
Multipath Transport for Virtual Private Networks

Daniel Lukaszewski
Department of Computer Science

Naval Postgraduate School

Geoffrey G. Xie
Department of Computer Science

Naval Postgraduate School

Abstract

An important class of virtual private networks (VPNs)
builds secure tunnels at the transport layer leveraging
TCP or UDP. Multipath TCP (MPTCP), an ongoing
IETF effort that has been adopted into Linux and iOS,
extends TCP to allow data to be delivered over mul-
tiple network interfaces and paths simultaneously. In
this paper, using a testbed that can emulate a range of
path characteristics between the VPN end points, we first
empirically quantify the potential of using MPTCP tun-
nels to increase the goodput of VPN communications
when multiple data paths are available. We further de-
sign and implement a preliminary version of Multipath
UDP (MPUDP) to address the adverse effect of the du-
plicated congestion control actions that is known with
a TCP-in-TCP tunnel. We observe that a severe asym-
metry of path delays may cause an excessive amount of
packet reordering at the receiving end and consequently
degrade the overall performance of TCP-in-MPUDP tun-
nels. Moreover, we find that a packet scheduler capable
of tracking path delays and allocating more packets to
path(s) with shorter delay(s) to be an effective and rel-
atively lightweight solution for MPUDP, instead of an
elaborate data sequencing mechanism like the one used
by MPTCP.

1 Introduction

Virtual Private Networks (VPNs) are important to enter-
prises and government agencies as they provide secure
data communication at reasonable costs by leveraging
public or third-party network infrastructures. An impor-
tant class of VPNs builds secure tunnels at the transport
layer leveraging TCP or UDP. Several widely deployed
open source software systems such as OpenVPN [4] are
of this kind.

As computer hosts and mobile devices are increas-
ingly multi-homed, the Internet Engineering Task Force

(IETF) recently proposed a multipath TCP (MPTCP) ex-
tension (i.e. RFC 6824) to leverage the additional data
paths to increase throughput and support seamless mo-
bility. Essentially, MPTCP enables one or more TCP
connections (called subflows) to be added to a primary
TCP connection between two MPTCP capable end hosts.
Each subflow is added using the standard three-way
handshake along with a new TCP header option that has
been created to facilitate the creation of subflows as well
as identification of such packets at the receiving end.

In addition, MPTCP performs four major functions.
First, it incorporates a data sequence signal (DSS) mech-
anism to map the sequence numbers of individual sub-
flows into an overall master sequence number space at
the receiving end. Second, it employs a path manager
to identify available paths (i.e. socket pairs with distinct
IP address pairs or source ports) for creating new sub-
flows. Third, it runs a packet scheduler to distribute
packets among the active subflows. The default sched-
uler sends more packets on paths with shorter round trip
times (RTTs) [12]. Lastly, it introduces several new con-
gestion control algorithms to ensure that multiple sub-
flows of a same MPTCP connection will not be too ag-
gressive (i.e. take an unfair share of bandwidth) when
sharing a bottleneck link with regular TCP flows.

Several MPTCP implementations have been cre-
ated [11, 16]; the most frequently deployed being those
created for the Linux kernel and Apple iOS. Given this
availability, we have built an emulation testbed to eval-
uate the potential of using multipath VPN tunnels to in-
crease the performance of VPN communications when
multiple data paths are available from the VPN client to
the VPN server. The evaluation focused on utilizing TCP
services (e.g. file downloads and database transactions)
over VPN tunnels as these are the typical tasks performed
by a VPN user.

There is a well-known TCP-in-TCP effect [14], where
the application throughput may be unnecessarily de-
graded due to duplicated congestion control actions of

1



the two TCP connections involved. Therefore, in ad-
dition to an evaluation of MPTCP, this paper describes
our design and evaluation of a MPUDP prototype. More
specifically, our contributions are as follows:

1. We conducted an empirical performance evaluation
of MPTCP specific to VPN scenarios. The results
show that MPTCP can leverage an additional data
path between the VPN end points to increase the
application performance for a wide range of packet
loss and propagation delay configurations of the two
paths.

