and \{ \alpha 2i+1\} ki=0

be as in Theorem 3.2, and assume \| B\| 2 \leq 1 and u < 1. Then there exist a matrix
\widetilde B = B + \delta B, \delta B \preceq B, a constant C, and a matrix \delta \widetilde L such that

\Bigl(
\widetilde L+ \delta \widetilde L

\Bigr)
\widehat g = A \widetilde Bw

and

| \delta \widetilde L| \.\leq
\bigl(
Cu+O(u2)

\bigr)

\left[

I
I I
I I I

I I I
. . .

\right]

.

Proof. Clenshaw's algorithm begins with the computation of v = Bw. By as-
sumption, there exists \delta B \preceq B such that \^v = fl(v) = fl(Bw) = (B + \delta B)w = \widetilde Bw.

Since \widehat v is computed once and used in all subsequent iterations, the matrix \widetilde B is fixed
and has no dependence on i.

To analyze the ith step, recall that \widehat gi+1 and \widehat gi+2 are the outputs of steps i + 1
and i+ 2 in the algorithm. The vector \widehat gi is computed via

\widehat gi = fl(gi) = fl
\Bigl(
fl(\alpha 2i+1\widehat v) + fl

\bigl(
2fl(M\widehat gi+1) - \widehat gi+2

\bigr) \Bigr)
.

We begin with the innermost floating-point operation fl(M\widehat gi+1) and work outward.
The computation of \^w introduces a backward error in B. Since M is defined in

terms of B, computing fl(M\widehat gi+1) would introduce new perturbations in B, making it

COMPUTING GENERALIZED MATRIX FUNCTIONS 231

impossible to push a single error onto B. We can avoid this by redefining M in terms
of \widetilde B and then pushing any errors created by using \widetilde B onto the matrix M . Substituting
B = \widetilde B - \delta B gives M = 2(\widetilde B - \delta B)(\widetilde B - \delta B)\ast - I. Using this, we evaluate fl(M\widehat gg+1):

fl
\bigl(
M\widehat gi+1

\bigr)
= fl

\biggl(
2fl
\Bigl(
(\widetilde B - \delta B)fl

\bigl(
(\widetilde B - \delta B)\ast \widehat gi+1

\bigr) \Bigr)
 - \widehat gi+1

\biggr)
.

Replacing the floating-point operations with the appropriate perturbations gives

fl(M\widehat gi+1) = (I + \delta I)
\bigl(
2(\widetilde B - \delta B + \delta Bl)(\widetilde B - \delta B + \delta Br)

\ast \widehat gi+1 - \widehat gi+1

\bigr)
,

where \delta I \preceq I and \delta Bl, \delta Br \preceq B. Expanding the right-hand side and using the
definition of M , we have

fl(M\widehat gi+1) = (\widetilde M + \delta \widetilde M \prime
i+1)\widehat gi+1,

where \delta \widetilde M \prime
i+1 = \delta I\widetilde M +2(I + \delta I)

\bigl(
(\delta Bl - \delta B) \widetilde B\ast + \widetilde B(\delta Br - \delta B)\ast + (\delta Bl - \delta B)(\delta Br -

\delta B)\ast
\bigr)
. Since \widetilde B = B+ \delta B and \| B\| 2 \leq 1, we know that | | \widetilde M | | 2 \leq 1+4| | \delta B| | 2+O(u2),

which implies that \delta \widetilde M \prime
i+1 \preceq I.

