
Building and Evaluating a k-Resilient Mobile
Distributed File System Resistant to Device

Compromise
Scott Huchton

Department of Computer Science
Naval Postgraduate School

Monterey, California
Email: sthuchto@nps.edu

Geoffrey Xie
Department of Computer Science

Naval Postgraduate School
Monterey, California
Email: xie@nps.edu

Robert Beverly
Department of Computer Science

Naval Postgraduate School
Monterey, California

Email: rbeverly@nps.edu

Abstract—Deploying mobile devices to frontline troops presents
many potential benefits, e.g. situational awareness, enhanced
communication capabilities, etc. However, security remains an
impediment to realizing such capability. In this research, we
develop and evaluate an approach to securing the non-volatile
storage of a collection of mobile devices. Our technique relies
on well-established cryptographic primitives, combining them in
a unique way to meet military mission specific security and re-
siliency requirements. Specifically, we create MDFS, a distributed
mobile file system using erasure coding, Shamir’s threshold secret
sharing, and the symmetric AES block cipher. The resulting
system provides two important properties: (1) data at rest is
protected even after total compromise of up to k devices, and
(2) data is replicated within an infrastuctureless ad hoc network
and, as such, resilient to device outages. We implement MDFS
on Android mobile devices and achieve '10Mbps throughput in
real-world performance experiments, suggesting that MDFS is
suitable for a variety of practical workloads.

I. INTRODUCTION

The proliferation of mobile “smartphones” is receiving
considerable attention within the military community [1],
[2]. Providing frontline troops with such mobile devices
promises to enhance situational awareness, provide enhanced
communication and computing abilities, etc. A collection of
mobile devices could form a mobile ad-hoc network (MANET)
capable of distributing tactically relevant information to and
within the battlefield.

However, communicating and storing sensitive information
comes at a potential cost to mission security. For example, if
a device is captured by an adversary, the mission might be
compromised due to either information leakage or unavail-
ability of the device. Common approaches to data sharing
on mobile devices, e.g. [3], tend to focus on routing and
transmission security. Transmission security addresses one
important aspect of the overall threat model, but offers no
solution to data resiliency or data security when a device is
captured. Other approaches, e.g. tamper resistance [4], require
specialized manufacturing and increase per-device cost beyond
levels realistic for widespread deployment.

To address the security of data at rest in military mobile
phone MANETs, we develop and evaluate a prototype k-

resilient storage system: the Mobile Distributed File System
(MDFS). As opposed to authenticating devices or securing
the communication channel, we focus on securing content
in the non-volatile storage of the mobile devices. Thus, our
system is complementary to existing authentication, privacy,
and integrity techniques.

More specifically, MDFS ensures data privacy through a
group secret sharing scheme instead of relying on conventional
independent encryption keys per device or per user. As a
result, the system is resistant to total device compromise as
long as fewer than k devices are captured or lost, where k
is a customizable parameter. We call such a storage system
k-resilient in withstanding device captures and note that when
k > 1 the system provides a stronger security guarantee than
simply encrypting stored data per-device.

We imagine MDFS useful in many practical military scenar-
ios. Suppose a team of soldiers are on a mission where access
to, and sharing of, data is critical to mission success. The
soldiers require devices capable of transmitting and storing
sensitive data, but the loss of one or more of those devices
could prove devastating if the enemy is able to gain access
to the sensitive data. Encryption on the mobile device only
partially solves this problem and does not address the issue
that the data stored on the lost device is no longer available
to the rest of the team. More importantly, if the encryption
key were coerced or otherwise recovered, all data residing on
the compromised device is revealed. Building a “remote kill”
feature into the mobile devices can mitigate the problem, but
such a solution works only when the captured devices remain
connected to the network.

MDFS combines several well-established concepts, includ-
ing Shamir’s threshold based secret sharing scheme [5], era-
sure coding [6], and AES encryption [7] to create a functional
design for secure and resilient data sharing among a collection
of mobile devices. For security, MDFS fragments content and
securely stores fragments across multiple devices such that
content can be reconstituted only when greater than a pre-
specified number of distinct fragments are accessible con-
temporaneously. For resilience, MDFS employs information

redundancy such that different collections of devices may
feasibly collaborate to recover the content. An added benefit
of MDFS is that each file is encrypted with a one-time dynam-
ically generated encryption key; as such, MDFS requires no
pre-sharing of encryption keys and thus avoids security issues
associated with key distribution and management.

