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ABSTRACT
With the advance of mobile devices, cloud computing has en-
abled people to access data and computing resources without
spatiotemporal constraints. A common assumption is that
mobile devices are well connected to remote data centers and
the data centers securely store and process data. However,
for systems like mobile cloud deployed in infrastructureless
dynamic networks (i.e., with frequent topology changes be-
cause of node failure/unavailability and mobility), reliability
and energy efficiency remain largely unaddressed challenges.
To address these issues, we develop the first “k-out-of-n com-
puting” framework that ensures nodes retrieve or process
data stored in mobile cloud with minimum energy consump-
tion as long as k out of n storage/processing nodes are ac-
cessible. We demonstrate the feasibility and performance of
our framework through both hardware implementation and
extensive simulations.

Categories and Subject Descriptors
C.2 [Networks]: Mobile Networks, Mobile ad hoc net-
works, Dynamic Network; H.3 [Information Systems]:
Distributed Storage

Keywords
Mobile Cloud, Distributed Storage, Distributed Data Pro-
cessing

1. INTRODUCTION
With the explosion of personal mobile devices, cloud com-

puting has gained popularity and become the norm in the
past decade. However, due to limited resources of mobile
devices (e.g., energy, processing, and memory), executing
sophisticated applications (e.g., video and image storage
and processing, or map-reduce type) on mobile devices re-
mains challenging. To enable such applications on mobile
devices, many commercial applications like Google Goggle
and Siri rely on offloading data and computation-intensive
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tasks to high-performance computers. Nevertheless, in situ-
ations such as disaster response or military operations, high-
performance computers are not immediately available; in-
stead, a quick and flexible ad hoc network is required.

In this paper, we propose the first framework to support
fault-tolerant and energy-efficient remote storage & proces-
sing under a dynamic network topology. We integrate the
k-out-of-n reliability mechanism into distributed computing
in dynamic networks. The k-out-of-n system, a well-studied
topic in reliability control, ensures that a system of n com-
ponents operates correctly as long as k or more components
work [5]. More specifically, we investigate how to store data
as well as process the stored data with k-out-of-n reliability
such that: 1) the energy consumption for retrieving dis-
tributed data is minimized; 2) the energy consumption for
processing the distributed data is minimized; and 3) data
and processing are distributed considering dynamic topol-
ogy changes.

In our proposed framework, a data object is partitioned
into n fragments and stored on n different nodes. As long as
k or more of the n nodes are available, the data object can
be recovered. Similarly, another set of n nodes are assigned
tasks for processing the stored data and all tasks can be
completed as long as k or more of the n nodes finish the as-
signed tasks. The parameters k and n determine the degree
of reliability; system administrators select these parameters
based on their reliability requirements. The contributions
of this paper are summarized as follows:

• it presents a mathematical model for both optimizing
energy consumption and meeting the fault tolerance
requirements of data storage and processing under a
dynamic network topology.

• it presents an efficient algorithm for estimating the
communication cost in a dynamic network, where
nodes fail or move, joining/leaving the network.

• it presents the evaluation of our proposed framework
through real hardware implementation as well as ex-
tensive simulations particularly for large-scale net-
works.

2. RELATED WORK
Replicating data to multiple locations is a common tech-

nique for improving performance and reliability in dis-
tributed computing. Erasure coding has also been a widely
used technique for enhancing data reliability [12]. Repli-
cating data incurs storage overhead while achieving higher
reliability; coding techniques reduce storage overhead while
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not performing well when nodes are not reliable, e.g., in
dynamic networks [13].

Some researchers proposed solutions for achieving higher
reliability in dynamic networks. Dimakis et al. proposed
several erasure coding algorithms for maintaining a dis-
tributed storage system in a dynamic network [6]. Leong
et al. proposed an algorithm for optimal data allocation
that maximizes the recovery probability [9]. Aguilera et al.
proposed a protocol to efficiently adopt erasure code for bet-
ter reliability [1]. These solutions, however, focused only on
system reliability but did not consider energy efficiency.

Cloud computing in a small-scale network with battery-
powered devices has also gained attention recently. Cloudlet
is a resource-rich cluster that is well-connected to the Inter-
net and is available for use by nearby mobile devices [10]. A
mobile device delivers a small Virtual Machine (VM) overlay
to a cloudlet infrastructure and lets it take over the compu-
tation. Similar works that use VM migration are also done
in CloneCloud [2] and ThinkAir [8]. MAUI uses code porta-
bility provided by Common Language Runtime to create
two versions of an application: one runs locally on mobile
devices and the other runs remotely [4]. MAUI determines
which processes to be offloaded to remote servers based on
their CPU usages. Serendipity considers using remote com-
putational resource from other mobile devices [11]. Most
of these works focus on minimizing the energy and do not
address system reliability.

