
DSSR: Balancing Semantics and Speed
Requirements in Packet Trace Replay

Scott Fortner

United States Marine Corps
scott.fortner@usmc.mil

Geoffrey G. Xie
Department of Computer Science

Naval Postgraduate School
xie@nps.edu

Abstract—As new network services and middleboxes prolifer-
ate, it is important to have reliable means to test these services and
devices, and a common practice to generate realistic testing traffic
is through replaying previously recorded packet traces. However,
existing trace replay tools are highly specialized for particular
protocols and scenarios. In this paper, we present a general trace
replay tool called DSSR. We show that in a directional trace
replay, where outbound and inbound packets are simulated by
two (logically) distinct sets of hosts, the timestamps of packets
handled by the host(s) simulating external destinations must be
adjusted to accurately re-create the effect of network latency.
Interestingly, the timestamp adjustment can boost the replay
speed. Moreover, we identify the range of timestamp adjustment
that will guarantee to preserve the semantic orderings of packets
pertaining to client-server protocol interactions. Therefore, our
solution provides an effective tuning knob for a user to balance
the speed and semantics requirements in a trace replay. Equally
important, it requires no clock synchronization between the
replaying hosts, as the hosts leverage the arrivals of incoming
packets as a clocking mechanism for generating outgoing packets.

I. INTRODUCTION

Security and new application requirements result in a
proliferation of middleboxes in enterprise networks [8]. These
middleboxes such as Intrusion Prevention Systems (IPSes),
voice over IP (VoIP) gateways, and wide area network (WAN)
optimizers can impact the security posture of a network and
the performance of user traffic in profound ways [5], and the
impact is often dependent on the traffic pattern. Therefore,
it is important that enterprises have the ability to test these
devices with realistic traffic patterns before selecting vendors
and making deployment decisions.

Often, it is infeasible to perform such testing in live
networks and enterprises must set up separate testing envi-
ronments. The need for emulating operational networks also
arises in many training scenarios. In both cases, it is critical to
create traffic patterns representative of the production traffic.
One common practice to meet this goal is through replaying
packet traces previously recorded using tools such as tcpdump
or wireshark.

While replaying a packet trace is conceptually simple
and has the advantage of replicating production traffic at
the relatively fine data granularity of packets, it also faces
several unique challenges. First, a trace is typically collected
at a single network interface, as illustrated in the top part of
Figure 1. Simply injecting these packets in one batch in order
of their timestamps may not serve the intended purpose. For

example, to test middleboxes requires the trace to be divided
into two parts based on the direction of the packets, either
inbound or outbound, with respect to the collection point. The
inbound packets and outbound packets should be played back
by two (logically) distinct sets of hosts and fed to a middlebox
through two separate interfaces or connections, as illustrated
in the bottom part of Figure 1. In a directional playback
like this, where packets are injected by multiple independent
processes, the possibility of packets to be replayed out of
order arises. It is important to bound such timing errors in
order to preserve the semantic ordering of packets pertaining
to protocol interactions. Second, some traces are collected at
links of very high speed, at 100 Mbps range or above. It is
nontrivial to scale a replay tool to such link speeds while still
adequately bounding the timing errors.

PCAP	capture	

Enterprise	
LAN	

WAN	

middlebox	

simulated		
internal	hosts	

simulated		
external	hosts	

PCAP	replay	

Fig. 1. Typical directional packet trace replay scenario

The industry has resorted to hardware assisted solutions,
e.g., protocol analyzers, to overcome these challenges. It
is likely that some middlebox vendors have also developed
proprietary trace replay solutions to meet their testing needs.
In this paper, we focus on solutions based exclusively on
software, which are relatively in-expensive and more accessible
compared to hardware assisted solutions. Specifically, we
seek to understand the limits of designs that don’t require
stringent clock synchronization in order to scale to high link
speeds. Clock synchronization at the microsecond range1 is
still unreliable with most commodity operating systems.

Prior attempts at software based solutions are highly spe-
cialized for particular protocols and scenarios. A detailed

1One might try to circumvent the clock synchronization requirement by
collocating all replaying processes in one physical machine equipped with
multiple network interfaces. However, CPU scheduling at microsecond gran-
ularity is equally daunting for commodity OSes.

in Proc. IEEE International Conference on Communications, May 2017



summary of their features are provided in the next section.
This paper represents a first comprehensive investigation of
the trade-off between the semantics (i.e. preservation of packet
orderings) and speed requirements in trace replays. The in-
sights from the investigation have allowed us to create a
new Directional, Semantics-preserving, Speed-adaptive trace
Replay (DSSR) tool.

