
A Software Toolkit for Visualizing Enterprise
Routing Design

Xin Sun†, Jinliang Wei†, Sanjay G. Rao†, and Geoffrey G. Xie?
†School of Electrical and Computer Engineering, Purdue University

?Department of Computer Science, Naval Postgraduate School
{sun19, jlwei, sanjay}@purdue.edu, xie@nps.edu

Abstract—Routing design is widely considered as one of the
most challenging parts of enterprise network design. The chal-
lenges come from the typical large scale of such networks, the
diverse objectives to meet through design, and a wide variety of
protocols and mechanisms to choose from. As a result network
operators often find it difficult to understand and trouble-
shoot the routing design of their networks. Furthermore, today’s
common practice of focusing on one router or one protocol at a
time makes it a onerous task to reason about the network-wide
routing behavior.

We believe that to mitigate the problem, there is a need for
software tools to produce effective visualization of enterprise
routing designs. In this paper we report on our experience
building such a toolkit. We begin by abstracting various routing
mechanisms into a small number of design primitives. The
abstraction allows for a more concise representation of routing
design without losing important design information, which is
critical for making the tool scalable. Guided by the abstraction,
we then develop a set of algorithms and heuristics, which
take router configuration files as input and output a graphical
representation of the routing design. The layout and components
of the graph are highly customized to optimize its readability
and power to infer the network-wide design pattern.

We also present a case study using the toolkit to analyze the
routing design of two large campus networks, and report on our
findings. Our experience confirms the effectiveness of our toolkit
in revealing key design characteristics of the networks, and in
illustrating the network-wide routing behavior.

I. Introduction
Routing design is arguably the most complex part of en-

terprise network design. On the one hand, routing design is
often used to implement a diverse set of policies that are
specified as network-wide requirements (e.g., resiliency and
isolation of different administrative domains). On the other
hand, routing design is implemented through configuring a
variety of protocols and mechanisms on commonly hundreds
of routers. The current “device by device” and “protocol
by protocol” configuration practice makes it difficult for the
network operators to see and understand the network-wide
routing behavior. Design faults and configuration mistakes are
not uncommon in today’s enterprise networks [1], and can
result in serious security vulnerabilities. For example, a recent
survey [2] shows that over 65% of the cyber attacks have
exploited such vulnerabilities.

We believe that to mitigate the problems in managing
enterprise networks, there is a need for software tools that can
create effective visualization of routing design in a systematic

way. A naive approach of showing every single router and
all the connections among them will simply not work, due
to the large scale of the enterprise networks (with typically
hundreds and even thousands of routers). Furthermore, routers
have different roles in the network. For example, some routers
are entirely inside a single “domain”, while other routers route
traffic across multiple domains. When visualizing the routing
design, it is critical to give routers different treatment based
on their roles, as doing so exposes the design patterns and
structures.

In this paper, we report on our experience in building such
a toolkit. Our contributions are threefold. First, we make
several significant improvements to the start-of-the-art models
of enterprise routing design. In their pioneering work [3],
Maltz et al. have proposed the concept of “routing instances”
as an abstraction for modeling routing design. A routing
instance models the set of routers that run the same routing
protocol, use matching protocol parameters, and share routing
information. This concept significantly facilitates the routing
design visualization, as it has the power of aggregating a
large number of routers into a single node on the graph. To
the best of our knowledge, all prior works (for example, [3],
[4]) have modeled a routing instance as a single entity, and
have assumed that all routers inside a instance have the same
routing information. However, in this paper we show that in
operational networks, routing policies may also exist inside
a routing instance, which will cause routers in the instance
to have different routing information. Hence modeling routing
design at the granularity of routing instances can result in
loss of important design information. We further introduce
the notion of filtering primitive to model route filters that
implement intra-instance policies.

Second, we present a set of algorithms and heuristics
that can generate visualization from router configuration files
using the improved model of routing design. The layout and
components of the graph are highly customized to optimize its
readability and power to infer the network-wide design pattern.