3. ARCHITECTURE
An overview of our proposed framework is depicted in

Figure 1. Applications generate data; our framework stores
the data in the network. For higher data reliability, each
data is encoded and partitioned into fragments. These frag-
ments then are distributed to a set of storage nodes. In or-
der to process the data, applications provide functions that
take the stored data as inputs. Each function is instantiated
into multiple tasks that will process the data simultaneously.
Nodes that execute these tasks are processor nodes. We call
a set of tasks instantiated from one function as a job. Client
nodes are the nodes that request data allocation or proces-
sing operations. A node can have any combination of roles
from: storage node, processor node, or client node, and any
node can retrieve data from storage nodes. Without loss
of generality, we consider a single dataset – which is stored
once and may be retrieved multiple times by any node. Our
framework consists of five components: Topology Discovery
and Monitoring, Failure Probability Estimation, Expected
Transmission Time (ETT) Computation, k-out-of-n Data
Allocation, and k-out-of-n Data Processing.

When a request for data allocation is received from appli-
cations, the Topology Discovery and Monitoring component
provides network topology information and failure probabil-
ities of nodes. The failure probability, which depends on
the battery lifetime, network connectivity, and application-
specific factors, is estimated by the Failure Probability com-
ponent on each node. Based on the retrieved failure proba-
bilities and network topology, the ETT Computation com-
ponent computes the ETT matrix, which represents the ex-
pected energy consumption for communication between any
two nodes in the network. The “expected” communication
cost indicates that the estimated ETT between nodes con-
siders the dynamically changing topology. Given the ETT
matrix, our framework finds the locations for storing frag-
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Figure 1: Architecture for integrating the k-out-of-n
data allocation framework.

ments. The k-out-of-n Data Allocation component parti-
tions a data object into n fragments and stores these frag-
ments in the network such that the energy consumption for
retrieving k fragments by any node is minimized. If an ap-
plication needs to process the data, the k-out-of-n Data Pro-
cessing component creates a job of M tasks and schedules
the tasks on n processor nodes such that the energy con-
sumption for processing these data is minimized. This com-
ponent ensures that all tasks complete as long as k or more
processor nodes finish their assigned tasks.

4. PROBLEM FORMULATION
Having explained the overall architecture of our frame-

work, we now present design primitives for the k-out-of-n
data allocation and k-out-of-n data processing. We con-
sider a dynamic network with N nodes denoted by a set
V = {v1, v2, ..., vN }. We assume nodes are time synchro-
nized. For convenience, we will use i and vi interchangeably
hereafter. The network is modeled as a graph G = (V, E),
where E is a set of edges. Each node has an associated fail-
ure probability P [fi] where fi is the event that causes node
vi to fail.

Relationship Matrix R is a N × N matrix which defines
the relationship between nodes and storage nodes. More
precisely, each element Rij is a binary variable – if Rij is
0, node i will not retrieve data from storage node j; if Rij

is 1, node i may retrieve data from storage node j. Storage
node list X is a binary vector containing storage nodes, i.e.,
Xi = 1 indicates that vi is a storage node.

The Expected Transmission Time Matrix D is defined as
a N × N matrix where element Dij corresponds to the ETT
for transmitting a fixed size packet from node i to node
j considering the failure probabilities of nodes in the net-
work, i.e., multiple possible paths between node i and node
j. The ETT metric [3] has been widely used for estimating
transmission time between two nodes in one hop. We as-
sign each edge of graph G a positive estimated transmission
time. Then, the path with the shortest transmission time
between any two nodes can be found. However, the shortest
path for any two nodes may change over time because of the
dynamic topology. ETT, considering multiple paths due to
nodes failures, represents the “expected” transmission time,
or “expected” transmission energy between two nodes.

In general, each node may have different energy cost de-
pending on their energy sources, e.g., nodes attached to
a constant energy source may have zero energy cost while
nodes powered by a battery may have relatively high energy
cost. For simplicity, we assume the network is homogeneous
and nodes consume the same amount of energy for proces-
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Ropt = arg min
R

N∑
i=1

N∑
j=1

DijRij (1)

Subject to:
N∑

j=1

Xj = n (2)

N∑
j=1

Rij = k ∀i (3)

Xj − Rij ≥ 0 ∀i (4)
Xj and Rij ∈ {0, 1} ∀i, j (5)

sing the same task. As a result, only the transmission energy
affects the energy efficiency of the final solution.