2. We designed and implemented basic MPUDP func-
tionality into the Linux transport layer and evalu-
ated its performance using the same VPN scenar-
ios. The results show that by using a packet sched-
uler that allocates more packets to the path with
the shorter RTT, the relatively lightweight MPUDP
can outperform MPTCP even when the paths have
a high degree of asymmetry in terms of their propa-
gation delays.

The rest of the paper is organized as follows. Section
2 discusses related work and we present the evaluation of
MPTCP tunnels in Section 3. The design and evaluation
of MPUDP is described in Section 4, followed by a short
discussion of limitations and future work in Section 5.
Finally, Section 6 concludes the paper.

2 Related Work

There is a large collection of empirical studies (e.g. [7,
11, 16]) done by the MPTCP designers and other re-
searchers to understand and improve the performance
of MPTCP. Specific to VPN scenarios, Boccassi et al.
developed a system called Binder [1], which uses two
OpenVPN gateways and an MPTCP tunnel between
them to aggregate the throughput of multiple data paths
within the core of a network. Our evaluation of po-
tential VPN performance boosts from MPTCP is com-
plementary to these prior studies. We additionally con-
duct experiments with a bursty packet loss model [13]
to understand the relative performance of MPTCP under
more stressful conditions where network congestion may
cause consecutive packet losses to a user connection.

In comparison, there is little work on MPUDP we can
find from the open literature. The most relevant study
known to us is a system called Multipath Mobile Shell
(MOSH) [3], which allows two communicating end hosts
to set up multiple UDP connections between them. Due
to its signaling with application specific messages, the
system is not a general transport layer solution like the
one presented in this paper.

Additionally, there are several studies covering band-
width aggregation techniques at the transport layer for
mobile hosts (e.g. [6, 10]). Unlike the approach of
MPTCP, these solutions require modifications of appli-
cations. However, it should be noted that some of the
path monitoring mechanisms they employ may be useful
for further development of MPUDP.

Finally, the adverse effects of using a TCP over TCP
connection is well documented. Olaf Titz [14] in the
early 2000’s explained how the outer TCP layer, the tun-
nel, may have a shorter retransmission timeout (RTO)
value than the inner TCP layer, which may trigger re-
transmissions earlier than necessary and ultimately cause
the connection throughput to degrade significantly. Our
work provides evidence that MPTCP tunnels may suffer
from similar effects.

3 Evaluation of MPTCP Tunnels

We first ran a series of experiments to validate the re-
ported performance benefits of MPTCP, and more im-
portantly, to obtain baseline data for comparison with
MPUDP. To achieve a comprehensive and reproducible
performance evaluation, we decided to use an emula-
tion testbed, with which we can test production VPN
and MPTCP software implementations that generate real
packets and at the same time, have fine-grain control over
the performance characteristics of data paths.

3.1 Testbed Setup

VPN
Server

Primary Link

Secondary Link

VPN
Client

Web
Server

Figure 1: Multipath emulation testbed.

As illustrated in Figure 1, the testbed consists of five
nodes, which are 1.86GHz dual-core desktop computers
with 4GB of RAM and running the Ubuntu 14.04 ver-
sion of Linux. Only the tunnel end points, i.e. the “VPN
Client” and “VPN Server” nodes, are MPTCP enabled
with the version 0.90 of the MPTCP software distribu-
tion, and additionally, these nodes are installed with the
OpenVPN 2.3.12 software. The “Web Server” node acts
as an enterprise intranet resource for the remote VPN

2



client and is configured to run the Apache2 web server
software. 10-Mbps Ethernet links are used for physical
node to node connections between the VPN end points to
mimic the typical range of WiFi and cellular data rates,
while a Gigabit Ethernet link is used to connect the “VPN
Server” and “Web Server” nodes.

3.1.1 Path Configurations

A wide range of performance characteristics of the pri-
mary and secondary data paths, in terms of the round trip
time (RTT) of signal propagation and packet loss rate,
can be precisely controlled by running the Linux traffic
control command tc [8] with appropriate parameters on
the “Primary Link” and “Secondary Link” nodes. Specif-
ically, the following configurations are used for the ex-
periments reported in this paper.