Third, we have implemented and integrated the model
and visualization algorithms into a fully-automated software
toolkit. In particular, we report a case study using the toolkit
to analyze the routing design of two large university campus
networks. The findings, most of which have been confirmed
by the operators, demonstrate the tool’s power in revealing
key design characteristics of the networks. We believe our



unique experience of developing this toolkit and our insight
from studying the operational networks is a contribution of its
own.

II. A Framework for Modeling Enterprise Rout-
ing Design

In this section, we present a framework for modeling
enterprise routing design. While our framework leverages
certain abstractions (e.g., routing instances and connecting
primitive) introduced by previous works [3], [4], we have made
remarkable improvements to previous work. We also introduce
a new abstraction of filtering primitive. The value of this
framework is that it abstracts away the low-level configuration
details without the loss of important design information, and
also that it exposes the network-wide routing design patterns
and structures. Below we describe in details the essential
elements of the framework.

A. Routing instances

The logical concept of a routing instance is first introduced
in [3]. A routing instance models the set of routing processes
that run the same routing protocol, use matching protocol
parameters, and share routing information. The routing in-
stance model has the power of aggregating a large number of
routing processes, and exposing the complex routing policies
and interactions among multiple routing protocols. However,
this routing instance model has a significant insufficiency: it
does not model the routing policies that exist inside a routing
instance. Based on our findings in operational networks (see
Section V-A1), and our discussion with network architects and
operators, we believe that having policies implemented inside
a routing instance is not an uncommon design pattern.

More specifically, we found that route filters may be applied
within a routing instance, and effectively divide the routing
instance into multiple subinstances. Routing processes that are
subject to the same set of route filters form a subinstance,
and they share exactly the same routing information. Different
subinstances, even in the same routing instance, will not share
the same routing information, as some of the routes are filtered
out by the route filters when they are exchanged across the
subinstances.

Given the this insight, we believe that it is critical to model
the routing design at the granularity of routing subinstances,
as doing so preserves the important policy information that
exists inside a routing instance, and exposes the potentially
complex interactions among the subinstances. We will present
an algorithm for extracting the routing subinstances and their
interactions from router configuration files in Section III-B.

B. Connecting primitive

After routing instances are established, a routing design
must enable them to share routing information by using
connecting primitive. This primitive abstracts a variety of
routing mechanisms that are used to connect multiple routing
instances. Base on their functionality, these mechanisms can be
further classified into two subcategories: bridging mechanisms

and injection mechanisms.
Bridging mechanisms: These are the mechanisms that

enable the border router of a routing instance to learn about
routes to other instances, and also advertises its own routes
to border routers of other instances. Depending on how the
border router obtains the routes,bridging mechanisms may
be further classified into (i) learning based , i.e., routes
are automatically learned through a dynamic protocol such
as BGP; (ii) hard-coding based, i.e., routes are hard-coded
into the configuration. This includes static routes and default
routes; and (iii) participation based, i.e. a router can have
routes to multiple instances simply by participating in all those
instances.

Injection mechanisms: These are the mechanisms that
enable a border router to inject the learned external routes
to other routers in its routing instance, so those routers can
have routes to other instances as well. A common injection
mechanism is route redistribution. Another common injection
mechanism is to have the border router generate a default route
to its routing instance. For example, the “default-information
originate” command enables a router to inject a default route
into the OSPF network. We note that injection mechanisms
do not have to be implemented on the border router. For
example, in a small network with a single gateway router,
a default route may be configured on every router that points
to the gateway router. Those default routes are essentially the
injection mechanism in this case.

C. Filtering primitive

Contrary to the connecting primitive, the filtering primitive
is used to prevent routing subinstances from sharing some
routing information with other routing subinstances. There are
also multiple types of route filters, such as distribute-list and
route-map. Based on their placement, these route filters can be
grouped into two categories: intra- and inter-instance filters.

Intra-instance filter: These are filters that are placed within
one routing instance, used to prevent certain routes being ex-
changed within the instance. Under different routing protocols,
routing information is disseminated in various formats. Despite
the various formats of routing information dissemination,
Intra-instance filter prevents certain routes’ distribution by
recongizing the destinaiton address and dropping packets that
contain routing information about certain networks.

