Ch 6: Eigenvalues

6.7 Positive Definite Matrices

1. Recall that a symmetric matrix A can be

 (a) \textit{positive definite} if $\mathbf{x}^T A \mathbf{x} > 0$, $\forall \mathbf{x} \in \mathbb{R}^n$, i.e. its eigenvalues are all positive

 (b) \textit{negative definite} if $\mathbf{x}^T A \mathbf{x} < 0$, $\forall \mathbf{x} \in \mathbb{R}^n$, i.e. its eigenvalues are all negative

2. \textit{the leading principal submatrix} A_r $(1 \leq r \leq n)$ is the matrix obtained from the first r rows and r columns of a symmetric matrix A

3. \textit{the leading principal minor} is $\det A_r$ $(1 \leq r \leq n)$

4. if A is a positive definite \implies

 (a) $\det A > 0$ (because $\lambda_i > 0$)

 (b) A is nonsingular (because $\lambda_i > 0$)

5. A is a symmetric positive definite \iff at least one of the following holds true

 (a) its eigenvalues are all positive

 (b) the leading principal submatrices A_1, A_2, \ldots, A_n have positive determinants

 (c) A has an L-U factorization: A can be reduced to an upper triangular matrix U

 using only the 3^{rd} row operation and the pivot elements are all positive

 (d) A has a Cholesky Decomposition: if A is symmetric positive definite matrix, then

 $$A = L_1 L_1^T,$$

 where $L_1 = LD^{1/2}$ is a lower diagonal matrix with positive diagonal elements

 (Cholesky Decomposition is used in solving infinite recurrences)

 That is: U can be factored as $U = DU_1$, where

 D is a diagonal matrix whose entries are the diagonal entries of U, and

 U_1 is an upper triangular one.

 This gives the factorization of A as $A = LDL^T$, where

 L is the lower triangular matrix obtained from the LU-factorization, and

 D is a diagonal matrix whose entries are the diagonal entries of U.

 (e) A can be factored as $B^T B$ for some nonsingular matrix B

6. A is \textit{negative definite} $\iff -A$ is positive definite.

7. Since $\det A = \prod \lambda_i$ and all $\lambda_i < 0$ for a negative definite matrix, it follows that:

 A is negative definite \iff leading principal minors (i.e. the $\det A_r$) alternate in signs.