Next, we substitute fl(M\widehat gi+1) into the definition of \widehat gi and expand the floating-
point operations using the appropriate perturbations:

\widehat gi = (I + \delta I1)
\Bigl(
\alpha 2i+1(I + \delta I2)\widehat v + (I + \delta I3)

\bigl(
2(\widetilde M + \delta \widetilde M \prime

i+1)\widehat gi+1 - \widehat gi+2

\bigr) \Bigr)
,

where | | \delta I1| | 2, | | \delta I2| | 2, | | \delta I3| | 2 \leq u. We remove all perturbations of the product \alpha 2i+1\widehat v
by taking inverses, which is possible since u < 1:

(I + \delta I2)
 - 1(I + \delta I1)

 - 1\widehat gi = \alpha 2i+1\widehat v+ (I + \delta I2)
 - 1(I + \delta I3)(2(\widetilde M + \delta \widetilde M \prime

i+1)\widehat gi+1 - \widehat gi+2).

Let \delta Ii,i = (I + \delta I2)
 - 1(I + \delta I1)

 - 1 - I and \delta Ii,i+2 = (I + \delta I2)
 - 1(I + \delta I3) - I, and

rewrite \widehat gi as follows:
(15) (I + \delta Ii,i)\widehat gi = \alpha 2i+1\widehat v + 2(\widetilde M + \delta \widetilde Mi+1)\widehat gi+1 - (I + \delta Ii,i+2)\widehat gi+2,

where \delta \widetilde Mi+1 = \delta Ii,i+2
\widetilde M + (I + \delta Ii,i+2)\delta \widetilde M \prime

i+1. It is straightforward to show that

\delta Ii,i, \delta Ii,i+2, \delta \widetilde Mi+1 \preceq I using series expansions of (I + \delta I1)
 - 1 and (I + \delta I2)

 - 1.
Now, let

\delta \widetilde L =

\left[

\delta Ik,k
 - 2\delta \widetilde Mk - 1 \delta Ik - 1,k - 1

\delta Ik - 2,k - 2\delta \widetilde Mk - 2 \delta Ik - 2,k - 2

. . .

\delta I0,2 - 2\delta \widetilde M0 \delta I0,0

\right]

.

From (15) we have

(16) (\widetilde L+ \delta \widetilde L)\widehat g = A \widetilde Bw,

and since each block entry of \delta \widetilde L is small relative to I, there is a constant C such that

| \delta \widetilde L| \.\leq
\bigl(
Cu+O(u2)

\bigr)

\left[

I
I I
I I I

I I I
. . .

\right]

.

This completes the proof.

232 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

Lemma A.1 says that the rounding errors produced when running Clenshaw's
algorithm in floating-point arithmetic result in iterates \widehat gi that satisfy a ``nearby""
linear system. The remainder of the argument consists of showing how to push this
error onto the coefficients \alpha 2i+1 when the norm of \delta \widetilde L\widetilde L - 1 is less than 1. Whether this

holds depends on the constant C from Lemma A.1 and on the norm of \widetilde L - 1, which
in turn depend on the size and sparsity of B and the degree of the polynomial p. We
experienced no stability issues in the experiments of section 5.1, which were carried
out in double precision (u \approx 10 - 16) using matrices with no more than 107 nonzeros
and polynomials formed by interpolating smooth functions.

Proof of Theorem 4.1. We can rewrite (16) as

\widetilde L\widehat g = (I + \delta \widetilde L\widetilde L - 1) - 1A \widetilde Bw.

Since \delta \widetilde L \preceq I and \| \delta \widetilde L\widetilde L - 1\| 2 < 1, we can take a first-order expansion of the inverse:

\widetilde L\widehat g =
\Bigl(
I - \delta \widetilde L\widetilde L - 1 +O(u2)

\Bigr)
A \widetilde Bw = (A+ \delta A) \widetilde Bw,

where \delta A = (- \delta \widetilde L\widetilde L - 1 +O(u2))A. We have the following upper bound on | \delta A| :

| \delta A| =
\bigm| \bigm| \bigl(- \delta \widetilde L\widetilde L - 1 +O(u2)

\bigr)
A
\bigm| \bigm| \.\leq

\Bigl(
| \delta \widetilde L| | \widetilde L - 1| +O(u2)

\Bigr)
| A| .