Inter-instance filter: These are filters that are placed be-
tween routing instances, used to prevent certain routes being
redistributed from one instance to another. Depending on the
configuration, they may either prevent routes’ redistribution
entirely if their attributes match certain criteria, or modify the
routes’ attributes and then redistribute them.

III. Framework Reification and Extraction
In the preivous section, we propose a formulated framework

that captures the core of a network’s routing design. In this
section, we discuss how such an abstraction is reified in
practice and present an effective procedure to extract such
information router configuration files.

2



A. Framework’s data structure and reification
As a network’s connecting and filtering primitives are

essentially interactions among routing instances, subinstances
and other objects such as border routers and external AS-
es, a graph would be an applicable data structure for rep-
resenting this framework, where nodes represent objects like
routing instances and routers, and edges represent interac-
tions among nodes. Possible nodes of the graphs include:
(i) routing instances and subinstances; (ii) border routers
between routing instances of different protocols where they
share routes with one another; (iii) internal routers whose some
interfaces participate in a routing protocol with route filters.
Such routers form bridges that connect routing subinstances of
the same protocol together; (iv) routers that route packets along
configured paths, i.e. routers that have static routes; (v) peering
external AS-es and border routers to which external AS-es are
connected, which are needed to illustrate the network’s BGP
configuration. Edges may represent the following interactions:
(i) route redistribution, i.e. routing processes of different
routing instances exchange routes; (ii) route filtering within
the same protocol, i.e. routing processes of different routing
subinstances exchange routing information through paths of
route filters; (iii) eBGP peering, i.e. gateway routers run eBGP
peering session with external AS-es; (iv) iBGP peering, i.e.
internal routers run iBGP sessions form peering relationship;
(v) hard-coded routes, i.e. static routes and default routes.

The above graph practically reifies the formulated frame-
work. First, the bridging mechanisms are reflected by in-
teractions such as eBGP and iBGP peering for BGP route
advertisement and hard-coded routes. Second, the injection
mechanisms are reflected by route redistribution. The bridging
mechanisms and injection mechanisms together compose the
connecting primitive. The filtering primitive is shown by the
route filtering interaction within a routing instance.

B. Framework extraction
While most nodes and edges of the graph are directly

extractable from configuration files, identifying routing in-
stance, routing subinstances and the filtering mechanism inside
each routing instance requires significant processing. Paper
[4] presented an effective procedure for extracting routing
instances from configuration files. However, that paper treats
a routing instance as a single unity in its modeling, and
do not consider the filtering mechanism inside each routing
instance. Here we present a modified procedure to identify
routing instances, subinstances along route filters that are
in the path along which two routing subinstances exchange
routing information under the same protocol.

1) As stated in [4], the configuration file is parsed to
identify router interfaces and relevant attributes of each
interface. Then routing process(es) running on each
interface, the associated status (active or passive) along
with relevant parameters are identified. An interface
running n routing processes are assigned n unique tuples.

2) As [4]’s algorithm, a breadth first search (BFS) algo-
rithm is used to explore all the neighboring interfaces to

assigned each (interface, protocol, routing process id)
tuple to a routing instances. However, if route filters
(such as ”distribute-list”) are applied on its interface,
the tuple does not participate in BFS. Instead, it is just
added to the set of filtering interfaces for later use. With
filtering interfaces eliminated, routing instances that em-
ploy filtering mechanisms are divided into subinstances.

