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Abstract—Prior research has focused on intra-domain fault
localization leaving the cross-domain problem largely unad-
dressed. Faults often have widespread effects, which if correlated,
could significantly improve fault localization. Past efforts rely on
probing techniques or assume hierarchical domain structures;
however, administrators are often unwilling to share network
structure and state and domains are organized and connected
in complex ways. We present an inference-graph-digest based
formulation of the problem. The formulation not only explicitly
models the inference accuracy and privacy requirements for
discussing and reasoning over cross-domain problems, but also
facilitates the re-use of existing fault localization algorithms
while enforcing domain privacy policies. We demonstrate our
formulation by deriving a cross-domain version of SHRINK, a
recent probabilistic fault localization strategy.

I. INTRODUCTION

Cross-domain, multi-domain, and inter-domain fault local-
ization are synonymous terms that describe determining the
root cause of a network failure whose effects propagate across
administrative domains. When data is required from more
than one domain to isolate a fault, a cross-domain solution
is needed. A study of routing instability found that all parties
pointed to another party as the cause in about 10% of the
problems [1].

Faults often have widespread effects, which if correlated,
can significantly increase fault localization accuracy. We de-
fine inference gain to be the increase in inference accuracy
achieved by correlating additional evidence. Cross-domain
network failures can not always be localized without a co-
ordinated effort between domains. As an example consider a
scenario in which an operator makes a typo in the A record
for a web service in an authoritative DNS server. The domain
administrator may not be able to isolate the fault quickly, and
may not even be aware that a problem exists for a period
of time. While the fault remains unabated and potentially
unnoticed, there may be observations external to the domain
that could help detect and localize the fault.

Privacy, scalability, and interoperability issues hinder ef-
forts to achieve accurate cross-domain fault localization. While
prior work has stated the importance of these issues [1]–
[4], to our knowledge there has been no formal definition
of requirements addressing them. Network domain managers
are often unwilling or not permitted to share detailed internal
network architectures and quality-of-service issues with out-
side agencies, running face-first into the need to share data

to successfully troubleshoot networking issues. Automated
techniques for finding faults across a large number of domains
face serious computational issues and exact computation using
belief networks is NP-hard [5]. Interoperability in network
management and fault isolation techniques is a perennial prob-
lem: Different modeling techniques and tools using different
algorithms will be employed in various domains. Conflict
of information formats and semantics may arise between
domains, with each domain’s model assigning a different value
to the same parameter.

In this paper we characterize the problem space for cross-
domain fault localization and propose an inference graph di-
gest approach. A cross-domain approach must achieve accept-
able accuracy while satisfying privacy concerns. We illustrate
an approach whereby domain managers using causal graphs
to model fault propagation can use a function to create a
digest representation of their network state and dependencies
to participate in a collaborative effort to localize a cross-
domain fault by sharing observations. By addressing privacy,
scalability, and interoperability issues with our graph digest
approach, we attack the obstacles that prevent collaborative
cross-domain fault localization. Although the discussion in
this paper focuses on the formulation, and demonstrates the
utility of the formulation by creating a causal graph digest
for a probabilistic inference method, the concepts discussed
in creating a graph digest could be extended to include other
domain representations and inference methods.

In Section II we describe related work including Bayesian
approaches to localize intra-domain faults and approaches
addressing the cross-domain fault localization problem. In
Section III we discuss the challenges and tradeoffs associated
with using a graph digest and formulate an approach to
perform cross-domain fault localization. Section IV illustrates
the graph digest approach for a cross-domain implementation
of SHRINK. We describe our assumptions and initial efforts
to define a graph digest.

II. NETWORK FAULT LOCALIZATION

As characterized by Steinder and Sethi, fault localization
is the second step in fault diagnosis following fault detection
and preceding testing [6]–[8]. Network administrators use fault
localization techniques to discover best hypotheses explaining
the observations detected in the fault detection step. Myriad
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techniques have been developed for fault localization, in-
cluding: rule-based systems, model-based systems, case-based
systems, neural networks, decision trees, model traversing
techniques, code-based techniques, Bayesian networks, de-
pendency graphs, causal graphs, and phrase structured gram-
mars [6].