One major practical concern for deploying MDFS is that the
combined processing requirement of its various components
may exceed the capabilities of mobile phone hardware. Even
in the future, data size requirements will scale in proportion to
the computational abilities of mobile devices. To understand
the practicality of MDFS, we describe and perform a series
of experiments with a prototype implementation of MDFS in
Java and C on a common 1GHz smartphone, an Android 2.2
[8] device.

This paper describes the MDFS design in detail and presents
experimental results that demonstrate the feasibility of imple-
menting MDFS on current Android hardware. Our primary
contributions include:

1) The design and implementation of MDFS on current
state-of-the-art mobile hardware.

2) Quantification, via real-world experiments, of MDFS
performance.

The remainder of this paper discusses related work (§II), the
design of MDFS (§III) and performance results (§IV). Finally,
we discuss implications of our work on the design of secure
mobile file systems and conclude with future work.

II. RELATED WORK

Substantial work in disk forensics has shown the vast
amount of sensitive information available to an adversary with
physical access to a device that has not been properly secured.
Specific to mobile phones, Distefano et al. [9] demonstrate the
extent to which Android is vulnerable to forensic techniques
while commercial entities now provide such forensic capabili-
ties for smartphones [10]. Thus, protecting non-volatile storage
is an essential component of mobile device security.

Conventional approaches to securing data at rest rely on
symmetric encryption [11] of files, the file system, or the
physical device. Modern operating systems include the ability
to encrypt non-volatile data, while a wide variety of third-
party software provides additional enhancements, including
plausible deniability [12]. Storage device manufacturers now
provide hardware-based encryption schemes. The primary
weakness of these schemes lies in how the encryption keys
are stored. Trusted Platform Modules can tie storage devices
to hardware, but none of the existing techniques prevent key
recovery by coercion.

Specialized, security hardened mobile phones exist for
military applications [13], [14], however these devices are
expensive to deploy and maintain. Perhaps more importantly,
they are designed to secure the device, not a mission that
involves multiple communicating parties. Thus, our focus on
ensuring resilience, e.g. data availability, in the face of device
capture, is complementary to these hardware approaches.

The concept of physically separating file fragments to
provide security has been explored before. Unisys Systems
provides this ability for enterprise networks with a product
called Stealth Technology [15]. Stealth uses a subsystem called
SecureParser that is capable of generating encryption key
fragments in much the same way that MDFS does. Stealth uses
distributed storage and encryption to allow an organization
to simulate multi-level security access based on workgroup
affiliations. Stealth uses the Multi-Level Security Tunneling
Protocol (MLSTP) at a gateway to break data into fragments
and then encrypts those fragments using a session key before
storing the fragments in cloud storage. Stealth is similar to
MDFS in that access to the shares acts as the authority to
view the data. However, MDFS is implemented on relatively
constrained resources and does not rely on gateway servers or
tunneling protocols to achieve security.

MDFS shares design aspects with the open source Tahoe-
LAFS project [16]. Tahoe-LAFS stores file fragments across
many physical drives to provide “provider independent se-
curity.” However, to the best of our knowledge, the use of
fragmented storage on mobile devices has not been explored.
MDFS’s ability to operate without infrastructure in a wireless
environment differentiates it from existing solutions.

A. Erasure Coding and Shamir’s Algorithm

Erasure codes are forward error correction (FEC) codes that
translate some message M of length |M | into a coded message
with a length greater than |M | such that M can be recovered
from some subset of the coded message. In 1960, Reed and
Solomon introduced a Maximum Distance Separable (MDS)
algorithm [17]. An MDS erasure code stores a message M
in n fragments of size |M |/k such that any k < n of the
fragments is sufficient to reconstruct M .

Shamir’s Secret Sharing Algorithm [5] is closely related to
Reed-Solomon and other erasure codes [6]. First proposed in
1979, the algorithm computes from a secret S a set of partial
secrets and distributes the partial secrets to multiple entities so
that the recovery of S requires some minimum number of these
entities to cooperate and share their partial secrets. Unlike a
regular erasure code, Shamir’s algorithm guarantees that an
adversary learns nothing about S as long as the number of
exposed partial secrets does not reach the minimum threshold.