To bound the entries of | \delta A| , we need a bound on the entries of | \delta \widetilde L| | \widetilde L - 1| . Since \widetilde L
has the same structure as L, we can compute its entries explicitly:

| \widetilde L - 1| \.\leq

\left[

\bigm\| \bigm\| \bigm\| T0

\Bigl(\sqrt{}
\widetilde B \widetilde B\ast

\Bigr) \bigm\| \bigm\| \bigm\|
2
I

\bigm\| \bigm\| \bigm\| T2

\Bigl(\sqrt{}
\widetilde B \widetilde B\ast

\Bigr) \bigm\| \bigm\| \bigm\|
2
I
\bigm\| \bigm\| \bigm\| T0

\Bigl(\sqrt{}
\widetilde B \widetilde B\ast

\Bigr) \bigm\| \bigm\| \bigm\|
2
I

...
. . .

\right]

\left[

I

| | \widetilde M | | 2I I

| | \widetilde M | | 22I | | \widetilde M | | 2I I
...

. . .

\right]
 .

Now, since \widetilde B = B + \delta B, we know that
\bigm\| \bigm\| \bigm\|
\sqrt{}
\widetilde B \widetilde B\ast

\bigm\| \bigm\| \bigm\|
2
= \| \widetilde B\| 2 \leq 1 + \| \delta B\| 2,

and thus the largest eigenvalue of
\sqrt{}
\widetilde B \widetilde B\ast is bounded by 1 + \| \delta B\| 2. The Chebyshev

polynomials are uniformly bounded by 1 on [- 1, 1]. We can get a first-order bound
for T2i(1 + \| \delta B\| 2) by taking the Taylor expansion of T2i(x) at x = 1 and using the
fact that T \prime

2i(1) = 2i:

\bigm\| \bigm\| \bigm\| T2i

\Bigl(\sqrt{}
\widetilde B \widetilde B\ast

\Bigr) \bigm\| \bigm\| \bigm\|
2
\leq 1 + 2i \| \delta B\| 2 +O(u2).

Furthermore, from the proof of Lemma A.1 we know that | | \widetilde M | | 2 \leq 1+4| | \delta B| | 2+O(u2),

which implies | | \widetilde M | | i2 \leq 1 + 4i| | \delta B| | 2 + O(u2). Hence, there exists a constant C such
that

| \widetilde L - 1| \.\leq
\bigl(
C +O(u)

\bigr)
\left[

I
I I
...

. . .

\right]

\left[

I
I I
...

. . .

\right]
 =

\bigl(
C +O(u)

\bigr)

\left[

I
2I I
3I 2I I
...

. . .

\right]
 .

COMPUTING GENERALIZED MATRIX FUNCTIONS 233

By Lemma A.1, there exists a constant C \prime such that

| \delta \widetilde L| \.\leq
\bigl(
C \prime u+O(u2)

\bigr)

\left[

I
I I
I I I

I I I
. . .

\right]

,

and combining this with the bound on | \widetilde L - 1| gives

| \delta \widetilde L| | \widetilde L - 1| \.\leq
\bigl(
CC \prime u+O(u2)

\bigr)

\left[

I
I I
I I I

I I I
. . .

\right]

\left[

I
2I I
3I 2I I
...

. . .

\right]

\.\leq
\bigl(
3CC \prime u+O(u2)

\bigr)

\left[

I
2I I
3I 2I I
4I 3I 2I I
...

. . .

\right]

.

This, together with the bound | \delta A| \.\leq
\bigl(
| \delta \widetilde L| | \widetilde L - 1| +O(u2)

\bigr)
| A| , implies that

\delta A2i+1 \preceq
k\sum

j=i

| j - i+ 1| | \alpha 2j+1| , i = 0, . . . , k,

completing the proof.