3) Having all routing instances and subinstances identified,
we present the following algorithm to determine route
filters that are on the paths along which subinstances of
one routing instance exchange routing information.

a) Let F denote the set of filtering interfaces, U
denote the set of routing instances/subinstances
resulted from last step, and U denote a routing
instance in U . Let p(U) denote the protocol that
routing processes of U run. Let S denote an ini-
tially empty stack, and P denote an initially empty
array. Let i(f) denote the index of interface f . Let
l(P ) denote the number of elements in P .

b) If two interfaces f1 and f2 are neighboring (within
the same subnet) and exchanging routing informa-
tion, we say that they are connected, and denote it
as connect(f1, f2).

c) 1: for U ∈ U do
2: for f ∈ F do
3: if ∃ fx ∈ U such that connect(fx, f)

then
4: Set i(f) to 0;
5: Push f into S;
6: end if
7: end for
8: while S 6= ∅ do
9: Pop f out from S;

10: Remove all elements in P whose indexes
are larger than i(f);

11: Add f to the end of P ;
12: for fx ∈ F do
13: if connect(fx, f) and fx /∈ P then
14: Set i(fx) to l(P );
15: Push fx into S;
16: end if
17: for Ux ∈ U do
18: if U is of the same protocol as Ux

and ∃ fx ∈ U such that
connect(fx, f) then

19: P is a filtering path through which
U and Ux exchange routing infor-
mation;

20: end if
21: end for
22: end for
23: end while
24: end for

4) After applying the above algorithm, we find all routing
instances and their subinstances if exist, along with route

3



filters that are in the path along which two subinstances
of the same instance exchange routing information.

IV. Framework Visualization
In this section, we present the procedure to visualize the

extracted framework, and a set of techniques that optimize
the generated graph for human-readability. In visualizing the
framework, our objectives are: (i) the generated graph should
present a concise overview of the network’s routing design,
along with moderate details about its key aspects which
may provide clues for trouble-shooting; (ii) the generated
graph must be human-readable, which implies that information
should be appropriately trimmed; (iii) the graph generation
process must be fully automated while customized fine tuning
should still be allowed for various needs.

A. Graph generation

The formulated framework itself is already a concise repre-
sentation and visualizing it would fulfill the requirement for a
concise graph. A generic graph visualization tool, GraphViz,
is used to help generate such graphs. GraphViz is chosen for
several reasons. First, GraphViz implements a set of algorithms
to optimize the placement of nodes and edges to optimize
visual effects. Second, GraphViz allows enough flexibility
for us to further optimize the graph knowing the network’s
semantic structure. Third, GraphViz supports a wide range of
node and edge shapes and colors, which makes it possible
for representing information using the graph itself without the
need for too much text. Our toolkit generates a GraphViz dot
file and passes it to GraphViz to generate the graph.

Next we describe how the generated graph represents the
network routing design. The generated graph may have three
types of nodes: routing instance or routing subinstances,
routers and AS-es. Routing instances’ names have the format
of “protocol-ID” (e.g., OSPF-1), where protocol is the protocol
that the routing instance is running and ID is the process ID of
routing processes in this instance, or AS number if the protocol
is BGP. Routing subinstances are placed inside the routing
instances that they belong to. Names of routing subinstances
are in the format of “protocol-ID-subID” (e.g., EIGRP-1-2),
where the subID is the ID within the routing instance to
distinguish the routing subinstance from other subinstances.
Routing instances’ or subinstances’ names are also followed by
the number of routers in the instance or subinstance. The router
name may be suffixed by a star, which means that the router
is configured with a default route or a default gateway. AS-es’
names are in the format of ”AS-number”, where number is
the corresponding AS number.

A green (red) arrow from a router A to another router B
represents that a static (default) route is configured on A,
which uses B as the next-hop. An edge between a router and
a routing instance (or subinstance) represents that the router
participates in that routing instance(or subinstance). Such an
edge may be labeled with the names of other routing instances
that the router also participates, to show that the router
redistributes routes from those instances into this instance.

Similarly, an edge may also be labeled with “static” to denote
that the router redistributes its static routes into the instance.
What’s more, at the router end of such an edge, a short
line across it represents that a route filter is configured on
the router, which regulates the routes exchanged between the
router and the rest of the routing instance (or subinstance).
Finally, black arrows between two routers represent the iBGP
peering sessions established between them. A black arrow
from a router to an AS denotes an eBGP peering session
established between the router and the external AS. (This
makes the router a gateway router of the network.)