4.1 k-out-of-n Data Allocation
In this problem, we are interested in finding n storage

nodes denoted by S = {s1, s2, ...sn} , S ⊆ V such that the
total expected transmission cost from any node to its k clos-
est storage nodes – in terms of ETT – is minimized. We
formulate this problem as an ILP as shown in Equations 1
- 5.

The first constraint (Eq 2) selects exactly n nodes as stor-
age nodes; the second constraint (Eq 3) indicates that each
node has access to k storage nodes; the third constraint
(Eq 4) ensures that jth column of R can have a non-zero
element if only if Xj is 1; and constraint (Eq 5) is binary
requirements for the decision variables.

4.2 k-out-of-n Data Processing
The objective of this problem is to find n nodes in V as

processor nodes such that energy consumption for processing
M tasks of a single job is minimized. In addition, all tasks
must complete as long as k or more processor nodes can
finish their assigned tasks.

In this problem, n nodes are selected as processor nodes;
each processor node is assigned one or more tasks. Each
task is replicated to n−k +1 processor nodes. However, not
all instances are processed – once an instance of the task
completes, all other instances will be canceled. The task
allocation can be formulated as an ILP as shown in Equa-
tions 6 - 10. In the formulation, Rij is a N × M matrix
which predefines the relationship between processor nodes
and tasks; each element Rij is a binary variable indicat-
ing whether task j is assigned to processor node i. X is a
binary vector containing processor nodes, i.e., Xi = 1 in-
dicates that vi is a processor node. The objective function
minimizes the transmission time for n processor nodes to

Ropt = arg min
R

N∑
i=1

M∑
j=1

T r
ijRij (6)

Subject to:
N∑

i=1

Xi = n (7)

N∑
i=1

Rij = n − k + 1 ∀j (8)

Xi − Rij ≥ 0 ∀i (9)
Xj and Rij ∈ {0, 1} ∀i, j (10)
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Figure 2: An overview of improved MDFS.

retrieve all tasks and their instances. The first constraint
(Eq 7) indicates that n of the N nodes will be selected as
processor nodes. The second constraint (Eq 8) replicates
each task to (n − k + 1) different processor nodes. The third
constraint (Eq 9) ensures that the jth column of R can have
a non-zero element if only if Xj is 1; and constraint (Eq 10)
is binary requirements for the decision variables.

5. SYSTEM IMPLEMENTATION
This section investigates the feasibility of running our

framework on real hardware. We implemented a mobile dis-
tributed file system (MDFS) on top of the k-out-of-n frame-
work. Figure 2 shows an overview of our MDFS. As shown,
each file is encrypted by a secret key and partitioned into
n1 file fragments. The secret key is also decomposed into n2
key fragments by using Shamir’s key sharing algorithm. The
file and key fragments are distributed independently to the
network. When a node needs to access a file, it must retrieve
at least k1 file fragments and k2 key fragments. Our k-out-
of-n data allocation allows nodes to optimally distribute the
file and key fragments, when compared with the state-of-art
MDFS that distributes file and key fragments uniformly in
the network [7]. The ratio k1/n1 determines the reliability
of a file and the ratio k2/n2 indicates the security of the file.
Decreasing k1/n1 ratio improves the file reliability, while in-
creasing k2/n2 ratio strengthens the security. Consequently,
our k-out-of-n enabled MDFS to achieve higher reliability
,energy efficiency, and security. On top of our MDFS, we
also test our k-out-of-n data processing component by im-
plementing a face recognition application that counts the
number of faces appearing in a set of files stored in the net-
work. Our k-out-of-n framework selects n processor nodes
to retrieve and analyze the files in an energy-efficient and
reliable way.

We implemented our system on HTC Evo 4G Smart-
phones, which run Android 2.3 OS using 1G Scorpion CPU,
512MB RAM, and a Wi-Fi 802.11 b/g interface. To enable
the Wi-Fi AdHoc mode, we rooted the device and modified
a config file – wpa_supplicant.conf. For this experiment we
varied network size N and set n1 = ⌈0.6N⌉, k1 = ⌈0.3n1⌉
and n2 = ⌈0.6N⌉, k2 = ⌈0.6n2⌉. Figure 3 shows measured
time of each component. As shown, distributing/retrieving
fragments takes much longer time than computation, which
affirms that our goal of minimizing communication energy
is necessary. We also observe that larger network sizes incur
longer distributing/retrieving time. This is because frag-
ments are more sparsely distributed, resulting in more hops
to distribute/retrieve fragments.
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Figure 3: Execution time of different components.
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Figure 4: Data retrieval time.

We then compared the file retrieval time between our al-
location and random allocation. As shown in Figure 4, our
framework achieves 15% to 25% smaller data retrieval time
than Random. To validate the performance of our k-out-of-
n data processing, we measured the completion rate of our
face-recognition algorithm by varying the number of node
failures. The face recognition algorithm had an average com-
pletion rate of 95% in our experimental setting.

