5.3.1 Find least-squares solutions:

(a) \[
\begin{align*}
 x_1 + x_2 &= 3 \\
 2x_1 - 3x_2 &= 1 \\
 0x_1 + 0x_2 &= 2
\end{align*}
\]

Solution: We are trying to solve \(A\hat{x} = b \), where \(A = \begin{bmatrix} 1 & 1 \\ 2 & -3 \\ 0 & 0 \end{bmatrix} \) and \(b = (3, 1, 2)^T \). Clearly \(b \notin R(A) \). So we use the normal equation, \(A^T A \hat{x} = A^T b \), which becomes
\[
\begin{bmatrix} 5 & -5 \\ -5 & 10 \end{bmatrix} \hat{x} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}.
\]
The solution (unique, since \(A \) has rank 2) is \(\hat{x} = (2, 1)^T \).

(c) \[
\begin{align*}
 x_1 + x_2 + x_3 &= 4 \\
 -x_1 + x_2 + x_3 &= 0 \\
 -x_2 + x_3 &= 1 \\
 x_1 + x_3 &= 2
\end{align*}
\]

Solution: The matrix equation is
\[
\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix} x = \begin{bmatrix} 4 \\ 0 \\ 1 \\ 2 \end{bmatrix},
\]
which is inconsistent. The normal equations lead to the matrix equation,
\[
\begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix} \hat{x} = \begin{bmatrix} 6 \\ 3 \\ 7 \end{bmatrix},
\]
so the solution is \(\hat{x} = (1.6, 0.6, 1.2)^T \).
5.3.2 For each solution \hat{x} in exercise 5.3.1,

1. Determine $p = A\hat{x}$.
2. Calculate $r(\hat{x})$.
3. Verify that $r(\hat{x}) \in N(A^T)$.

For item (c) in 5.3.1, we have

$$p = A\hat{x} = \begin{bmatrix}
1 & 1 & 1 \\
-1 & 1 & 1 \\
0 & -1 & 1 \\
1 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1.6 \\
0.6 \\
1.2
\end{bmatrix} = \begin{bmatrix}
3.4 \\
0.2 \\
0.6 \\
2.8
\end{bmatrix}, \text{ so } r(\hat{x}) = \begin{bmatrix}
0.6 \\
-0.2 \\
0.4 \\
-0.8
\end{bmatrix}.$$

We easily verify that

$$A^T r(\hat{x}) = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \begin{bmatrix}
0.6 \\
-0.2 \\
0.4 \\
-0.8
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}.$$

5.3.3a Find all least squares solutions to $Ax = b$, where $A = \begin{bmatrix}
1 & 2 & 2 \\
2 & 4 & -1 \\
-1 & 4 & -2
\end{bmatrix}$ and $b = (3, 2, 1)^T$.

Solution: First note that the columns of A are linearly dependent, so A (and hence $A^T A$) has a nontrivial nullspace and we anticipate multiple solutions. Solving

$$\begin{bmatrix}
6 & 12 \\
12 & 24
\end{bmatrix} \hat{x} = \begin{bmatrix}
6 \\
12
\end{bmatrix},$$

we find that all solutions have the form $x_2 = s$ and $x_1 = 1 - 2s$. That is,

$$\hat{x} = \begin{bmatrix}
1 - 2s \\
s
\end{bmatrix} = \begin{bmatrix}
1 \\
0
\end{bmatrix} + s \begin{bmatrix}
-2 \\
1
\end{bmatrix}.$$

Note that $s \begin{bmatrix}
-2 \\
1
\end{bmatrix} \in N(A)$ since $s \begin{bmatrix}
-2 \\
1
\end{bmatrix}$ is orthogonal to each row of A, i.e. orthogonal to $RS(A)$

5.3.4a For the system in Exercise 3, we want the projection p of b onto $R(A)$, and the verification that $b - p$ is orthogonal to each of the columns of A.

Solution: Continuing with the previous problem, the projection is

$$p = A \left(\begin{bmatrix}
1 \\
0
\end{bmatrix} + s \begin{bmatrix}
-2 \\
1
\end{bmatrix} \right) = A \begin{bmatrix}
1 \\
0
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
-1
\end{bmatrix}.$$
The second equality above is true since \(s \left[\begin{array}{c} -2 \\ 1 \end{array} \right] \in N(A) \).