A current trend attacks the problem by modeling network
dependencies in a directed acyclic graph having root causes
as parentless nodes, observations as childless nodes, and
dependencies represented as directed edges in the graphs with
uncertainties captured in conditional probability distributions
associated with each node [5], [9], [10]. This graph structure
is also known as a causal (or causality) graph [6]. Approaches
typically perform probabilistic (Bayesian) inference on bipar-
tite causal graphs [5], [10].

Root causes to network failure are also known as shared risk
groups (SRGs) [3]. SRGs typically represent hardware com-
ponents that can fail, impacting service for a set of dependent
services or communication channels. In the graphical model,
edges depicted from an SRG to each node directly influenced
by the state of the SRG represent conditional dependencies. In
bipartite causal graphs the edges only connect from SRG nodes
to observation nodes allowing faster probabilistic inference as
compared with general Bayesian networks.

The SCORE [9], SHRINK [5], and Sherlock [11] ap-
proaches form the state of the art for leveraging causal graphs
for fault localization. SCORE uses a set covering approach for
finding the best explanation (set of failed SRGs) for observed
outages based on a bipartite graph. SHRINK enhances the
model to allow probabilistic inference by attaching edge
weights that are combined using the noisy-OR [12] model to
form conditional probability tables for each observation node.
Sherlock further extends these approaches with a multilevel
causal graph.

Very little research is published on cross-domain fault local-
ization. Probing and monitoring techniques can be leveraged
to assist with collection of information about network state and
structure. A cross-domain fault localization approach is pre-
sented by Steinder and Sethi [13] for hierarchically organized
networks. This approach locates the source of an end-to-end
service failure through distributed coordination between the
domains along the path of the failure. In addition to an existing
domain hierarchy, the approach relies on full knowledge of
each end-to-end data path at the domain level.

Fig. 1. Example network.

SHRINK [5] performs Bayesian inference on a bipartite
causal graph. The SHRINK model assumes independent fail-
ures of root cause nodes and that that no more than three SRGs

Fig. 2. Causal Graph. Noisy edges not depicted.

will fail simultaneously in a large network based on the ex-
tremely low likelihood of four or more simultaneous failures.
Noisy-OR is used to calculate the conditional probability table
for a node with multiple parents. The SHRINK algorithm is
defined as follows. Let < S1, . . . , Sn > denote a hypothesis
vector, where Si = 1 if a failure of SRG Si is assumed, and
Si = 0 otherwise. Let < L1, . . . , Lm > denote an observation
vector, where Lj = 1 if a failure of Lj is observed, and
Lj = 0 otherwise. Given a particular observation vector, the
SHRINK algorithm searches through all hypothesis vectors
with no more than three assumed failures, and returns those
maximizing the posterior probability:

argmax
<S1,...,Sn>

Pr(< S1, . . . , Sn > | < L1, . . . , Lm >) (1)

Consider the simple scenario depicted in Figs. 1, and 2.
Fig. 1(a) depicts the network physical topology, in which IP
routers A, B, and C are connected across fibers F1 - F4

and optical cross-connects X1 and X2. Each IP router has
a link to each other router as shown in Fig. 1(b). If any of
the optical components, fibers, or optical cross-connects fail,
the IP routers will detect link failures. The prior SRG failure
probabilities are 10−4 and 10−6 for the fibers and the cross-
connect respectively.

The causal graph (Fig. 2) has six optical components
mapped to SRGs S1-S6. To account for potential database
and observation errors a noise value (10−4) is subtracted from
the conditional probability of each edge, and noisy edges with
this value are added to form a complete bipartite graph. E.g.,
Pr(L1|S1) is 0.9999 while Pr(L2|S1) = 10−4.