Acknowledgments. We thank F. Arrigo and C. Fenu for providing their code
for use as a reference in developing our numerical experiments and Yousef Saad for
his inspiration and insightful comments throughout this project. We also thank the
Minnesota Supercomputing Institute at the University of Minnesota for providing
resources that contributed to the experimental results reported within this paper.
Finally, we thank the anonymous referees, whose feedback led us to greatly improve
our work in content as well as style.

REFERENCES

[1] F. Andersson, M. Carlsson, and K.-M. Perfekt, Operator-Lipschitz estimates for the
singular value functional calculus, Proc. Amer. Math. Soc., 144 (2016), pp. 1867--1875,
https://doi.org/10.1090/proc/12843.

[2] F. Andersson, M. Carlsson, J.-Y. Tourneret, and H. Wendt, A new frequency estimation
method for equally and unequally spaced data, IEEE Trans. Signal Process., 62 (2014),
pp. 5761--5774, https://doi.org/10.1109/TSP.2014.2358961.

[3] F. Arrigo and M. Benzi, Edge modification criteria for enhancing the communicability of
digraphs, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 443--468, https://doi.org/10.1137/
15M1034131.

[4] F. Arrigo, M. Benzi, and C. Fenu, Computation of generalized matrix functions, SIAM J.
Matrix Anal. Appl., 37 (2016), pp. 836--860, https://doi.org/10.1137/15M1049634.

[5] J. L. Aurentz, GPU Accelerated Polynomial Spectral Transformation Methods, Ph.D. thesis,
Washington State University, 2014, https://doi.org/2376/5177.

https://doi.org/10.1090/proc/12843
https://doi.org/10.1109/TSP.2014.2358961
https://doi.org/10.1137/15M1034131
https://doi.org/10.1137/15M1034131
https://doi.org/10.1137/15M1049634
https://doi.org/2376/5177

234 J. L. AURENTZ, A. P. AUSTIN, M. BENZI, AND V. KALANTZIS

[6] J. L. Aurentz, V. Kalantzis, and Y. Saad, Cucheb: A GPU implementation of the filtered
Lanczos procedure, Comput. Phys. Commun., 220 (2017), pp. 332--340, https://doi.org/10.
1016/j.cpc.2017.06.016.

[7] J. Baglama and L. Reichel, Restarted block Lanczos bidiagonalization methods, Numer. Al-
gorithms, 43 (2006), pp. 251--272, https://doi.org/10.1007/s11075-006-9057-z.

[8] M. Benzi, D. A. Bini, D. Kressner, H. Munthe-Kaas, and C. Van Loan, Exploiting Hid-
den Structure in Matrix Computations: Algorithms and Applications, Lecture Notes in
Math. 2173, Springer, New York, 2016.

[9] M. Benzi, E. Estrada, and C. Klymko, Ranking hubs and authorities using matrix functions,
Linear Algebra Appl., 438 (2013), pp. 2447--2474, https://doi.org/10.1016/j.laa.2012.10.
022.

[10] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, AMS, Providence, RI,
2013.

[11] C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Comp., 9 (1955),
pp. 118--120, https://doi.org/10.1090/S0025-5718-1955-0071856-0.

[12] J. J. Crofts, E. Estrada, D. J. Higham, and A. Taylor, Mapping directed networks, Elec-
tron. Trans. Numer. Anal., 37 (2010), pp. 337--350.

[13] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.
Soft., 38 (2011), pp. 1:1--1:25, https://doi.org/10.1145/2049662.2049663.

[14] N. Del Buono, L. Lopez, and R. Peluso, Computation of the exponential of large sparse
skew-symmetric matrices, SIAM J. Sci. Comput., 27 (2005), pp. 278--293, https://doi.org/
10.1137/030600758.

[15] N. Del Buono, L. Lopez, and T. Politi, Computation of functions of Hamiltonian and
skew-symmetric matrices, Math. Comput. Simulation, 79 (2008), pp. 1284--1297, https:
//doi.org/10.1016/j.matcom.2008.03.011.