Packet loss rate: We used two random models to sim-
ulate packet losses on the data paths: (i) uniform per-
packet loss probability, which has been extensively used
in prior work, and (ii) Gilbert-Elliot (GE) packet loss
model [13], which we believe can capture more accu-
rately the likely occurrences of bursty packet loss events
on the Internet due to router buffer overflows. The GE
model uses two states: a Gap mode and a Burst mode,
and it is customizable with four parameters (p,r,k,h) as
follows. The model starts in the Gap mode and will shift
between the Gap and Burst mode with probability p and
r, respectively, after processing each packet. It will drop
a packet with probability 1�k and 1�h while in the Gap
and Burst mode, respectively, as illustrated in Figure 2.
We have estimated the overall packet loss rates for vari-
ous (p,r,k,h) combinations by collecting 100,000 ping
statistics over ten 10,000 ping intervals for each com-
bination. From the results, we decided to fix three of
the parameters as illustrated in Figure 2 and vary only
(1� k) to control the overall loss rate for the GE model
while ensuring that most of the loss bursts (> 90%) con-
sist of no more than two packets as one would expect for
one TCP or MPTCP flow during typical network conges-
tion. Table 1 shows the set of (1� k) values used in our
GE model experiments and their corresponding observed
overall loss rates.

Table 1: GE Model Configuration

1� k Observed Packet Loss Rate
0% 1%

0.5% 2%
1% 3%
3% 7%

Gap
1� k

Burst
1�h

r

p

Figure 2: Gilbert-Elliot model in action, with three of the
parameters fixed: p = 1%,r = 75%, and 1�h = 50%.

Propagation round trip time (RTT): The first set
of path RTT configurations we used are symmetric, i.e.
identical RTT values were configured with the tc com-
mand for the two paths. Seven RTT values were tested:
1ms, 10ms, 20ms, 40ms, 60ms, 80 ms, and 100ms.

It is often the case that the multiple packet forward-
ing paths available for a remote VPN client to reach its
home VPN server have different RTTs as these paths typ-
ically are provided by different network operators. For
this reason, we decided to also evaluate the performance
of MPTCP tunnels in the presence of asymmetric path
conditions. For the asymmetric tests, both the primary
and secondary paths were configured with the same loss
rates, but different RTT values. More specifically, we
experimented with five primary to secondary path RTT
ratios. Table 2 shows these primary and secondary path
RTT values and their ratios.

Table 2: Path RTTs Used in Asymmetric Tests

RTT Ratio Primary Path Secondary Path
1:1 20ms 20ms
1:2 20ms 40ms
1:3 20ms 60ms
1:4 20ms 80ms
1:5 20ms 100ms

MPTCP path managers: The 0.90 version of
MPTCP software comes with two path managers for
controlling the creation of subflows over available data
paths. The Fullmesh path manager is designed to ex-
plore all paths between two hosts by attempting to con-
nect each interface of one host to each interface of the
other [2]. By default, it creates one subflow per path; this
value can be increased with additional configuration.

The Ndiffports path manager is designed to “exploit
the equal costs multiple paths that are available in a data
center” [2]. Additionally, it allows nodes with only one
interface to utilize MPTCP by creating multiple subflows
for one path (i.e. the same source and destination IP ad-
dress pair) through the use of different source port num-
bers. By default, it creates two subflows per path; this
value can be increased with additional configuration.

3

Geoff Xie
In all cases, the end-to-end and tunnel RTTs are approximately the same. 

If the end-to-end RTT is significantly larger, the TCP-in-TCP may in fact be beneficial as the tunnel TCP will hide the loss events from the end-to-end TCP. 



3.1.2 Test Scenario and Performance Metric

We modeled the typical VPN scenario where a remote
user establishes a VPN connection with a home VPN
server and then downloads data from an intranet web
server. Specifically, for each experiment, we first set
up the VPN tunnel with a specific transport protocol and
path configuration, and then ran the wget utility on the
“VPN Client” node to download a 16-MB file from the
“Web Server” 20 times.

