2 Chapter 2: Determinants

2.1 The Determinant of a Matrix

1. each square matrix has a real number associated with it, namely its determinant, which tells if a matrix has an inverse (i.e. matrix is nonsingular) or not (i.e. matrix is singular)

2. A is nonsingular iff det $A \neq 0$

3. determinant of an $n \times n$ matrix (p.95):

 (a) COFACTOR METHOD: Finds the determinant of a matrix by expanding along a row or along a column (see Example 1 page 94). Expansion does not have to be done along the 1st row, but it is commonly done this way.

 (b) A is a triangular matrix (either upper or lower) \Rightarrow det(A) = $a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$ (i.e. the product of the entries of the diagonal)

 (c) if A is a 2×2 matrix, then det(A) = $a_{11}a_{22} - a_{12}a_{21}$.

 (d) a row/column of a matrix A is all zero \Rightarrow det(A) = 0

 (e) two rows/columns of a matrix A are identical \Rightarrow det(A) = 0

4. minor (as a matrix): M_{ij}

5. cofactor (as a determinant): $A_{ij} = (-1)^{i+j}$ det(M_{ij})

6. det(A^T) = det(A)