(a) Straight forward computations

(b) We have \(u_1 = \left(\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, -\frac{1}{3} \right)^T \), \(u_2 = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right)^T \), and \(u_3 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)^T \). Let \(x = (1, 1, 1)^T \). Write \(x \) as a linear combination of \(u_1, u_2, \) and \(u_3 \), and use Parseval’s formula to compute \(||x|| \).

Solution: We know from part (a) that \([u_1, u_2, u_3]\) is an orthonormal basis for \(\mathbb{R}^3 \). By Theorem 5.5.2, we know that

\[
x = (x^T u_1) u_1 + (x^T u_2) u_2 + (x^T u_3) u_3
\]

\[
= -\frac{2}{3\sqrt{2}} u_1 + \frac{5}{3} u_2 + 0 u_3
\]

\[
= -\frac{2}{3\sqrt{2}} u_1 + \frac{5}{3} u_2
\]

By Parseval’s formula, \(||x|| = \left(\frac{4}{18} + \frac{25}{9} \right)^{1/2} = \sqrt{3} \).

5.5.3 We are given \(S \), the subspace spanned by \(u_2 \) and \(u_3 \) of the preceding exercise, and \(x = (1, 2, 2)^T \). We are to find the projection \(p \) of \(x \) onto \(S \), and to verify that \(p - x \in S^\perp \).

Solution: The projection is

\[
p = (x^T u_2) u_2 + (x^T u_3) u_3
\]

\[
= \frac{8}{3} u_2 - \frac{1}{\sqrt{2}} u_3
\]

\[
= \left(\frac{23}{18}, \frac{41}{18}, \frac{8}{9} \right)^T
\]

So \(p - x = \left(\frac{5}{18}, \frac{5}{18}, -\frac{10}{9} \right)^T \). It is easy to show that \(p - x \in S^\perp \), by showing that it is orthogonal to each of \(u_2, u_3 \).

Note: A close look at the computation by which the projection was obtained is consistent with the observation (Corollary 5.5.9) that the projection operator is \(U U^T \), where \(U \) in this case is the matrix whose columns are \(u_1 \) and \(u_2 \).

5.5.5 Let \(u_1 \) and \(u_2 \) form an orthonormal basis for \(\mathbb{R}^2 \), and let \(u \) be a unit vector in \(\mathbb{R}^2 \). If \(u^T u_1 = \frac{1}{2} \), determine the value of \(|u^T u_2| \).

Solution: Since \(u \) is a unit vector, and since \(u_1 \) and \(u_2 \) form an orthonormal basis for \(\mathbb{R}^2 \), then by Parseval’s formula we know that \((u^T u_1)^2 + (u^T u_2)^2 = 1 \). Given \(u^T u_1 = \frac{1}{2} \), it follows that \((u^T u_2)^2 = \frac{3}{4} \), so \(|u^T u_2| = \frac{\sqrt{3}}{2} \).
5.5.6 Let \(\{u_1, u_2, u_3\} \) be an orthonormal basis for an inner product space \(V \), and let
\[
u = u_1 + 2u_2 + 2u_3 \quad \text{and} \quad v = u_1 + 7u_3.
\]

Determine the value of each of the following:

(a) \(\langle u, v \rangle \)
(b) \(||u|| \) and \(||v|| \)
(c) The angle \(\theta \) between \(u \) and \(v \).

Solution:

(a) By Corollary 5.5.3, \(\langle u, v \rangle = 1 + 0 + 14 = 15 \).
(b) By Parseval’s formula, \(||u|| = (1 + 4 + 4)^{1/2} = 3 \), and \(||v|| = (1 + 0 + 49)^{1/2} = 5\sqrt{2} \).
(c) Using our results from (a) and (b), we have
\[
\theta = \arccos \frac{15}{15\sqrt{2}} = \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{4}.
\]

5.5.14 Let \(u \) be a unit vector in \(\mathbb{R}^n \), and let \(H = I - 2uu^T \). Show that \(H \) is both orthogonal and symmetric and hence is its own inverse.

Proof: The symmetry of \(H \) follows from the symmetry of \(I \) and the symmetry of \(uu^T \), i.e., \((uu^T)^T = u^T T u^T = uu^T \), along with the fact that the sum of symmetric matrices is symmetric:
\[
H^T = (I - 2uu^T)^T = I^T - 2u^T T u^T = I - 2uu^T + H.
\]

To show that \(H \) is orthogonal, we show that \(H^TH = I \):
\[
H^TH = ((I - 2uu^T)^T) (I - 2uu^T)
= I^T I - 4uu^T + 4uu^T uu^T
= I^2 - 4uu^T + 4u (u^T u) u^T
= I - 4uu^T + 4uu^T
= I.
\]

But if \(H \) is both orthogonal and symmetric, then \(H^{-1} = H^T = H \). \(\square \)
5.5.21. (b.ii) Let \(A = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \).

Solve the least squares problem \(Ax = b \) for \(b = (1, 2, 3, 4)^T \).

Solution: Since the columns of \(A \) constitute an orthonormal set, it follows that \(A^T A = I \), and the normal equations reduce to

\[
\hat{x} = A^T b = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -1/2 & -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}.
\]