As the tunnel carries standard TCP traffic with built-in
congestion control, we use the average goodput as the
main performance metric and skip other common trans-
port layer issues such as fairness of bandwidth sharing.
The goodput of a successful download was calculated by
dividing the file size (i.e. 16 MB) by the total time re-
quired for the download. The average goodput and 95%
confidence interval for each experiment were then de-
rived from the 20 goodput samples.

It should be noted that the VPN tunnel was established
without the use of compression or encryption to allow for
ease of data collection and analysis. Furthermore, after
preliminary tests and survey of guidelines from various
sources regarding TCP performance tuning, we decided
to optimize some of the TCP specific OS parameters for
our specific testbed using the sysctl command. The
results are illustrated in Table 3.

Table 3: Baseline TCP Configuration

TCP specific OS Parameters Value
net.ipv4.tcp congestion control Cubic or BALIA
net.ipv4.tcp rmem 4096, 87380,
(min, default, max) 6291456
net.ipv4.tcp wmem 4096, 16384,
(min, default, max) 4194304
net.core.rmem max 212992
net.core.rmem default 212992
net.core.wmem max 212992
net.core.wmem default 212992
net.ipv4.tcp no metrics save Enabled

3.2 MPTCP over Symmetric Paths

Our first set of experiments over symmetric paths was
aimed to compare the Cubic and BALIA congestion con-
trol algorithms. The default TCP congestion control al-
gorithm used in Linux is Cubic. Cubic does not key on
ACK messages to adjust the congestion window. Instead,
Cubic will quickly increase the TCP congestion window
to a threshold level and then probe for additional band-
width that may be available. This form of congestion
control has been shown to be optimal for single paths

with high latency. However, prior work [15, 16] re-
ports that when Cubic is used with MPTCP and there
is a shared bottleneck with other TCP connections, the
MPTCP user is able to obtain a larger share of the bottle-
neck’s bandwidth. As one of the solutions to this prob-
lem, the BALIA algorithm [15] has been developed.

Figure 3 shows the performance of the two algorithms
under a uniform packet loss rate of 0.1%. (The trend is
similar with no packet loss or other loss rate settings.)
The results confirm that Cubic is much more aggressive
than BALIA in terms of bandwidth usage. Given Cubic’s
known unfriendly behavior toward regular TCP connec-
tions [15, 16], we used BALIA exclusively for the rest of
the experiments.

(a) Cubic

(b) BALIA

Figure 3: Performance of Cubic vs. BALIA congestion
control under 0.1% uniform packet losses

We introduced the GE packet loss model in the next
set of experiments. Figure 4 shows the results under
1% packet losses. As expected, the fullmesh MPTCP
VPN tunnel configuration shows a noticeable improve-
ment over the single path TCP tunnel. This improvement
becomes less significant as the path propagation RTTs
are increased. Surprisingly, MPTCP performed better
under the GE bursty loss model. We believe this is due
to the TCP fast recovery mechanism (RFC 2001), which
halves the congestion window only once upon consecu-
tive packet losses. It is also interesting to note the per-
formance of the ndiffports MPTCP path manager. Some
MPTCP developers consider this path manager to have
little practical use [2], but our results show that using

4



ndiffports can improve the goodput experienced. Finally,
the relative performance trend seen in Figure 4 remains
much the same for different packet loss rate settings. We
omit those plots for brevity.

(a) Uniform loss probability

(b) GE bursty loss model

Figure 4: Performance of MPTCP vs. single path TCP
under 1% packet losses

3.3 MPTCP over Asymmetric Paths
In this set of experiments, we evaluated only the fullmesh
path manager. The ndiffports path manager would not
make sense for asymmetric testing since it is designed for
hosts with a single interface. The packet loss rates were
controlled using the GE model according to Table 1, and
the path RTTs were varied according to Table 2.

The results are shown in Figure 5. As expected, the
best performance was obtained with the path RTT ra-
tio of 1:1. Interestingly, the performance degradations
due to path asymmetry, while noticeable, did not worsen
as the degree of asymmetry was increased. The results
show that MPTCP’s built in mechanisms for handling
path asymmetry [11] were largely effective in our exper-
iments.