Suppose L1 and L2 are down, and L3 is up. Intuitively, the
cause is most likely the failure of fiber link F3. As described
above, SHRINK only considers hypothesis vectors with at
most three total assumed failures. For this six SRG example
SHRINK searches through

∑3
k=0

(
6
k

)
= 42 hypotheses, with

hypothesis vector < 0, 0, 0, 0, 1, 0 > maximizing the posterior
probability for the given observations. SHRINK correctly
identifies SRG S5 (i.e., the failure of fiber link F3), to be
the root cause.

III. FORMULATION OF GRAPH DIGEST APPROACH

In this section, we present a formulation for cross-domain
fault localization based on information-preserving transfor-
mations of intra-domain inference graphs. We propose a set
of criteria to explicitly define the two primary requirements
of cross-domain fault localization: preservation of inference
gain and protection of privacy. Finally, we discuss the main
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technical challenges for deriving practical algorithms from the
proposed formulation.

A. General Framework

As discussed above, recent intra-domain approaches use
graphical models to model dependencies between aspects of
network operation, particularly the causal relationships be-
tween hardware failures and observed anomalies. These mod-
els (also called inference graphs), enable inference algorithms
to determine those failure scenarios best explaining observed
anomalies. In practice, faults often propagate across network
domain boundaries, depriving intra-domain algorithms of criti-
cal information required for accurate inference. We address the
problem by sharing summarized intra-domain models (called
graph digests) between domains. A graph digest captures
cross-domain dependencies while hiding internal details.

Our approach is based on, and designed to address, the
problems that arise from the following assumptions: domains
are administratively separated, domain managers are unwilling
to reveal their internal network structures and associated
inference graphs, and finally domain managers are willing to
collaborate to localize faults if their domain’s internal details
are hidden. We believe these assumptions are fundamental
constraints all general cross-domain approaches must address.

A cross-domain inference model based on graph digests is
defined as follows. Consider n network domains:
• Gi is the inference graph for the ith domain.
• f is (ideally) a one-way function on Gi implementing a

privacy policy. f(Gi) is called the inference graph digest,
or simply digest, for Gi.

• Gj =
(

n
]

i6=j
f(Gi)

)
]Gj , where j is a domain performing

cross-domain inference and ] is a model-specific union.
Gj is the cross-domain model integrating the digests from
all the other domains with domain j’s undigested graph.
Now, domain j may use an existing algorithm such as
SHRINK to perform inference over Gj .

Before a practical graph digest approach can be imple-
mented, interoperability standards must be developed. Do-
mains using different inference methods can potentially use
a digest approach if standards are implemented and adhered
to. Items to be standardized include data types and attributes as
well as cross-domain management structures such as central-
ized, distributed, iterative, etc. We define a shared attribute
as a physical entity or logical concept modeled in two or
more fault propagation causal graphs, and that has the same
semantics in each graph. In order to create a domain digest to
connect to another domain’s fault propagation causal graph,
shared attributes must be identified and agreed upon.

B. Modeling Preservation of Inference Gain

The function f above is useless if the digest it produces is
not useful for inference. A digest function (transformation) is
inference preserving if it maintains enough structure to allow
successful inference. Ideally, we achieve the same inference
gain using digests versus undigested graphs.

Let Bu and Bd be the best hypotheses produced using
undigested graphs and graph digests respectively. Bu and Bd

are sets of potential causes. The hit ratio1 h measures the
percentage of elements in a hypothesis that are consistent
with the observations, and the coverage ratio1 c measures the
percentage of the observations that a hypothesis can explain:

h =
|Bd ∩Bu|
|Bd|

, c =
|Bd ∩Bu|
|Bu|

.

It is clear that 1 ≥ h, c ≥ 0. The ratios of false positives and
false negatives are 1− h and 1− c respectively, both relative
to Bu. The ratios h and c can each be easily optimized at the
expense of the other, which may be overcome by computing
the harmonic mean of the two values. 2 We propose to use
the harmonic mean α as the criterion to measure how well a
digest model preserves inference gain:

α =

{
0 if h = c = 0

2·h·c
h+c otherwise

(2)

Ideally α is one, when both h and c equal one. The definition
of α can be generalized for the case where more than one best
explanations are derived by the inference algorithm.