III. DESIGN

The current MDFS design targets primarily the risk of data
leakage resulting from device loss or capture. As discussed
earlier, several complementary features may be added to the
design to further enhance its security and scalability. For
brevity, we omit a detailed exploration of these features.
Instead, we focus our discussion with these simplifying as-
sumptions:

• All mobile devices support link-level encryption (e.g.,
with Type 1 hardware) so that no additional message
authentication is required for MDFS.

write()	 Read()	 list()	

Erasure	 Coding	

Fragment	 	
Store	

read	

Applica:ons	

Network	 interface	
MDFS	 service	

UDP	 port	 8888	

Shamir’s	 Algorithm	 AES	 Crypto	

M	

Generate	 file	 encryp:on	 key	 S	
(M,S)	 S	

C=AESS(M)	 {s1,s2,…sn}	

{c1,c2,…cn}	

Remote	 Fragment	 Stores	

Create	 fragments	 	
{<c1,s1>,…,	 <cn,sn>}	 write	

Fig. 1. MDFS Functional Overview: the write(M) API function generates a secret key S that is used to encrypt M . Forward error correct breaks M into
chunks which are added to shares of secret S to create an MDFS fragment.

• MDFS is to be deployed to small front line troop units
(e.g., a company). A typical deployment consists of fewer
than one hundred mobile devices.

We next formulate the main security and resiliency require-
ments under the MDFS design framework. We then detail our
design of the write() and read() API functions meeting
these requirements as well as the design of a supporting, but
essential, distributed directory service.

A. Requirements

We first define our terminology. Let M be arbitrary data
(e.g., a message, GPS reading, or photographic image file)
stored in MDFS. Let C be the ciphertext version of M ,
encrypted using a block cipher with key S. Finally, let F be
an MDFS fragment, a container object we describe next.

MDFS aims to protect M by encrypting and distributing
M across multiple (say n) mobile devices. MDFS’s objective
is to protect M from an adversary able to compromise some
fraction of the n total devices. In particular, MDFS is designed
to be k-resilient in its data protection, which can be formally
defined by the following two criteria:

• Security: An adversary learns nothing about M even
after obtaining up to k < n distinct fragments ~F of M ,
i.e., Pr(M |~F) = Pr(M) for any set ~F of no more than
k distinct fragments.

• Resiliency: A legitimate user can reconstruct M after
obtaining any k + 1 distinct fragments of M . That is, a
legitimate user can access M even after up to n − k of
the fragments are inaccessible.

For example, n and k may be set to 7 and 3, respectively.
In this case, MDFS needs to transform a file into 7 distinct
fragments, distribute them to 7 different devices, and guarantee
that the file cannot be leaked as long as no more than 3
devices are compromised. Clearly, stronger security is ensured
with a larger k value. The trade-off is that n needs to be

increased accordingly to maintain sufficient data redundancy
for legitimate users.

B. Overview

Before detailing MDFS, we provide an overview of its
operation. MDFS combines several well-established crypto-
graphic primitives. For privacy, MDFS uses the AES block
cipher for encryption. To protect the AES symmetric key,
MDFS employs Shamir’s secret sharing algorithm. Finally, to
add redundancy, thereby potentially increasing availability in
a MANET, MDFS performs forward error correction in the
form of Erasure coding. Note that the notion of k-resilient
translates to a threshold of k + 1 in both Shamir’s algorithm
and erasure codes.

Figure 1 provides the high-level intuition of MDFS opera-
tion. Within each node is an MDFS agent that provides a file
system abstraction to higher-layers. An MDFS agent is a piece
of functionality that coordinates with other MDFS agents that
are available via the local MANET at any given time.

MDFS provides an API to applications that request to
store some plaintext content M . Such a request invokes the
following:

• MDFS dynamically generates a symmetric key S that is
used to create ciphertext C = AESs(M).

• The key S is not persisted to storage; instead S is broken
into shares {s1, s2, . . . sn} using threshold secret sharing.

• Forward error correction creates fragments
{c1, c2, . . . , cn} of C.

• MDFS combines each < ci, si > into fragment contain-
ers that are distributed among devices.

• MDFS registers the location and identifiers of fragments
within a distributed fragment store.

These actions are detailed next; §V removes some of our
simplifying assumptions.

Fig. 2. MDFS Fragment Container

C. write() Function

The design of the MDFS write() function is illustrated in
Figure 1. To meet the security requirement, MDFS uses AES
to encrypt each file (M) before breaking it into fragments, C =
AESS(M), where S is an automatically generated symmetric
secret key.

To meet the resiliency requirement, MDFS uses an erasure
encoder (e.g., Reed-Solomon [17]) to break the encrypted
file (denoted by C) into n distinct fragments, c1, c2, ..., cn,
while allowing the reconstruction of C from any k+1 of the
fragments. Meanwhile, MDFS uses Shamir’s algorithm [5] to
break S into n pieces, s1, s2, ..., sn, as well, while guarantee-
ing that S can be recovered if and only if more than k distinct
pieces are obtained.