4 Design and Evaluation of MPUDP

The previous section demonstrated the potential VPN
performance gains from using a MPTCP tunnel when
multiple physical network paths are available. How-
ever, as MPTCP applies standard TCP congestion con-

Figure 5: MPTCP performance over asymmetric paths
under the GE packet loss model

trol for each subflow, we hypothesized that the use of
MPTCP will face the same adverse effects of nested and
often excessive congestion control as in typical TCP over
TCP settings [5, 14]. To confirm such effects, using the
physical testbed and symmetric link test procedures from
Section 3, we compared single path UDP and TCP tun-
nel performance. Figure 6 plots the percent of goodput
increase by a TCP-in-UDP VPN file download relative to
that of a baseline TCP-in-TCP connection for a spectrum
of RTT and packet loss rate combinations. The results
clearly show the performance advantages of using UDP.
For this reason the default transport protocol for various
VPN software is set to UDP.

Figure 6: Goodput increase by using UDP vs. TCP for
a single path VPN tunnel with uniform packet loss rates.
Error bars show 95% confidence intervals.

4.1 Adding MPUDP to Linux with
Loadable Kernel Modules

In order to evaluate our hypothesis, we have chosen to
design and implement basic MPUDP functionality into
one of the latest MPTCP capable Linux kernels (i.e. v.

5



90). While it is feasible to add this functionality by revis-
ing the core Linux networking kernel code, as has been
done for MPTCP [11], to expedite debugging and testing,
we decided to implement MPUDP primarily as loadable
kernel modules (LKMs) as doing so requires a minimum
amount of kernel recompilation.

Specifically, we have created two LKMs in C, with
source files named MPUDP send.c and MPUDP recv.c
respectively. We have also added 6 lines of code1 to the
Linux kernel implementation of UDP (i.e. udp.c) for in-
voking functions defined in the LKMs as required. The
main function of the send side LKM identifies an addi-
tional outgoing interface to support a new subflow and
splits traffic in a 50/50 probabalistic fashion (i.e. 1:1)
among the two outgoing interfaces while the function of
the receive side LKM coalesces the two subflows into
a single input stream of packets to the destination UDP
socket used by the VPN tunnel. More details of our
MPUDP prototype are described in reference [9], which
includes the design of a general method for the two tun-
nel end points to enable MPUDP and agree on the set of
interfaces to leverage for multipath communication.

4.2 Evaluation
To evaluate the performance of MPUDP vs. MPTCP, we
first performed file downloads using each in symmetric
link settings with zero simulated packet losses. For ad-
ditional comparison, we also performed single path UDP
downloads under the same conditions. The results are
plotted in Figure 7. They show that MPUDP performs
better than MPTCP and the difference becomes more sig-
nificant as the RTT increases. This confirms our hypoth-
esis that MPTCP is prone to TCP-in-TCP performance
issue; in this case, the TCP subflows are slow to grab the
available bandwidth due to the TCP slow start and con-
gestion avoidance algorithms.

Figure 7: Performance of MPUDP vs. MPTCP and
single path UDP under zero packet loss.

1The code of our implementation is available at Github:
https://github.com/danluke2/mpudp vpn thesis.

To better see the effect of TCP-in-MPTCP, we ex-
amine the 40ms RTT test of Figure 7 more closely us-
ing packet traces collected at the web server. We ran-
domly select one trace each for MPTCP and MPUDP
and use Wireshark to drill down to the evolution of
the send sequence number (blue curve), acknowledge
number (brown curve) and expected received byte count
(green curve) during the first 0.3 seconds of the down-
loads. Figure 8 illustrates that the MPTCP tunnel was
much slower than its MPUDP counterpart in grabbing
the available bandwidth.