B. Graph optimization

Simply feeding the nodes and edges into GraphViz, the
generated graph is as Fig. 1. As we have seen, the graph is a
too chaotic for user to read. Problems of this graph include: (i)
arbitrary node placement; (ii) crossing and overlapping edges;
(iii) large amount of nodes; (iv) large amount of text labels.
Here we present a set of graph optimization techniques for
better visual effects.

1) Planned node placement

To better show the hierarchy of the graph, we place all
routing instances on the top of the graph, routers in the middle,
and AS-es at the bottom.

2) Distinguishing different node types

Nodes for routing instances, routers and AS-es are drawn
in different shapes for differentiation. As on our graph, we
use diamond nodes for routers, rectangular nodes for routing
instances and subinstances, and elliptical nodes for AS-es.

3) Clustering functionally equivalent nodes

Since the most important role peering AS-es play is pro-
viding connection to Internet for the network, operators of the
network would only be interested in what gateway routers an
AS is connected to. So we consider AS-es are functionally
equivalent if they connect to the same border routers. We
cluster the functionally equivalent AS-es together as one node
to minimize the number of AS nodes.

Routers are considered functionally equivalent if they play
the same role, such as redistributing routes for the same
routing instance or subinstance, or constituting alternative
filtering paths for routing subinstances of the same instance.
Functionally equivalent routers are given the same color.

4) Minimizing label text

Edges between routers and routing instances or subinstances
are labeled with the types of routes that are redistributed into
the routing instance. Since it is usually the case that the
router redistributes routes from all other routing instances,
it is unnecessary to print all other instances’ names in the
label. So if that is really the case, we simply omit all other
routing instances’ names. To distinguish the case that no route
is redistributed, a dashed edge is used instead of a solid one in
this case. Also, edges between routers and routing instances
are drawn in blue to distinguish them from other edges.

4



router-J*

router-I*

rotuer-G*

router-H*

bgp-Y
(2)

ospf-2
(6)

bgp-Y

router-B*

ospf-1-2
(1)

eigrp-1

eigrp-1
(99(

eigrp-1

staticrouter-D*

AS-E

AS-Z bgp-Z

bgp-Z
(2)

eigrp-1 router-F*

ospf-1-1
(1)

eigrp-1ospf-1-1

bgp-Y

AS-B AS-CAS-A AS-D

bgp-Zeigrp-1

Fig. 1: Unoptimized graph for university-1 network’s routing design in 2011 - Note that we have manually manipulated the
routing processes’ IDs, AS-es’s numbers and routers’ names on all graphs to hide confidential information.

router-A

eigrp-1-1
(94)

rip
(1)

router-B*

ospf-1
(1)

router-C*

router-F*

AS-B

AS-C

bgp-Z
(3)

router-D*

ospf-1
(1)

router-E

AS-D

eigrp-1-2
(6)

AS-A

router-G*

ospf-2
(1)

Fig. 2: University-1’s network routing design in 2008

After applying the above techniques, we were able to reduce
the number of node from 19 to 16, reduce the number of edges
from 32 to 29, and reduce the number of labels from 11 to 1.
As in Fig. 3, the generated graph became much more human-
readable.

V. Case Study of Routing Designs in Operational
Networks

We have had the opportunity to use our toolkit to study the
routing design of two large campus networks. Our toolkit took
only a few seconds to generate each graph. In this section,
we report on our experience and findings from the study.
Overall, our experience confirms the usefulness of our toolkit
in revealing the network-wide routing design patterns and
structures. Our findings include discovery of some important
design pattern that, to the best of our knowledge, has not been
exposed to the research community before.

A. University-1’s network routing design

University-1 has a large campus with nearly 40,000 stu-
dents. Its campus network is composed of hundreds of subnets.
It contains about 120 routers (most of which are actually layer-
3 switches) and more than 1000 layer-2 switches and bridges.
We have a longitudinal data-set of the configuration snapshots
of University-1’s network from 2008 to 2011. Interestingly,
University-1’s network has been significantly redesigned dur-
ing this time period. So in this case study, we have selected
snapshots from both 2008 and 2011 as they represent the
campus routing design before and after the redesign.