More specifically, we first show that in a directional trace
replay, the timestamps for packets handled by the host(s)
simulating external destinations must be adjusted to account
for network latency of the testing environment. Interestingly,
the timestamp adjustment may be leveraged to boost the speed
of replay traffic generation. We then formally prove that there
is a range of timestamp adjustment that will guarantee to
preserve the orderings of packets pertaining to client-server
protocol interactions. Leveraging these insights, DSSR pro-
vides an effective tuning knob for a user to balance the speed
and semantics requirements in a trace replay.

The remainder of this paper is organized as follows: We
first review some previously created replay tools and compare
them to our tool (Section II). In Section III we describe
the methods used to create DSSR, followed with some of
the specific implementation details in Section IV. Section V
presents an evaluation of both the timing and ordering accuracy
of the tool. The paper then concludes in Section VI with a brief
discussion of future work.

II. RELATED WORK

Device vendors for testing purposes need to invest in
research and tool development for network traffic replay.
Unfortunately, the results from these efforts are not publicly
available. In the open literature, we identify two efforts that
we believe represent the state of the art.

Developed in 2003 and targeting commodity hardware and
OSes (e.g., Linux), TCPivo [6] replays traffic directly from a
PCAP file at one host. It relies on pre-fetching techniques to
maintain timing accuracy for high speed traces, which requires
nontrivial kernel modifications. For scenarios where the packet
playload information can be ignored, TCPivo also provides
an option to substitute actual payload data with null padding
in order to increase the speed at which the packets can be
replayed.

With a primary focus on intrusion detection and network
security in general, TCPOpera [7] aims to re-create the se-
quence of TCP and session level events (e.g., TCP handshake
and browsing of a web object) from a packet trace. In other
words, it is essentially an event replay tool. As such, it is
more concerned with replicating the distribution of events,
than maintaining the timing accuracy at the packet level.
Specifically, TCPOpera first develops analytics from a packet
trace, then creates a statistical model of the identified events,
and finally generates synthetic traffic flows from the model. It
uses a different thread for managing each flow, without special
consideration to inter-flow sequencing, which can be important
for some replay scenarios. It may utilize multiple nodes (each
with multiple threads) to mimic a large collection of clients
interacting with one or more real servers. TCPopera uses a
single control node and control messages passed out-of-band
between the nodes to facilitate generation of concurrent flows

that collectively exhibit certain statistical properties at the event
level.

Table I provides a succinct comparison of our solution
(DSSR) with TCPivo and TCPopera. By supporting all key
functionality while requiring no special hardware or kernel
modification, DSSR is a general tool that can be used in a
wide range of testing and training scenarios.

TABLE I. SUMMARY OF COMPARISON OF SOLUTIONS

TCPivo TCPopera DSSR
Directional No Yes Yes
Semantic ordering Yes Some events Yes
Speed adaptation Yes No Yes
OS modifications Yes No No

III. METHODOLOGY

To support directional replay, DSSR runs two processes2

at two different hosts. One host is designated as the “internal”
node, emulating the vantage point (commonly a gateway router
of a network) at which the original packet trace was collected,
and the other as the “external” node, emulating all external
destinations within the packet trace. Packets of each trace are
partitioned into two groups, “inbound” or “outbound”, from
the perspective of the internal node, which are played back at
the internal and external nodes, respectively.

Not all orderings of packets have the same importance
during a replay. DSSR is designed to preserve the ordering
of two packets that have a semantic relationship, which exists
when the two packets are within the same flow and have a
causal relationship. For example a TCP handshake requires
that the SYN packet comes before the SYN-ACK, followed by
the corresponding ACK. Additionally, a DNS request message
over UDP must appear before the response message for this
request. Maintaining such orderings of packets is vital for
many network testing scenarios, e.g. those involving intrusion
detection or WAN optimizer devices, which require fine-
grain examination of protocol semantics. In contrast to these
examples, packets from different flows3, or packets transmitted
back to back from one TCP send window, maintains no causal
relationship up to the transport layer and thus, no semantic
relationship.