(a) MPTCP packet sub-capture

(b) MPUDP packet sub-capture

Figure 8: Close up analysis of MPTCP and MPUDP per-
formance with path RTT = 40ms

Next, we introduced packet losses into the evaluation.
We used two types of loss distributions: (i) uniform, and
(ii) GE burst model, as done in Section 3. The repre-
sentative results are plotted in Figure 9. They show that
with packet losses, MPUDP still outperformed MPTCP;
however, the advantage is not as significant because the
redundant congestion control with MPTCP likely had
some positive effect in reducing packet retransmissions.

Last, our MPUDP implementation does not have any
mechanism to re-sequence packets from multiple sub-
flows while MPTCP has a complex method to ensure
packets to be in order at the receiver. To understand
the performance impact of this design difference, we re-
peated the downloads with asymmetric link RTTs that

6



(a) 1% Packet loss rate (uniform probability)

(b) 3% Observed packet loss rate (GE burst model)

Figure 9: Performance of MPUDP vs. MPTCP and
single path UDP under packet losses.

should exacerbate the packet reordering problem. We
experimented with each of the five RTT configurations
as given in Table 2 under four different packet loss rates
as given in Table 1. We illustrate the results in Figure 10,
where the percentage of goodput change from MPTCP
to MPUDP is plotted. It is clear that our MPUDP imple-
mentation, which remains lightweight like the standard
UDP – by not having a re-sequencing mechanism and
splitting traffic using a probabilistic 50/50 method, can
perform poorly relative to MPTCP when the paths have
different delay characteristics. As expected, the effect
was more pronounced for a higher degree of link delay
asymmetry. Interestingly, the relative MPUDP perfor-
mance improved as the loss rate increased.

4.2.1 Path Aware Traffic Splitting

One observation from Figure 10 is that the packet losses
didn’t seem to compound the effect of packet re-ordering
as one might expect. That led us to a hypothesis that a
path aware traffic splitting method, i.e. one that takes the
path RTT difference into consideration might mitigate to
a large extent the negative effect of asymmetric link de-
lays on MPUDP performance.

To evaluate this hypothesis, we revised the function
of the send LKM to support custom traffic split ratio
(i.e. x%/(100�x)%), and then repeated the downloads of
Figure 10 using two new splits: 75%/25% and 90%/10%.

Figure 10: Percent of goodput change from MPTCP to
MPUDP under different link RTT ratios and loss rates. A
positive (negative) percentage value indicates an increase
(decrease) of performance with MPUDP.

The results are plotted in Figure 11. They show that by
shifting traffic away from the link of larger RTT, the rel-
ative performance of MPUDP improved.

Therefore, if the MPUDP sender has the ability to es-
timate the RTT differences among the available paths, it
should split traffic according to the RTT estimates, pro-
portionally putting more packets on the faster path(s).
One method to acquire such estimates might be to se-
lectively add timestamps to a subset of packets on each
path and have the receiver echo back these timestamps.

(a) 75/25 traffic split

(b) 90/10 traffic split

Figure 11: MPUDP relative performance improved by
sending less traffic on the path of larger RTT.

7



5 Discussion

In this section, we discuss additional performance fac-
tors beyond the scope of our evaluation. We also identify
some limitations of our study and pertinent future work.

First, from Figures 7, 9, and other relevant data, we
observe that the performance of MPTCP, MPUDP and
UDP all declined sharply for paths with moderate to long
RTTs (20ms to 100ms) and low to moderate loss rates
(0.1% to 3%). One can hypothesize that a forward er-
ror correction (FEC) scheme might improve the overall
goodput in these settings. The main trade-off would be
the communication and computational overhead incurred
for providing FEC.

Second, our experiments with asymmetric link con-
figurations did not include asymmetric link transmission
rates. As discussed in Section 4.2.1, it may be important
for MPUDP to be informed of such rate differences in or-
der to maximize performance. Therefore, the question of
how to maintain up to date knowledge of individual path
performance characteristics should be a fertile ground for
future work on MPUDP.

Last, some enterprise applications use UDP, and typi-
cally their performance concern is not goodput, but mes-
sage timing and/or fair sharing of bandwidth with other
applications. While this paper focuses on TCP as the
end-to-end transport protocol, it will be beneficial to
study the impact of multipath VPN transport on UDP ap-
plications.