1) The 2008 design

Fig.2 illustrates the routing design of University-1’s network
in 2008. The graph was automatically generated by our toolkit.
We have double-checked the router configuration files, and
have also confirmed with University-1’s operators that the
graph depicts the routing design correctly.

Fig.2 shows that the network has seven routing instances,
EIGRP-1, two OSPF-1 (more on this later), OSPF-2, OSPF-3,

5



router-J*

router-G*

rotuer-E*

router-F*

bgp-Y
(2)

ospf-2
(6)

router-B*

ospf-1
(1)

eigrp-1
(99)

static

router-C*

AS-E

AS-B

AS-C

AS-Z

bgp-Z
(2)

router-D*

ospf-1
(1)

AS-A

AS-D

Fig. 3: University-1’s network routing design in 2011

RIP, and BGP-Z. All the routers shown are border routers that
route traffic across routing instances. In particular, routers C,
E and F are the gateway routers that run eBGP with external
AS-es; and the rest routers are internal border routers that
perform mutual route redistribution between the IGP instances.
We make several observations of this routing design.

First, the routers in the EIGRP-1 routing instance can be
grouped into two subinstances EIGRP-1-1 and EIGRP-1-2.
The border router G is the only router that connects the
two subinstances, so any route that is exchanged by the two
subinstances must go through router G. A route filter (denoted
by a short line crossing the edge in the graph) is placed on
the interface of router G that faces the subinstance EIGRP-1-
1, This filter prevents the two subinstances from exchanging
certain routes.

Further investigation reveals that, the routes that are filtered
out by that route filter are the routes of the external AS-D. The
routing design works in the following way. First, the gateway
router E runs an eBGP peering session with the AS-D. It also
performs mutual route redistribution between BGP and EIGRP.
Note that the router E only connects to the EIGRP-1-2 half
of the EIGRP instance, as shown in Fig.2. Second, all routers
in the subinstance EIGRP-1-2 learns those external routes of
AS-D injected by E. Third, when the subinstance EIGRP-1-2
sends those external routes through the router G to EIGRP-
1-1 as per the normal EIGRP protocol operation, the routes
are filtered out by the route filter on G. Hence the subinstance

EIGRP-1-1 will never know about those routes of AS-D. (Note
that the two subinstances can still exchange the EIGRP internal
routes, which are not affected by the route filter.)

From Fig.2, we can infer the rationale behind the routing
design as follows. There exist two different types of users in
the EIGRP routing instance. By the university policy, users of
Type-A should be able to reach the external AS-D, whereas
users of type-B must not. In order to meet this policy, the
operators created the two subinstances to contain the two
types of users respectively, connected the subinstance of type-
A users to the AS-D, and placed the route filter to prevent
it from exposing the routes to the subinstance of type-B
users. This interesting example illustrates the usage of routing
subinstances in operational networks, and highlights the need
of modeling routing design at the granularity of subinstances
rather than instances to preserve important policy information.

Second, the router G also performs mutual redistribution
between the EIGRP-1 and the OSPF-2 routing instances. Note
that there is no route filter installed on the redistribution path
that will prevent router G from redistributing those routes of
AS-D to the OSPF-2 instance. Indeed, we are able to confirm
that users in the OSPF-2 instance were all type-A users which
is allowed to reach AS-D.

Third, we note that in Fig.2, there are two OSPF-1 in-
stances that look identical: they are configured with the same
OSPF process ID, and connect to the same other instances.
consultation with the operators reveals that there is actually

6



just one such routing instance, but our data-set is missing
the configuration files of a few routers which all located in
OSPF-1. Those routers are from a different vendor and do not
understand the command we use to dump the configuration
snapshot. Without those routers, OSPF-1 would have been
partitioned the way as shown in the graph. This incident
confirms the correctness of our toolkit.

2) The 2011 design

Fig.3 depicts the routing design of the same university
in 2011. It can be seen very clearly that the network has
changed significantly from the 2008 snapshot. In the new
design, there are six routing instances: EIGRP-1, two OSPF-1
(same explanation applies), OSPF-2, BGP-Y, and BGP-Z. We
discuss some major design changes from 2008 below.