It follows that \(b - p = (2, 0, 2)^T \), clearly orthogonal to the columns of \(A \) (which you can verify by taking the dot product).

5.3.5a Find the best least-squares fit by a linear function to the given data:

\[
\begin{array}{c|ccc|c}
\hline
x & -1 & 0 & 1 & 2 \\
y & 0 & 1 & 3 & 9 \\
\hline
\end{array}
\]

Solution: We are assuming that \(y = mx + b \), where \(m \) and \(b \) are the unknowns. Under this assumption, we have a system of equations,

\[
\begin{align*}
0 &= -m + b \\
1 &= b \\
3 &= m + b \\
9 &= 2m + b,
\end{align*}
\]

and the corresponding matrix equation is

\[
\begin{bmatrix}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
m \\
b
\end{bmatrix}
=
\begin{bmatrix}
0 \\
1 \\
3 \\
9
\end{bmatrix}.
\]

The normal equations become

\[
\begin{bmatrix}
6 & 2 \\
2 & 4
\end{bmatrix}
\begin{bmatrix}
m \\
b
\end{bmatrix}
=
\begin{bmatrix}
21 \\
13
\end{bmatrix}.
\]

The solution: \(m = 2.9, b = 1.8 \), and so the function is \(y = 2.9x + 1.8 \).

5.3.6 Repeat problem 5.4.5a, but this time fit a quadratic polynomial to the data.

Solution: We now assume that \(p(x) = ax^2 + bx + c \), where the coefficients are unknown. This leads to the equations,

\[
\begin{align*}
p(-1) &= a - b + c = 0 \\
p(0) &= c = 1 \\
p(1) &= a + b + c = 3 \\
p(2) &= 4a + 2b + c = 9.
\end{align*}
\]

The corresponding (and inconsistent) matrix equation is

\[
\begin{bmatrix}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{bmatrix}
\begin{bmatrix}
c \\
b \\
a
\end{bmatrix}
=
\begin{bmatrix}
0 \\
1 \\
3 \\
9
\end{bmatrix}.
\]
The normal equations become

\[
\begin{bmatrix}
4 & 2 & 6 \\
2 & 6 & 8 \\
6 & 8 & 18
\end{bmatrix}
\begin{bmatrix}
c \\
b \\
a
\end{bmatrix}
=
\begin{bmatrix}
13 \\
21 \\
39
\end{bmatrix}.
\]

After elimination, we use back-substitution to find \(a = 1.25 \), \(b = 1.65 \), and \(c = 0.55 \), so \(p(x) = 1.25x^2 + 1.65x + 0.55 \).

5.3.9 Let \(A \) be an \(m \times n \) matrix of rank \(n \), and let \(P = A(A^TA)^{-1}A^T \).

(a) Show that \(Pb = b \) for every \(b \in R(A) \).

Proof: Let \(b \in R(A) \). Then \(b = Ax \) for some \(x \in \mathbb{R}^n \). It follows that

\[
Pb = A(A^TA)^{-1}A^Tb = A(A^TA)^{-1}A^T(Ax) = A(A^TA)^{-1}(A^TA)x = Ax = b,
\]

which is what we needed to show.

(b) If \(b \in R(A)^\perp \), show that \(Pb = 0 \).

Proof: Let \(b \in R(A)^\perp \), then \(b \in N(A^T) \) and so \(A^Tb = 0 \). Now, when we multiply \(Pb = (A(A^TA)^{-1}A^T)b = A(A^TA)^{-1}(A^Tb) = A(A^TA)^{-1}0 = 0 \), as desired.

(c) Give a geometric illustration of parts (a) and (b) if \(R(A) \) is a plane through the origin in \(\mathbb{R}^3 \).

Solution: Intuitively, think of \(P \) as the projection matrix onto \(R(A) \). So given any vector \(v \), then \(Pv \) gives the projection of \(v \) onto \(R(A) \). In particular, part (a) says that the projection of \(b \in R(A) \) onto \(R(A) \) must be \(b \) itself. Part (b) says that if \(b \in R(A)^\perp \), then the projection of \(b \) on \(R(A) \) is the zero vector.

\[
\begin{align*}
(\text{a}) & \quad \overrightarrow{b} \in R(A) \\
(\text{b}) & \quad \overrightarrow{b} \perp R(A)
\end{align*}
\]