6. SIMULATION RESULTS
We performed simulations to evaluate the performance of

our k-out-of-n framework (denoted by KNF) in larger scale
networks. We consider a network of 400×400m2 where up
to 45 mobile nodes are randomly deployed. The commu-
nication range of a node is 130m. Two different mobility
models are tested – Markovian Waypoint Model and Refer-
ence Point Group Mobility (RPGM). Markovian Waypoint
is similar to Random Waypoint Model in which it randomly
selects the waypoint of a node, but it accounts for the current
waypoint when it determines the next waypoint. RPGM
is a group mobility model where a set of leaders are se-
lected; leaders move based on Markovian Waypoint; and
other nodes follow their closest leaders.

We compare KNF with two other schemes – a greedy al-
gorithm (Greedy) and a random placement algorithm (Ran-
dom). Greedy selects nodes with the largest number of
neighbors as storage nodes. Random selects storage nodes
randomly. The goal is to evaluate how the selected storage
nodes impact the performance. We measure the following
metrics: consumed energy for retrieving data, consumed en-
ergy for processing a job, data retrieval rate, and completion
rate of a job. A node may fail due to two independent fac-
tors: depleted energy and an application-dependent failure
probability; specifically, the energy associated with a node
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Figure 6: Effect of node density.

decreases as the time elapses. The lower the energy is, the
higher the failure probability. Each node is assigned a con-
stant application-dependent failure probability. In particu-
lar, for the simulations of our k-out-of-n data processing, we
also artificially force various number of nodes to fail.

6.1 k-out-of-n data allocation
Figure 5 shows that mobility causes nodes to spend higher

energy in retrieving data compared with the static network
and the energy consumption for RPGM is smaller than that
for Markov. It also shows that the energy consumption for
RPGM is smaller than that for Markov. The reason is that a
storage node usually serves the nodes in its proximity; thus
when nodes move in a group, the impact of mobility is less
severe than when all nodes move randomly. In all scenarios,
KNF consumes lower energy than others.

Figure 6 shows that KNF achieves 15% to 25% higher
retrieval rate than others because KNF takes the dynamic
nature of the network into account when selecting storage
nodes. We also observe that the retrieval rates increase with
higher network density. The explanation is that, with higher
network density, client nodes can find more reliable paths to
storage nodes and the network is less likely to be partitioned
due to node failures. Since the simulations run for 4 hours
and several nodes fail in the last hour due to depleted energy,
the highest retrieval rate of KNF is only 80%.

6.2 k-out-of-n data processing
This section investigates how the failures of processor

nodes affect the energy efficiency and job completion rate.
In Greedy, each task is replicated to n-k+1 processor nodes
that have the lowest energy consumption for retrieving the
task, and given a task. In Random, the processor nodes are
selected randomly and each task is also replicated to n-k+1
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Figure 7: Effect of node failure on energy efficiency.

processor nodes randomly. When a node fails, we assume
none of the tasks assigned to it can be completed.

Figure 7 shows that KNF consumes 10% to 30% lower en-
ergy than Greedy and Random. We observe that the energy
consumption is not sensitive to the number of node failures.
When there is a node failure, a task may be executed on a
less optimal processor node and causes higher energy con-
sumption. However, this difference is small because given a
task, it is replicated to n-k+1 processor nodes and failing
an arbitrary processor may have no effect on the execution
time of the job at all.

In Figure 8, we see that the completion ratio is 1 when no
more than n−k nodes fail. An interesting observation is that
Greedy has the highest completion ratio. The main reason is
because, in Greedy, the load on each node is highly uneven,
meaning that some processor nodes may have many tasks
but some may not have a task. This allocation strategy
achieves high completion ratio because all tasks can com-
plete as long as one of such high load processor nodes can
finish all its assigned tasks. In our simulation, about 30%
of processor nodes in Greedy are assigned all M tasks. An-
alytically, if three of the ten processor nodes contain all M
tasks, the probability of completion when 9 processor nodes
fail is 1 −

(7
6

)
/
(10

9

)
= 0.3.

7. CONCLUSIONS
We presented the first k-out-of-n data alloca-

tion/processing framework that jointly addresses the
energy-efficiency and fault-tolerance challenges in dynamic
networks. It allocates data fragments to storage nodes
such that other nodes retrieve data reliably with minimal
energy consumption; when applications need to process
data stored in the network, the framework selects a set
of processor nodes to execute the job such that the job
can be completed with minimal energy consumption and
high completion rate. We demonstrated the effectiveness of
our framework through both system implementation and
simulations in large-scale networks.
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