For this work, the internal node is maintained as the
vantage point for modeling whether DSSR preserves semantic
orderings. Formally, we say that a replay preserves semantic
orderings of the original trace if for any two packets P and Q
that have a semantic relationship, the time ordering between
P and Q at the internal node during the replay is the same as
that in the original trace.

A. Dealing with Clock Synchronization

Since DSSR uses two separate processes to play back pack-
ets, the issue of time synchronization arises. This is especially
the case if each replaying node injects packets independently

2It is straightforward to extend our tool to employ more processes, each of
which replays a distinct set of flows.

3While two flows may have timing dependency, generally such a depen-
dency is less stringent than what is considered in this paper.



entirely based on their relative timestamps. While conceptu-
ally simple, this approach requires time synchronization at
microsecond resolution between the two nodes for replaying
high speed traces. To not rely on special hardware or kernel
modification, which is typically required of clock synchro-
nization at microsecond resolution, we explore an alternative
self-clocking mechanism as follows. Each node maintains a
configuration containing the original timestamps of all the
packets, and leveraging the arrivals of incoming packets as
a clocking mechanism for generating outgoing packets. To
illustrate, suppose one flow in the original trace contains a sub-
sequence of these five packets, P1 (outbound), P2 (inbound),
P3 (inbound), P4 (outbound), and P5 (inbound), as shown
in Figure 2. The internal node will start the sequence with
transmitting P1 and then wait until receiving P3 before sending
P4, while the external node starts with transmitting P2 and P3

and then waits until receiving P4 before sending P5.

Internal	node	 External	node	

-m
e	

P1	 P2	
P3	

P4	

P5	

Fig. 2. A simple scenario with 2 outbound and 3 inbound packets

In general, either node can send a packet (except the first
one on its side) only after receiving the last preceding packet
from the other side. Alternatively, the internal node can inject
an artifiical “bootstrap” packet to initiate the packet injection
process of the external node. The pseudo code for the replay
logic at the internal node is shown in Algorithm 1 below. The
external node uses the same logic except it expects to receive
“Outbound” packets. You can see that once the conditions for
sending a packet have been met, the node schedules the packet
to be sent according to the configuration timestamp, so as to
not get ahead of the original trace. In order to accomplish this,
both nodes need to know the relative start time of the replay.
For the internal node, the start time is user-defined and for the
external node, it is triggered by the arrival of the first packet
sent from the internal node.

Algorithm 1 Replay Logic at internal node
1: for each packet p Œ trace do
2: if p.direction == Inbound then
3: while packetRecvQueue is empty do
4: wait( )
5: Remove one packet from packetRecvQueue
6: else
7: Send p at its timestamp

Clearly, this algorithm may experience a deadlock or speed
degradation if some packets are lost or severely delayed
by some middleboxes (e.g, an IDS). If this is of concern,
short control messages emulating packet counters should be

exchanged out-of-band (with more predictable delays) to im-
plement the clocking mechanism.

B. Dealing with Network Latency

Additionally, we find that using two replay nodes intro-
duces timing inaccuracies due to network latency between the
nodes. Consider again the above example packet sequence
P1 � P5. Suppose the average one-way network latency
between the nodes (d) is 200 µs. Then the configuration at
the external node should be adjusted as illustrated by Figure 3:
The timestamps of P2, P3, and P5 should be subtracted by 200
µs, while the timestamps of P1 and P4 should be added by
200 µs. Otherwise, the ordering of packets at the external node
will be incorrect, e.g., based on the original PCAP timestamps
(t1-t3), sending of P2 and P3 will be incorrectly dependent
on receipt of P1. Consequently, Algorithm 1 will experience
undesirable slowdowns, e.g., sending of P4 will be delayed
by 200 µs or more compared to the original trace because
P3 will be delayed by extra 200 µs or more. And we have
observed that such errors can have a “snowball” effect due to
the self-clocking mechanism.

Internal	node	 External	node	

-m
e	

P1	 P2	
P3	

P4	

P5	
T(P5)	

T(P1)	+	d	

T(P5)	-	d	

T(P2)	-	d	
T(P3)	-	d	

T(P4)	+	d	

T(P1)	

T(P4)	
T(P3)	
T(P2)	

Fig. 3. Illustration of need for timestamp adjustment at the external node.
Timestamps of inbound and outbound packets need be decreased or increased
by d, respectively.