At the final step of write(), MDFS combines the C and S
fragments into n new fragments, < c1, s1 >,< c2, s2 >, ..., <
cn, sn >, and writes each of them into the Fragment Store of
a different device. Note that a separate module called “MDFS
Service” – a daemon in the Unix terminology – continuously
runs in the background on a designated UDP port of each
device to handle all inter-device MDFS communication tasks
including neighbor discovery and the write of fragments into
remote devices.

Each fragment is packaged in a fragment container as
illustrated in Figure 2. The container stores the fragment
bits, the metadata required by the erasure decoder and the
Shamir coding library, a unique MD5 fragment hash based on
the filename, creation timestamp, and the fragment number
to identify individual fragments within a file, and finally,
another MD5 file hash based on just the filename and creation
timestamp. The two hash values provide a method to identify
distinct fragments from the same file. Specifically, fragments
with the same file hash value, but a different fragment hash
value are unique fragments of the same file.

We use the file’s creation timestamp in the hash rather than
some other metadata for two reasons. It is straightforward to
obtain a timestamp at the creation of a file and the likelihood of

two different files having the same filename and the exact same
timestamp is remote. Thus, this is an easy way to differentiate
between two files with the same filename. Furthermore, it
allows for future development where files could be updated
and versioned based on their timestamp. In other words, if a
file is updated, it would have a more recent timestamp than
the original. If the updated file’s metadata contains a reference
to the original file hash, then file versioning over time could
be maintained.

D. read() Function

The step-by-step operations of the MDFS read function are
mostly inverse of that of the write function. For brevity, we
omit the details.

However, there is one question uniquely relevant to the
read function. How does a user (and application) know what
data is available in MDFS before calling read()? Like any
computer file system, MDFS provides a directory service for
applications, as described in the next subsection.

E. Directory Service

The third major design component of MDFS is a directory
service that provides an interface for applications to view what
data are available in the file system. To be compatible with the
MANET environment, we have adopted a totally distributed
design for the directory service. The design requires all devices
to have the same functionality and share the work load to avoid
choke points or single point of failure.

Specifically, each device maintains a local file directory
along with its fragment store. The directory mainly stores
the following information: (i) a list of current files in MDFS,
and (ii) for each current file, the source of the file and a list
of nodes that hold fragments for the file. The directory may
be used to also track which devices are currently connected
to the network. When connected to the network, a device
periodically synchronizes its file directory with that of other
devices. Whenever MDFS adds a new file fragment to some
device’s fragment store during a write() call, MDFS also
registers information about the file and the new fragment with
that device’s file directory.

A primary part of the MDFS directory service is a list()
function, which is the API for applications to use the MDFS
directory service. The list() function should support a full
listing of files, query of files by their source or keywords,
advanced file search based on regular expressions, and query
of status of other devices, among other features.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of MDFS on current mobile
devices, particularly smart phones, we have created a prototype
implementation of the design on unmodified HTC Evo 4G
(Snapdragon 1GHz processor, 512MB DRAM) smart phones
running Android 2.2. Because stock Android does not support
ad hoc mode networking, our prototype may not be suitable
for evaluating MDFS in a true MANET environment with
a fully distributed directory service. Therefore, the focus

Fig. 3. Throughput (KB/s) of Read and Write for Different File Sizes

of our initial performance evaluation is on the processing
overhead of the three primary building blocks of MDFS: AES
encryption, Shamir’s algorithm, and erasure coding. We defer
the evaluation of networking related performance issues to
future work.

A. Implementation Details

The MDFS Android implementation consists of a total of
3332 lines of original Java code. It utilizes a Java library called
SecretShare [18] for the Shamir’s algorithm. SecretShare is
a Java implementation of the LaGrange Interpolating Poly-
nomial Scheme as described in Applied Cryptography [11].
The SecretShare library consists of 1559 lines of Java code.
AES encryption is accomplished using the standard Java AES
library that comes with JDK 6. Finally, erasure coding is
implemented using a native C library called JErasure 1.2 [19]
which constitutes 2161 lines of ANSI C code. We created an
API interface to JErasure using Android’s Native Development
Kit (NDK).