[16] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., Chebfun Guide, Pafnuty Publications,
Oxford, 2014.

[17] V. L. Druskin and L. A. Knizhnerman, Two polynomial methods of calculating functions of
symmetric matrices, U.S.S.R. Comput. Math. and Math. Phys., 29 (1989), pp. 112--121,
https://doi.org/10.1016/S0041-5553(89)80020-5.

[18] H.-R. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue
problems, SIAM J. Sci. Comput., 34 (2012), pp. A2220--A2246, https://doi.org/10.1137/
110836535.

[19] F. R. Gantmacher, The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence,
RI, 2000.

[20] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University
Press, Baltimore, MD, 2013.

[21] M. Hanke, J. Nagy, and R. Plemmons, Preconditioned iterative regularization for ill-posed
problems, in Numerical Linear Algebra: Proceedings of the Conference in Numerical Linear
Algebra and Scientific Computation (Kent, OH, 1992), L. Reichel, A. Ruttan, and R. S.
Varga, eds., de Gruyter, Berlin, 1993, pp. 141--163.

[22] J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear Multilinear Alge-
bra, 1 (1973), pp. 163--171, https://doi.org/10.1080/03081087308817015.

[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002, https://doi.org/10.1137/1.9780898718027.

[24] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008,
https://doi.org/10.1137/1.9780898717778.

[25] L. Katz, A new status index derived from sociometric analysis, Psychometrika, 18 (1953),
pp. 39--43, https://doi.org/10.1007/BF02289026.

[26] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, FL,
2003.

[27] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014.
[28] V. Noferini, A formula for the Fr\'echet derivative of a generalized matrix function, SIAM J.

Matrix Anal. Appl., 38 (2017), pp. 434--457, https://doi.org/10.1137/16m1072851.
[29] H. D. Simon and H. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization

process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257--2274, https://doi.
org/10.1137/s1064827597327309.

[30] A. Smoktunowicz, Backward stability of Clenshaw's algorithm, BIT, 42 (2002), pp. 600--610,
https://doi.org/10.1023/A:1022001931526.

[31] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
2013.

[32] Y. Zhou and R.-C. Li, Bounding the spectrum of large Hermitian matrices, Linear Algebra
Appl., 435 (2011), pp. 480--493, https://doi.org/10.1016/j.laa.2010.06.034.

https://doi.org/10.1016/j.cpc.2017.06.016
https://doi.org/10.1016/j.cpc.2017.06.016
https://doi.org/10.1007/s11075-006-9057-z
https://doi.org/10.1016/j.laa.2012.10.022
https://doi.org/10.1016/j.laa.2012.10.022
https://doi.org/10.1090/S0025-5718-1955-0071856-0
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/030600758
https://doi.org/10.1137/030600758
https://doi.org/10.1016/j.matcom.2008.03.011
https://doi.org/10.1016/j.matcom.2008.03.011
https://doi.org/10.1016/S0041-5553(89)80020-5
https://doi.org/10.1137/110836535
https://doi.org/10.1137/110836535
https://doi.org/10.1080/03081087308817015
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1007/BF02289026
https://doi.org/10.1137/16m1072851
https://doi.org/10.1137/s1064827597327309
https://doi.org/10.1137/s1064827597327309
https://doi.org/10.1023/A:1022001931526
https://doi.org/10.1016/j.laa.2010.06.034

	Introduction
	Functions of matrices
	Standard matrix functions
	Generalized matrix functions

	Computing generalized matrix functions
	Chebyshev interpolation
	Clenshaw's algorithm
	Scaling
	Summary of algorithm

	Backward stability
	Numerical experiments
	Backward stability
	Comparison with Lanczos-based methods
	Experimental setup
	Graph metrics
	Graph wave equation
	Memory usage

	Conclusions
	Appendix A. Proof of Theorem 4.1
	Acknowledgments
	References