Therefore, DSSR requires the external node to adjust the
timestamp of each packet in its configuration by the expected
one-way delay (d). This one-way delay is added to times-
tamps of outbound packets (to be received) and subtracted
from timestamps of inbound packets (to be sent). Once all
timestamps have been adjusted, the list of packets are re-
ordered according to the new times. The pseudo code for these
adjustments is shown in Algorithm 2.

Algorithm 2 Timestamp Adjustment at external node
1: for each packet p Œ trace do
2: if p.direction == Outbound then
3: p.timestamp p.timestamp+ d
4: else
5: p.timestamp p.timestamp� d

6: Reorder packets based on new timestamps

Clearly, the network latency will vary from scenario to
scenario and should be estimated a priori by measuring the
testing network. More importantly, we observe that there is
some flexibility to the timestamp adjustment without adversely
changing the ordering of packets in a replay. For example,



while ignoring network delays (i.e. setting d = 0) negatively
impacts the replay speed, it does not change packet orderings.
Ordering can be maintained trivially by placing a strict order-
ing constraint for transmitting outbound packets at the internal
node. We formally prove in Section V-A that there exists a
range of d values to preserve semantic ordering of packets.

IV. IMPLEMENTATION

We have created a prototype implementation of DSSR
using C++, leveraging several BOOST [1] libraries, and the
libcrafter packet generation and sniffing library [3]. A MySQL
database structure is used to initially store and organize all
of the packet timestamps and header information for use in
constructing the necessary configurations at the replay nodes.
The use of a database allows for expansion of the tool through
manipulation of the original trace data, such as creation of a
statistical replay model, or removal of specific types of packets
(e.g., retransmissions).

V. EVALUATION

We have two goals in evaluating the performance of DSSR.
First, we show a surprisingly strong result that DSSR preserves
the orderings of any two packets at the internal node as long as
the network latency adjustment (d) meets certain conditions.
Second, we explore how the choice of d impacts the speed
performance. Combining the two results, we can conclude
that DSSR provides an effective tuning knob for a user to
balance the speed and semantics requirements in a trace replay.
Furthermore, we show how the use of a real-time OS may
increase the performance of DSSR.

Unfortunately, we were not able to obtain an implementa-
tion of TCPopera [7], the only directional replay tool presented
in the open literature, to conduct a detailed performance
comparison beyond the qualitative analysis in Section II.

A. Preservation of Semantic Orderings

The following theorem establishes that there exists a range
of timestamp adjustment d that will guarantee to preserve
the original orderings of packets, irrespective if they are
semantically related, in a trace replay with DSSR.

Theorem 1 Assuming no packet losses and negligible pro-
cessing delays at the replay nodes, DSSR will maintain the
ordering of any two packets P and Q in the original capture
if d < |T (P ) � T (Q)| + D, where D is the actual one-way
network latency between the replay nodes.

Internal	node	 External	node	
Q	 T(Q)	-	3	

T(Q)	-	2	

T(Q)	

T(P)	
T(Q)	– T(P)	=	1.5	ms	

actual	latency	D	=	1	ms	

Fig. 4. Example scenario where setting d too much larger than the actual
one-way network latency (3 ms vs. 1 ms) results in a packet misordering.

TABLE II. NOTATION USED IN PROOF

Expression Definition
T () Original packet timestamp
ti = T (Q) � T (P )

Te() Adjusted timestamp at external node
te = Te(Q) � Te(P )

P.dir P ’s direction (Inbound or Outbound)
D Actual one-way network latency

T 0
i () Actual departure or arrival time at internal node

T 0
e() Actual departure or arrival time at external node

1) Proof of Theorem 1: Before presenting the detailed
proof steps, we would like to consider Figure 4 and provide
some intuition why setting d too large may lead to semantic
ordering violations. Suppose packets P and Q are semantically
related (i.e., P causing Q) in the original trace and T (P ) �
T (Q) = 1.5 ms. Suppose d is set to 3 ms while the actual
network one-way latency between the replay nodes D is 1 ms.
In this case, since the external node will adjust P ’s timestamp
to (T (Q)�3) ms, Q will arrive 0.5 ms ahead of P in the replay,
resulting in a packet misordering. Now if d is reduced to 2 ms,
d would be less than |T (P )�T (Q)|+D = 1.5+1 = 2.5 ms,
and it is straightforward to verify that Q no longer will arrive
ahead of P .