The first major change is that there is no subinstance in
the EIGRP-1 routing instance anymore. Investigation reveals
that (i) the EIGRP-1 instance in 2011 is the same as the old
EIGRP-1-1 subinstance in 2008, and (ii) the old EIGRP-1-2
subinstance has merged with the old OSPF-2 routing instance,
and becomes the new OSPF-2 routing instance. The result
of this redesign is that, now the EIGRP-1 instance contains
entirely the users of Type-B, and the OSPF-2 instance contains
entirely the users of Type-A. This is a cleaner design: it does
not require the use of route filters inside the EIGRP-1 instance,
nor does it require that the EIGRP-1 instance maintains the
special star-like topology as in 2008.

The second change to be noticed is the disappearance of
the RIP instance. Consultation with the operators reveals that
the original RIP instance was the network of a large college,
which was operated independently by a separate IT team back
in 2008, who happened to choose to run RIP in their network.
In 2011, the university central IT team has taken over the
operation of this network, and has subsequently merged it into
the EIGRP-1 instance for simplified operation. (The EIGRP-1
instance is the main data network of the university and has
always been operated by the university central IT.)

B. University-2’s network routing design

University-2 has a large campus as well, with more than
40,000 students. Its campus network is roughly of the same
size as University-1’s. Unfortunately, we were only able to
get 15 routers’ configuration files in 2009, which are only a
small subset of its network. However, after we analyze those
configuration files, these routers turn out to play important
roles in the network and the generated graph still exposes
important features of the network design.

University-2 network’s generated graph is given in Fig. 4.
What’s most impressive about this graph is the large number
of RIP routing instances. This network has 12 separate RIP
routing instances and 1 OSPF-1 routing instance. Between
each RIP routing instance and the OSPF-1 routing instance,
there is a border router that performs bidirectional redistri-
bution between them. In this way, the entire network was
connected together. A large number of routing instances of
the same protocol may look awkward at the first place. As

we only have a small subset of the network’s routers, it is
questionable whether the network really have so many distinct
RIP regions, or it has only one RIP instance and graph is
incorrect because of lacking configuration files of routers
that connect the separate RIP instances together. Our analysis
predict that those are indeed isolated RIP regions. As there is
a gateway router between each RIP instance and the OSPF-1
routing instance, if the RIP instances are indeed one single RIP
instance, there would be at least 12 gateway routers connecting
the RIP instance to the OSPF-1 instance, which is not only
very redundant and wasteful, but also error-prone. Also, as
further investigation suggests, dividing the network into 12
separate RIP regions and connecting them with one OSPF-1
instance turn out to be a good pattern.

One key issue in network routing design is scalability. Limi-
tation of routing protocols restricts the size of the network. For
example, RIP requires that any two hosts can only be at most
15 hops away. Limited resources of routers would also prefer
small networks. One common practice to achieve scalability is
dividing the network into several routing zones, each of which
runs a routing protocol independently, and a routing protocol
running on border routers of each zone connects all zones
together.

As we have known, University-2 has a large campus. If it
were only to run a small number of routing instances, it would
need highly sophisticated routing protocols, and subsequently,
it would need a large number of high-quality routers and great
effort to configure them for advanced protocols. Alternatively,
University-2’s network intensively utilize the idea of zone
division to achieve scalability. The network is divided into 12
zones (or more), each of which run a RIP protocol, and the
OSPF instance sits in the center of the network and connected
all RIP zones together. After dividing the network into 12
zones, each zone is small enough. Within each small zone, a
simple routing protocol like RIP will satisfy the need. And the
simple protocol only requires minimal router power and is easy
to configure. To connect the 12 separate zones together, an
advanced protocol should be run in the center of the network.
However, it only needs to run on a few routers within each
zone (in University-2, one router for each zone). In this way,
same or even better performance could be achieved with much
less money and configuration effort.