6 Conclusion

The empirical results presented in this paper provide
strong evidence that MPTCP can increase the perfor-
mance of TCP applications over a VPN tunnel when
multiple data paths are available between the VPN end
points. Consistent performance gains have been ob-
served for a wide spectrum of path characteristics in
terms of packet losses, propagation delays, and path
asymmetry.

The additional performance gains from the basic
MPUDP functionality, which is the case even in the pres-
ence of path asymmetry, is both surprising and encour-
aging, given the design’s simplicity and relatively weak
assumption of a path-aware packet scheduler. We be-
lieve more studies are necessary to understand the TCP-
in-MPUDP dynamics and find a good balance point be-
tween controlling complexity and maximizing perfor-
mance.

Acknowledgements

We would like to thank Henry Foster and anonymous
reviewers for their helpful comments.

References
[1] BOCCASSI, L., FAYED, M. M., AND MARINA, M. K. Binder:

A system to aggregate multiple Internet gateways in community
networks. In Proc. ACM MobiCom Workshop on Lowest Cost
Denominator Networking for Universal Access (2013).

[2] BONAVENTURE, O. Blog entry: Recommended Multipath TCP
configuration, 2014.

[3] BOUTIER, M., AND CHROBOCZEK, J. User-space Multipath
UDP in MOSH. Accessed January 15, 2017.

[4] FEILNER, M., AND GRAF, N. Beginning OpenVPN 2. 0. 9: Build
and Integrate Virtual Private Networks Using OpenVPN. Packt
Publishing Ltd, 2009.

[5] HONDA, O., OHSAKI, H., IMASE, M., ISHIZUKA, M., AND
MURAYAMA, J. Understanding TCP over TCP: Effects of TCP
tunneling on end-to-end throughput and latency. In Proc. SPIE
(2005), vol. 6011.

[6] HSIEH, H.-Y., AND SIVAKUMAR, R. ptcp: An end-to-end trans-
port layer protocol for striped connections. In Network Proto-
cols, 2002. Proceedings. 10th IEEE International Conference on
(2002), IEEE, pp. 24–33.

[7] KHALILI, R., GAST, N., POPOVIC, M., UPADHYAY, U., AND
LE BOUDEC, J.-Y. MPTCP is not pareto-optimal: performance
issues and a possible solution. In Proc. ACM Int. Conf. on Emerg-
ing networking experiments and technologies (Dec. 2012).

[8] KUZNETSOV, A. N. Linux traffic control (tc) command.
https://linux.die.net/man/8/tc.

[9] LUKASZEWSKI, D. Multipath transport for virtual private net-
works. M.S. thesis, Naval Postgraduate School, 2017.

[10] MAGALHAES, L., AND KRAVETS, R. Transport level mech-
anisms for bandwidth aggregation on mobile hosts. In Net-
work Protocols, 2001. Ninth International Conference on (2001),
IEEE, pp. 165–171.

[11] PAASCH, C. Improving Multipath TCP. PhD thesis, UC Louvain,
Belgium, Nov. 2014.

[12] PAASCH, C., AND BARRE, S. Multipath TCP in the Linux ker-
nel. Accessed January 15, 2017.

[13] PIERRE EBERT, J., AND WILLIG, A. A Gilbert-Elliot bit error
model and the efficient use in packet level simulation. Tech. rep.,
Technical University Berlin, 1999.

[14] TITZ, O. Why TCP over TCP is a bad idea. http://sites.inka.de
/bigred/devel/tcp-tcp.html. Accessed January 15, 2017.

[15] WALID, A., PENG, Q., LOW, S. H., AND HWANG, J. Balanced
linked adaptation congestion control algorithm for MPTCP.
Internet-draft, Internet Engineering Task Force, Jan. 2016.

[16] WISCHIK, D., RAICIU, C., GREENHALGH, A., AND HAND-
LEY, M. Design, implementation and evaluation of congestion
control for multipath TCP. In Proc. USENIX conference on Net-
worked systems design and implementation (2011), pp. 99–112.

8