The proof is as follows. Consider any two packets P and
Q in the original trace. Without loss of generality we assume
T (Q) > T (P ). Our proof considers five different cases. They
collectively cover all combinations of packet directions and
the timing difference between P and Q in the original trace.
Table II defines the variables used throughout the proof.

Internal	node	 External	node	

Q	

T(P)	

T(Q)	

T(Q)	– T(P)	>	2d	
Te(P)	=	T(P)	+	d	

P	

Te(Q)	=	T(Q)	-	d	

actual	latency	=	D	

Fig. 5. Case 1 illustration

a) Case 1: ti > 2d ^ P.dir = Outbound ^Q.dir = Inbound
(See Figure 5):

1) Te(Q) = T (Q)� d (Algorithm 2)
2) Te(P ) = T (P ) + d (Algorithm 2)
3) T (Q)� T (P ) > 2d (Case 1 assumption)
4) (Te(Q) + d)� (Te(P )� d) > 2d (from steps 1-3)
5) Te(Q) > Te(P ) (Simplification)
6) T 0

e(P ) = T 0
i (P ) +D (network latency)

7) T 0
i (Q) = T 0

e(Q) +D (network latency)
8) T 0

e(Q) > T 0
e(P ) (Algorithm 1 with condition of step 5)

9) (T 0
i (Q)� d) > (T 0

i (P ) +D) (from steps 7, 8, and 9)
10) T 0

i (Q) > T 0
i (P ) + 2d (simplification)

11) So, T 0
i (Q) > T 0

i (P ) (simplification)
12) Therefore, 8D,T 0

i (Q) > T 0
i (P )

b) Case 2: ti  2d ^ P.dir = Outbound ^Q.dir = Inbound
(See Figure 6):

1) Te(Q) = T (Q)� d (Algorithm 2)



Internal	node	 External	node	

Q	T(P)	

T(Q)	

T(Q)	– T(P)	≤	2d	

Te(P)	=	T(P)	+	d	

P	 Te(Q)	=	T(Q)	-	d	

Fig. 6. Case 2 illustration

2) T 0
e(Q) � Te(Q) (Algorithm 1)

3) T 0
i (Q) = T 0

e(Q) +D (by definition)
4) T 0

i (Q) � Te(Q) +D (substitution: 2, 3)
5) T 0

i (Q) � Ti(Q)� d+D (substitution: 1, 4)
6) T (Q) = T (P ) + ti (by definition)
7) T 0

i (P ) � T (P ) (Algorithm 1)
8) T 0

i (Q) � T 0
i (P ) + ti +D � d (substitution: 5, 6, 7)

9) T 0
i (Q)� T 0

i (P ) � ti +D � d (simplification)
10) Therefore, when d < ti +D, we have
11) T 0

i (Q)� T 0
i (P ) > 0 ) T 0

i (Q) > T 0
i (P )

For brevity, we simply list the rest of the cases and omit
the proof steps. Q.E.D.

• Case 3: P.dir = Inbound ^Q.dir = Outbound

• Case 4: P.dir = Inbound ^Q.dir = Inbound

• Case 5: P.dir = Outbound ^Q.dir = Outbound

Corollary 1 Assuming no packet losses and negligible pro-
cessing delays at the replay nodes, there exists a range of
d values such that DSSR will preserve semantic orderings of
packets in a trace replay.

The proof is straightforward as d = 0 meets the condition
prescribed in Theorem 1. The following section will show how
adjustments to d upwards from 0 can positively effect the speed
performance of the replay.

B. Speed Adaptation

While retaining the intra-node ordering constraints, DSSR
supports artificially inflating the estimated delay d to boost
the replay speed. Inflating this delay essentially causes the
configuration at the external node to front-load the send
packets. This, in turn, reduces the amount of time the internal
node has to wait on packets to be received.

Another solution for improving speed performance in-
volved disregarding packet sequencing almost entirely. By
removing the ordering constraints between nodes and sending
packets based entirely on their configuration timestamp (ig-
noring packets received), we were able to much more closely
match the speed of the original trace. Upon examination,
though, this solution revealed so many ordering discrepancies
that we chose not to investigate it further.