B. Benchmark Results

For the first benchmarking experiment, we measured the
throughput of the write() and read() functions for different
files sizes between 1K and 2048K (2MB). The parameters n
and k were set to 7 and 3, respectively. Each file was written
and read with MDFS 30 times and then the average throughput
was computed. Figure 3 shows the average throughput results,
in kilobytes per second (KB/s). Observe that both the write and
read throughputs increase steadily as the file size increases.
It’s no surprise that MDFS is less efficient with smaller files
due to the initial setup overhead of erasure coding, Shamir’s
algorithm, and AES cryptography. More importantly, we can
conclude that the MDFS prototype has no problem handling
file sizes up to 2MB.

The second set of experiments consisted of analyzing the
cost breakdown of each of the three primary building blocks of
MDFS using a 1024KB (1MB) file. Figure 4 shows the average
execution time (in milliseconds) of each component of MDFS
over 30 runs. Table I shows the same results as a percentage
of total execution time required by MDFS. It shows that AES
operations dominate the processing overhead for both read and
write. This is good news given that the current prototype uses
a Java AES library; we anticipate a significant improvement

Fig. 4. Average Executive Times (ms) for 1MB file

of MDFS performance if a more efficient AES library (e.g.,
C based) is used instead.

V. DISCUSSION

Note that several implicit assumptions exist in our design
with subtle implications. For example, we make a conscious
choice to couple the degree of error correction with the number
of secret shares (i.e. the same n is used for both the erasure
coding and Shamir’s algorithm). Thus, each fragment contains
both a share of the key (si) and a piece of error corrected
content (ci). Similarly, the thresholds for both recovering the
secret and reconstituting the ciphertext are the same.

However, other designs may be appropriate for specific
situations. In general, the thresholds and replication factor
might be different for security and resilience. A fragment
container might contain only fragment content (ci) and no key
shares, for instance, if selected nodes have different expected
probability of capture, or there exist other military hierarchical
order constraints. While we do not explore such situations
here, MDFS is flexible enough to accommodate these different
schemes.

In a similar vein, the MDFS API, as described, does not
expose either parameter n or k to the application designer.
We assume these parameters are pre-configured into each
device according to the network environment and mission
requirements. However, the design of the fragment container
metadata is such that each write can be made with individual
parameters appropriate to the content. For example, data might
be replicated in proportion to the number of military platoons,
or might only require two users within a company in order to
reconstitute other content.

Second, our design as detailed does not provide message
level integrity check. An adversary might capture a phone and
respond maliciously to MDFS queries – thereby compromising
the integrity of the content. In a deployed military environ-
ment, we anticipate standard techniques, e.g. using PKI along
with common access cards (CACs) or biometric identification,
to support digital signatures on top of MDFS.

A related issue is about timely detection of device capture.
MDFS currently provides little protection against undetected
device capture, particularly when the personnel operating the
device is also captured. We defer the question of how to detect
device capture and the question of how to exclude a suspicious
device expeditiously from MDFS to future work.

TABLE I
MDFS PROCESSING OVERHEAD AS A FUNCTION OF API OPERATION

Shamir AES Erasure Coding
Read 4% 86% 10%
Write 1% 81% 19%

Third, our current implementation assumes the availability
of n distinct nodes running MDFS agents during a write
operation. To remove this strong assumption, we plan to add
appropriate queuing mechanisms to MDFS such that fragments
are distributed on demand when required, when new peer
MDFS agents become available.

Fourth, we imagine enhancing MDFS with the inclusion of
a per-fragment time-to-live (TTL) value (e.g., 5 minutes) that
is customizable at the file creation time. MDFS will remove
and discard all fragments whose TTL has expired. Whenever
MDFS discards a file fragment due to an expired TTL, MDFS
also removes information about the file fragment and file from
the corresponding file directory. The TTL potentially provides
additional protection and scalability in some environments by
preventing the fragment store of an MDFS agent from growing
indefinitely. For example, a TTL is valuable for some types
of information, e.g., GPS coordinates, where the content is
valuable to legitimate users only for a small time window, but
may be harmful if known by adversaries.

Finally, the security of MDFS as presented lies purely in
preventing an adversary from obtaining k + 1 fragments for
a file, i.e. the security of the system is entirely compromised
if k + 1 phones are captured. However, as previously noted,
MDFS is complementary to other security techniques. To
mitigate this weakness, one lightweight (as opposed to PKI)
solution is to deploy a shared symmetric secret key P and use
it to encrypt the content M prior to encryption with the secret
sharing key: C = AESS(AESP (M)). We imagine P to be a
mission-specific master secret that has been distributed to all
MDFS device operators, where pre-placed keys are feasible
in such military operations. With this minor enhancement, an
adversary must capture k+1 phones and recover P , rendering
MDFS strictly stronger than conventional encryption of non-
volatile storage.

