6.4 Hermitian Matrices

We consider matrices with complex entries \((a_{i,j} \in \mathbb{C}) \) versus real entries \((a_{i,j} \in \mathbb{R}) \).

1. in \(\mathbb{R} \) the length of a real number \(x \) is \(|x| = \text{the length from the origin to the number} \) (either in the positive or the negative direction).

2. in \(\mathbb{C} \) the length of a complex number \(z = a + bi \) is \(|z| = \sqrt{a^2 + b^2} = \text{the length of the vector } [a, b] \) (from the origin to the point \((a, b) \)). Also \(z^2 = a^2 + b^2 \).

3. in \(\mathbb{C} \) the scalars are complex numbers \(z \), addition of complex numbers: \((a + bi) + (c + di) = (a + c) + (b + d)i \) and product of complex numbers: \((a + bi)(c + di) = (ac - bd) + (ad + bc)i \), and \(\mathbb{C} \) with + and \(\cdot \) is a vector space.

4. Particularly \(\mathbb{C} \) is a normed vector space with the vectors \(z = (z_1, z_2, \ldots, z_n)^T \), and the norm \(|z| = \sqrt{(\bar{z}^T z)} = \sqrt{z_1 \bar{z}_1 + z_2 \bar{z}_2 + \ldots + z_n \bar{z}_n} \), which is the square root of the inner product, thus a real number. Here \(\bar{z} = (\bar{z}_1, \bar{z}_2, \ldots, \bar{z}_n)^T \) is the conjugate of \(z \). We denote by \(z^H = \bar{z}^T \), and so \(\|z\| = \sqrt{z^H z} \).

5. the inner product of \(z \) and \(w \) is the complex number \(\langle z, w \rangle = w^H z \).

6. if \(z \) is a vector in the complex vector space with the orthonormal basis \(\{w_1, w_2, \ldots, w_n\} \), then we can write \(z \) as a linear combination of the vector basis as \(z = \sum_{i=1}^n \langle z, w_i \rangle w_i \) (see Exercise 2 of Homework)

7. if \(A \) is a matrix in \(\mathbb{C}^{n \times n} \), then \(A^H \) is the matrix whose every entry is the conjugate of the corresponding entry of \(A \).

For example, if \(A = \begin{bmatrix} 2 - i & 1 & -2i \\ 5i & 0 & 5 - i \\ 0 & 5 & -5i \end{bmatrix} \) then \(A^H = \begin{bmatrix} 2 + i & 1 & +2i \\ -5i & 0 & 5 + i \\ 0 & 5 & 5i \end{bmatrix} \).

8. vectors in \(\mathbb{R}^n \) versus in \(\mathbb{C}^n \) and matrices in \(\mathbb{R}^{n \times n} \) versus in \(\mathbb{C}^{n \times n} \):

\[
\begin{array}{|c|c|c|}
\hline
\mathbb{R}^n & \mathbb{C}^n & \\
\hline
\langle x, y \rangle = y^T x & \langle z, w \rangle = w^H z & \\
\langle x, x \rangle \geq 0 \text{ with equality iff } x = 0 & \langle z, z \rangle \geq 0 \text{ with equality iff } z = 0 & \\
\langle x, y \rangle = \langle y, x \rangle & \langle z, w \rangle = \langle w, z \rangle & \\
\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle & \langle \alpha z + \beta u, w \rangle = \alpha \langle z, w \rangle + \beta \langle u, w \rangle & \\
\|x\|^2 = \langle x, x \rangle = x^T x & \|z\|^2 = \langle z, z \rangle = z^H z & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
\mathbb{R}^{n \times n} & \mathbb{C}^{n \times n} & \\
\hline
(A^T)^T = A & (A^H)^H = A & \\
(\alpha A + \beta B)^T = \alpha A^T + \beta B^T (\alpha, \beta \in \mathbb{R}) & (\alpha A + \beta B)^H = \bar{\alpha} A^H + \bar{\beta} B^H (\alpha, \beta \in \mathbb{C}) & \\
(AB)^T = B^T A^T & (AB)^H = B^H A^H & \\
\text{if } A^T = A \iff A \text{ is symmetric} & \text{if } A^H = A \iff A \text{ is Hermitian} & \\
\hline
\end{array}
\]
9. A matrix A is a **Hermitian matrix** if $A^H = A$ (they are ideal matrices in \mathbb{C} since properties that one would expect for matrices will probably hold).

For example $A = \begin{bmatrix} 1 & 2 - i \\ 2 + i & 0 \end{bmatrix}$ is Hermitian since $\bar{A} = \begin{bmatrix} 1 & 2 + i \\ 2 - i & 0 \end{bmatrix}$ and so $A^H = A^T = \begin{bmatrix} 1 & 2 - i \\ 2 + i & 0 \end{bmatrix} = A$.

10. if A is Hermitian, then A is symmetric. However the converse fails, and here is a counterexample: $A = \begin{bmatrix} 1 & 2 - i \\ 2 - i & 0 \end{bmatrix}$. However if $A \in \mathbb{R}^{n \times n}$ is symmetric, then it is Hermitian.