1) Performance Metrics: We measure the time duration of
each replay (in seconds) and derive the replay speed in packets
per second (pps) from this period and the total number of pack-
ets replayed. We model packet ordering at two granularities:
(i) the semantic match rate identifies the percentage of packets
with a semantic relationship that retain their relative orderings

during replay. We primarily detect semantic ordering violations
in the replay trace using Wireshark and additionally, check
if the original timestamp gap is sufficiently large to warrant
a causal relationship; (ii) the direct match rate identifies the
percentage of all packets in the replay trace that match the
ordering of the original trace and is included for completeness.

2) Data Sets: Five diverse test cases are used to validate
DSSR: (1) “Home”: consisting of HTTP-centric traffic over
a cable modem connection; (2) “Satellite”: provided by a
satellite network operator; (3) “Enterprise”: captured on an
interface of the Naval Postgraduate School backbone network;
(4) “Malware”: a malware traffic trace recorded by a honeypot
named HONEYBOT during the Capture the Hacker 2013
competition [2]; and (5) “Ultra High Speed”: an ultra-high
speed trace from a busy private network’s access point to
the Internet, provided by the author of the tcpreplay tool [4].
(Details of these traces are provided in the “Original” column
of Tables III-VI.) The first four data sets are used to show
the speed and ordering performance of DSSR while the ultra
high-speed trace is used to show performance differences from
adjusting scheduling priority.

3) Testbed: Two PCs, one with an Intel i7-2.4GHz CPU
and 8 GB of RAM, the other with an Intel i5-2GHz CPU
and 8 GB of RAM, play the role of the internal and external
node, respectively. They are wired directly via an Ethernet
cable with a verified Gigabit connection. Both machines are
natively running Ubuntu 14.04 LTS with most non-essential
processes stopped. Before each replay run, the original trace
is preprocessed for batch packet pre-construction and external-
side timestamp adjustments.

4) Results: The results reported are averages over 10 runs.
Again, we use D to denote the measured average one-way
network latency in our replay testbed.

Fig. 7. Effect of d on replaying “Home” trace

Speed vs ordering trade-off: To demonstrate the
speed/ordering trade-off, we first plot the average injection
time of each packet of the “Home Trace” at various d values
against the original trace (Figure 7). These results show the
performance limitations of DSSR as well as the effects of
adjusting d. As d is increased, the average speed performance
also increases. This increase is not linear, nor can it eliminate
speed issues all together. Observe that once d is increased
beyond 2.5⇥D, the performance improvements taper off dras-
tically. Additionally, while in some periods the speed of DSSR



is insufficient and the replay falls behind the original, DSSR
is able to catch back up as the traffic rate in the trace subsides.

TABLE III. RESULTS FOR “HOME” TRACE

Original D 1.5⇥D 2⇥D 2.5⇥D
# Packets 7218 7218 7218 7218 7218

# TCP Flows 265 265 265 265 265
# UDP Flows 351 351 351 351 351
Link Speed 105Mbps 1 Gb/s 1 Gb/s 1 Gb/s 1 Gb/s
Duration (s) 14.58 15.64 15.08 14.65 14.62
Speed (pps) 495.1 461.5 478.7 492.7 493.7
% S. Match - 100 100 100 100
% D. Match - 84.16 83.49 79.06 79.00

TABLE IV. RESULTS FOR “SATELLITE” TRACE

Original D 1.5⇥D 2⇥D 2.5⇥D
# Packets 8882 8882 8882 8882 8882

# TCP Flows 45 45 45 45 45
# UDP Flows 5 5 5 5 5
Link Speed Unknown 1 Gb/s 1 Gb/s 1 Gb/s 1 Gb/s
Duration (s) 86.97 86.97 86.97 86.97 86.97
Speed (pps) 102.1 102.1 102.1 102.1 102.1
% S. Match - 100 100 100 100
% D. Match - 98.23 98.23 98.23 98.23

TABLE V. RESULTS FOR “MALWARE” TRACE

Original D 1.5⇥D 2⇥D 2.5⇥D
# Packets 1103 1103 1103 1103 1103

# TCP Flows 92 92 92 92 92
# UDP Flows 0 0 0 0 0
Link Speed Unknown 1 Gb/s 1 Gb/s 1 Gb/s 1 Gb/s
Duration (s) 100.75 100.75 100.75 100.75 100.75
Speed (pps) 11.0 11.0 11.0 11.0 11.0
% S. Match - 100 100 100 100
% D. Match - 98.01 97.55 97.28 97.10