Comparing the graphs for University-1 and University-2, we
can see that both University-1 and University-2 divided their
networks into multiple routing instances. However University-
1 divided its network based on functionality, while University-
2 divided its network based on geographical location.

VI. Related Work and Conclusion
Among all related work, three studies of network routing

design [3], [4], [5] are most relevant. One proposed the model
of routing instances, and used it to reverse engineer the routing
design from operational networks [3]. The other two developed
models for understanding the connecting primitives [4], [5].
Our work improves these models in three important aspects.
First, all prior studies treat a routing instance as a monolithic

7



router-C*

ospf-1
(12)

rip
(1)

router-E*

rip
(1)

router-I

rip

bgp-X
(4)

rip
(1)

ospf-1

router-M*

router-G*

router-A* rip

rip
(1)

ospf-1 router-K

rip
(1)

router-F

rip
(1)

AS-X

rip

rip
(1)

ospf-1

router-L*

rip
(1)

rip

rip
(1)

ospf-1

router-D*

rip
(1)

router-B*

rip
(1)

router-J*

rip
(1)

Fig. 4: University-2’s network routing design in 2009

group of routers implementing a uniform set of routing poli-
cies, and do not consider policies within a routing instance. By
contrast, we show that such policies are found in operational
enterprise networks, and that ignoring them in the model can
result in loss of important design information. Further, we have
presented an algorithm for extracting those policies. Second,
one primary focus of this paper is to develop a framework
for automatic visualization of routing design in a human-
friendly and scalable way. To the best of our knowledge,
no prior work considered automatic visualization of routing
design. Finally, we have implemented a software prototype
based on the framework. We have used the prototype to study
several operational networks, and confirmed our findings with
the operators. This experience highlights the usefulness of our
toolkit.

Our own previous work [6] presents a tool for visualizing
and troubleshoot enterprise VLAN design. [7] briefly discusses
methods of visualizing class-of-service design for large VPNs.
By contrast, this work focuses on the routing design, which is
more complex to visualize. Finally, previous work has looked
at the static analysis of reachability policies, mainly focused on
the packet filters(e.g., [8], [9]). By contrast, this work focuses
on the routing design.

We are currently preparing the initial release of our toolkit.
In the future, we plan to enhance our toolkit to provide an in-
teractive user interface, which will allow users to dynamically
“zoom in” to part of the graph, and get in-depth information
about that specific part. For example, the user would be able
to zoom in to a particular routing instance and see the list of
routers in that instance; and then she can continue to zoom
in to a particular router in that list and check its interface
configuration. We expect this feature to be very useful in
assisting operators to trouble-shoot their networks.

Acknowledgment
This work was supported by NSF grants Career-0953622,

CNS-0721488 and CNS-0721574, and a research grant from
Cisco.

References
[1] Z. Kerravala, “Configuration management delivers business resiliency,”

The Yankee Group, Nov. 2002.
[2] S. Narain, “Network configuration management via model finding,” in

Proc. LISA Conference, 2005.
[3] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg,

“Routing design in operational networks: A look from the inside,” in
Proc. ACM SIGCOMM, 2004.

[4] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang, “Shedding light on the
glue logic of the internet routing architecture,” in Proc. ACM SIGCOMM,
2008.

[5] F. Le, G. G. Xie, and H. Zhang, “Understanding route redistribution,” in
Proc. International Conference on Network Protocols, 2007.

[6] S. Krothapalli, X. Sun, Y.-W. Sung, S. A. Yeo, and S. Rao, “A toolkit
for automating and visualizing vlan configuration,” in Proc. ACM SAFE-
CONFIG, Chicago, IL, NOV 2009.

[7] Y.-W. E. Sung, C. Lund, M. Lyn, S. Rao, and S. Sen, “Modeling
and understanding end-to-end class of service policies in operational
network,” in Proc. ACM SIGCOMM, Barcelona, Spain, August 2009.

[8] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “On static reachability analysis of IP networks,” in Proc.
IEEE INFOCOM, 2005.

[9] A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” in Proc. ICDCS, Genoa, Italy, June 2010.

8