<table>
<thead>
<tr>
<th>Symmetric and orthogonal matrices in $\mathbb{R}^{n \times n}$</th>
<th>Hermitian and unitary matrices in $\mathbb{C}^{n \times n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defn: if $A^T = A \iff A$ is symmetric</td>
<td>Defn: if $A^H = A \iff A$ is Hermitian</td>
</tr>
<tr>
<td>A symmetric $\implies A$ is a square matrix</td>
<td>A Hermitian $\implies A$ is a square matrix</td>
</tr>
<tr>
<td>A symmetric $\implies \lambda_i \in \mathbb{R}, \forall i$</td>
<td>A Hermitian $\implies \lambda_i \in \mathbb{R}, \forall i$</td>
</tr>
<tr>
<td>A symmetric \implies eigenvectors belonging to distinct eigenvalues are orthogonal</td>
<td>A Hermitian \implies eigenvectors belonging to distinct eigenvalues are orthogonal</td>
</tr>
<tr>
<td>Q is orthogonal if its column vectors form an orthonormal set (i.e. $Q^TQ = I = QQ^T$)</td>
<td>U is unitary if its column vectors form an orthonormal set (i.e. $U^HU = I = UU^H$)</td>
</tr>
<tr>
<td>Q is orthogonal $\implies Q^{-1} = Q^T$</td>
<td>U is unitary $\implies U^{-1} = U^H$</td>
</tr>
</tbody>
</table>

11. These three give the last row in the table above:

 (a) if the eigenvalues of an Hermitian matrix A are all distinct, then $\exists U$ that is unitary and it diagonalizes A. In this case U has as columns the normalized eigenvectors of A

 (b) Schur’s Theorem: If A is $n \times n$, then $\exists U$ a unitary matrix such that $T = U^H A U$ is upper triangular matrix.

 (c) Spectral Theorem: If A is Hermitian, then $\exists U$ a unitary matrix such that $U^H A U$ is a diagonal matrix.

 Note that if some eigenvalue λ_j has algebraic multiplicity ≥ 2, then the eigenvectors corresponding to λ_j are not orthonormal, and so we use Gram-Schmidt to normalize them (we use Gram Schmidt for each set of eigenvectors that correspond to each repeated eigenvalue)
\[\langle x, y \rangle = y^T x \]
\[\langle x, x \rangle \geq 0 \text{ with equality iff } x = 0 \]
\[\langle x, y \rangle = \langle y, x \rangle \]
\[\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \]
\[||x||^2 = \langle x, x \rangle = x^T x \]
\[\langle z, w \rangle = w^H z \]
\[||z||^2 = \langle z, z \rangle = z^H z \]

<table>
<thead>
<tr>
<th>(\mathbb{R}^n)</th>
<th>(\mathbb{C}^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle x, y \rangle = y^T x)</td>
<td>(\langle z, w \rangle = w^H z)</td>
</tr>
<tr>
<td>(\langle x, x \rangle \geq 0) with equality iff (x = 0)</td>
<td>(\langle z, z \rangle \geq 0) with equality iff (z = 0)</td>
</tr>
<tr>
<td>(\langle x, y \rangle = \langle y, x \rangle)</td>
<td>(\langle z, w \rangle = \overline{\langle w, z \rangle})</td>
</tr>
<tr>
<td>(\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle)</td>
<td>(\langle \alpha z + \beta u, w \rangle = \alpha \langle z, w \rangle + \beta \langle u, w \rangle)</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\mathbb{R}^{n \times n})</th>
<th>(\mathbb{C}^{n \times n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A^T)^T = A)</td>
<td>((A^H)^H = A)</td>
</tr>
<tr>
<td>((\alpha A + \beta B)^T = \alpha A^T + \beta B^T (\alpha, \beta \in \mathbb{R}))</td>
<td>((\alpha A + \beta B)^H = \overline{\alpha A^H} + \overline{\beta B^H} (\alpha, \beta \in \mathbb{C}))</td>
</tr>
<tr>
<td>((AB)^T = B^T A^T)</td>
<td>((AB)^H = B^H A^H)</td>
</tr>
<tr>
<td>if (A^T = A \iff A = \text{symmetric})</td>
<td>if (A^H = A \iff A = \text{Hermitian})</td>
</tr>
</tbody>
</table>

Symmetric and orthogonal matrices in \(\mathbb{R}^{n \times n} \)

- Defn: if \(A^T = A \iff A = \text{symmetric} \)
- \(A = \text{symmetric} \implies A \) is a square matrix
- \(A = \text{symmetric} \implies \lambda_i \in \mathbb{R}, \forall i \)
- \(A = \text{symmetric} \implies \) eigenvectors belonging to distinct eigenvalues are orthogonal
- \(Q \) is orthogonal if its column vectors form an orthonormal set
 (i.e. \(Q^T Q = I = Q Q^T \))
- \(Q \) is orthogonal \(\iff Q^{-1} = Q^T \)

Hermitian and unitary matrices in \(\mathbb{C}^{n \times n} \)

- Defn: if \(A^H = A \iff A = \text{Hermitian} \)
- \(A = \text{Hermitian} \implies A \) is a square matrix
- \(A = \text{Hermitian} \implies \lambda_i \in \mathbb{R}, \forall i \)
- \(A = \text{Hermitian} \implies \) eigenvectors belonging to distinct eigenvalues are orthogonal
 (see #5 page 353)
- \(U \) is unitary if its column vectors form an orthonormal set
 (i.e. \(U^H U = I = U U^H \))
- \(U \) is unitary \(\iff U^{-1} = U^H \)
- if \(A \) is an Hermitian matrix \(A \), \(\iff \exists U \) = unitary and it diagonalizes \(A \)
 (i.e. the diagonal matrix \(T \) is \(T = U^H A U \) or \(A = U T U^H \))
 \(T \) is first shown to be upper triangular in Thm 6.4.3
 and then that it is shown to be diagonal in Thm 6.4.4

(i.e. the diagonal matrix \(D \) is \(D = X^{-1} A X \) or \(A = X D X^{-1} \))
(see Remark 3 page 308)