TABLE VI. RESULTS FOR “ENTERPRISE” TRACE

Original D 1.5⇥D 2⇥D 2.5⇥D
# Packets 54014 54014 54014 54014 54014

# TCP Flows 1 1 1 1 1
# UDP Flows 0 0 0 0 0
Link Speed Unknown 1 Gb/s 1 Gb/s 1 Gb/s 1 Gb/s
Duration (s) 60.01 61.45 60.04 60.01 60.01
Speed (pps) 900.1 879.0 899.6 900.1 900.1
% S. Match - 100 100 100 100
% D. Match - 60.15 51.98 46.98 42.34

A detailed summary of performance results for data sets 1-4
is provided in Tables III-VI. We generated both TCP and UDP
statistics to demonstrate that DSSR is viable for more than
simply TCP. The first point to notice is that DSSR accurately
recreates the exact number of packets, TCP flows, and UDP
flows from the original trace. As can be seen from Tables III
and VI where the original trace speed exceeded the capabilities
of DSSR, increasing d resulted in a decreased percent of
direct match packets but an increased performance in terms
of average speed and duration. The more encouraging result,
though, is that all tests cases produced very strong ordering
results (100% in fact), no matter the value of d being used,
when only semantically related packets are considered.

Fig. 8. Effect of real-time scheduling. The time performance improves slightly
when d = 2 ⇥ D or 2.5 ⇥ D, but the average replay duration is still more
than twice as slow as the original “Ultra High Speed” trace.

Effect of real-time scheduling: There is a performance
limit with a software replay tool like DSSR. We have found
that DSSR would take more than twice the original trace
duration to replay the “Ultra High Speed” trace. This is
expected given the laptops’ limited hardware capability. We
tried to increase its performance by assigning it the highest
priority possible (i.e. “real time”) for a non-kernel process.
As can be seen in Figure 8, a slight but not consistent speed
increase can be obtained from the real-time priority.

VI. CONCLUSION

We have shown DSSR to be a general-purpose network
traffic replay tool that is directional and capable of maintaining
full protocol semantics. By design, it provides the flexibility
of relaxing nonessential packet ordering constraints in order
to boost the replay speed, by simply adjusting the timestamps
of packets replayed by the host(s) simulating external destina-
tions.

DSSR is designed to be extensible. Other future work
involves adding the following functionalities: (i) ability to use
multiple VMs to increase speed performance, (ii) replaying to
a routed network with middleboxes in different subnets, (iii)
generation of packet arrival statistical models from a given
collection of traces, (iv) support for IPv6, (v) detection and
handling of packet errors or losses during replay, and (vi)
support for encryption below the application layer.

REFERENCES

[1] Boost c++ libraries. http://www.boost.org.
[2] Capture the hacker 2013 competition: HONEYBOT.

http://www.snaketrap.co.uk/pcaps/hbot.pcap.
[3] libcrafter: A high level library for C++ to generate and sniff network

packets.
[4] TCPreplay sample captures: Bigflows.pcap.

http://tcpreplay.appneta.com/wiki/captures.html.
[5] R. Craven, R. Beverly, and M. Allman. A middlebox-cooperative TCP

for a non end-to-end Internet. In ACM SIGCOMM, Aug. 2014.
[6] W.-C. Feng, A. Goel, A. Bezzaz, W.-C. Feng, and J. Walpole. TCPivo:

A high-performance packet replay engine. In Proc. ACM SIGCOMM
Workshop on Models, Methods and Tools for Reproducible Network
Research, MoMeTools ’03, pages 57–64, 2003.

[7] S.-S. Hong and S. Wu. On interactive Internet traffic replay. In A. Valdes
and D. Zamboni, editors, Recent Advances in Intrusion Detection, volume
3858 of Lecture Notes in Computer Science, pages 247–264. Springer
Berlin Heidelberg, 2006.

[8] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-
fying middlebox policy enforcement using SDN. In Proceedings of the
ACM SIGCOMM 2013 Conference, pages 27–38.