VI. CONCLUSION

The objective of our research is two-fold. First, we describe
a means to secure data at rest, MDFS, thereby removing one
obstacle to realizing the vision of deploying smartphones to
front line soldiers. Second, we examine the feasibility and
real-world performance of MDFS by developing a working
prototype.

With several simplifying assumptions, we develop our
MDFS prototype and find performance more than adequate
for the majority of practical military missions and tasks. This
paper focused on the feasibility of performing calculation
necessary to generate and decode encrypted file shares using
MDFS. Performance increases as file size increases, so larger
files are more efficient than small files. However, even though
MDFS is less efficient in processing small files, given the

minimal time required to process very small files, MDFS is
still a viable option for secure distribution of file fragments.

Thus far, we focus solely on the performance of MDFS
with respect to encryption and decryption on an Android
device. Since the security of MDFS relies on the physical
separation of the encrypted file fragments, the next step is
to benchmark the performance of MDFS as a system of
connected mobile devices. A functional prototype of MDFS
was demonstrated in [20], but no benchmarks were collected.
One major component to MDFS that needs attention is the
directory service. The demonstration version of MDFS used
a simple directory service to manage file fragments, but the
directory service ran on a chosen device and was referenced
by the other connected devices. This implementation presents
a single point of failure, but provided sufficient functionality to
successfully test the design of MDFS. The design for MDFS
calls for a more robust directory service that uses a multicast
channel to keep data on each device synchronized.

REFERENCES

[1] S. Ackerman, “First look: Inside the army’s app store for war,” Wired,
Apr. 2011.

[2] J. Cox, “Android-based devices to be adopted by us army,” Network
World, Apr. 2011.

[3] P. Papadimitratos and Z. Haas, “Secure link state routing for mobile
ad hoc networks,” in Applications and the Internet Workshops, 2003.
Proceedings. 2003 Symposium on, jan. 2003, pp. 379 – 383.

[4] R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant
devices,” in Proceedings of the 5th International Workshop on Security
Protocols. London, UK: Springer-Verlag, 1998, pp. 125–136. [Online].
Available: http://portal.acm.org/citation.cfm?id=647215.720528

[5] R. L. Rivest, A. Shamir, and Y. Tauman, “How to share a secret,”
Communication of the ACM, 1979.

[6] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn, “A
performance evaluation and examination of open-source erasure coding
libraries for storage,” in FAST-2009: 7th Usenix Conference on File and
Storage Technologies, February 2009.

[7] Advanced Encryption Standard (AES), NIST Std. FIPS 197, 2001.
[8] Google. (2011) Android ndk. [Online]. Available:

http://developer.android.com/sdk/ndk/index.html
[9] A. Distefano, G. Me, and F. Pace, “Android anti-forensics through a

local paradigm,” in Proc. DFRWS Annual Digital Forensics Research
Conference, Aug. 2010.

[10] “Viaforensics android forensic investigations,” 2011,
http://viaforensics.com/viaforensics-articles/viaforensics-aflogical-
tool-android-forensic-investigations.html.

[11] B. Schneier, Applied Cryptography. New York, NY: John Wiley &
Sons, Inc., 1996.

[12] “Truecrypt: Free open-source on-the-fly encryption,” 2011,
http://www.truecrypt.org/.

[13] “Blackberry department of defense solutions,” 2011,
http://us.blackberry.com/business/types/government/dod.jsp.

[14] “Privaltel secure phones,” 2011, www.l-3com.com/gns/privatel.htm.
[15] R. A. Johnson, “The unisys stealth solution and secureparser: A new

method for securing and segregating network data,” White Paper, 2008.
[16] Tahoe-LAFS, “Tahoe least authority file system,” 2010, http://tahoe-

lafs.org/trac/tahoe-lafs.
[17] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

Journal of the Society for Industrial and Applied Mathematics, vol. 8,
pp. 300–304, Jun 1960.

[18] T. Tiemens. (2011) Shamir secret sharing in java. [Online]. Available:
http://sourceforge.net/projects/secretsharejava/

[19] C. D. S. James S. Plank, Scott Simmerman. (2008) Jerasure: A library
in c/c++ facilitating erasure coding for storage applications. [Online].
Available: http://web.eecs.utk.edu/ plank/plank/papers/CS-08-627.html

[20] S. Huchton, “Secure mobile distributed file system MDFS,” Master’s
thesis, Naval Postgraduate School, Monterey, CA, 2011.