C. Modeling Protection of Privacy

We define a sensitive property as a detail the domain man-
ager considers private. Ideally, a graph digest should not help
to reveal any sensitive properties. Specific sensitive properties
will vary between domains and may include bottlenecks, cus-
tomer information, peering agreements, the number of failed
components, and many other characteristics. Furthermore, a
set of digests from a domain collected over time should not
aid in deriving the sensitive properties from the original graph.

Shannon says that “perfect secrecy” is defined to be when
the a priori probability is equal to the posterior probability
for message traffic deciphering by an adversary [16]. The
same concept can be applied as a criterion for inference
graph privacy. One has to assume that an adversary has
some domain knowledge, has passive access to externally
observable information, and can infer some level of knowledge
about a distribution over time. Using an information theoretic
approach, the relative entropy (Kullback Leibler distance) [17],
between the probability distribution of the sensitive property
without a digest and the probability distribution after receiving
a digest measures the privacy loss due to sharing a digest. Let
s represent a sensitive property in a domain conditioned by
the adversary’s knowledge, where s|d represents the property
further conditioned by a digest. Let X represent the set of
possible values for s. The relative entropy equation is:

KL(s|d, s) =
∑
x∈X

Pr(s = x|d)log2

Pr(s = x|d)
Pr(s = x)

(3)

Ideally this distance will equal zero for each sensitive
property in a domain, meaning that the information about a

1In AI [14] these ratios are known as precision and recall respectively
2The harmonic mean of precision and recall is also known as F Score [15]
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sensitive property is unchanged after receiving a digest. Even
if the entropy is reduced for a sensitive property, the entropy of
s|d may remain sufficiently high to protect the privacy of the
property. Ultimately, the resultant entropy of s|d and not the
amount of entropy lost, indicates the level of privacy protection
for a sensitive property.

Unfortunately, deriving accurate probability distributions
about a sensitive property in a domain, particularly from an
adversary’s perspective, may not be possible. An ontology
of sensitive properties with privacy protection implementation
methods is needed. If prior and posterior probability distri-
butions can be derived for a sensitive property, we suggest
that the relative entropy Eq. (3) be used to evaluate the
privacy protection for the property. For sensitive properties that
are not conducive to evaluation with probability distributions,
techniques to protect properties against obvious attacks should
be implemented. As an example, reachability information may
be difficult to hide with a relative entropy approach, but has a
well established method for evaluation: the transitive closure
of an adjacency matrix determines the reachability between
any two components in a network. A digest must prevent this
obvious attack method by denying adjacency information that
could be used to establish reachability. A function f could
be augmented to break all paths between nodes that would
reveal the sensitive property (or add nodes to hide a lack of
reachability). We evaluate privacy against the transitive closure
attack for reachability in Section IV.C.

IV. ILLUSTRATION OF DIGEST APPROACH

In this section, we demonstrate the utility of our formulation
by showing how a digest for a bipartite causal graph can
be created to enable the use of SHRINK for cross-domain
fault localization. We selected SHRINK to illustrate the ideas
presented in Section III due to its robustness and simplicity.
We first present an algorithm to create a digest for inference by
SHRINK. Next, we describe a hypothetical cross-domain sce-
nario to illustrate the possible steps of creating such a digest.
Finally, we provide a brief analysis of inference preservation
and privacy protection for the scenario.

A. Bipartite causal graph digest creation

A main challenge for implementing the digest approach is
to find digest creation algorithms that to be practical, must
be general while at the same time meeting a wide range of
domain specific information hiding needs. We present one such
algorithm, createBipartiteDigest (Fig. 3), that although a
bit naive, embodies the concepts presented in Section III. We
crafted createBipartiteDigest to establish a cross-domain
extension to SHRINK, and thus the assumptions previously
presented for SHRINK in Section II apply to this algorithm as
well. The algorithm executes in a sequential four step process:
(1) pruning (lines 3,4), (2) partial evaluation (lines 5-8), (3)
aggregation (lines 10-12), then (4) renaming (lines 13,14). The
pruning step removes any SRG nodes that have no non-noisy
edges to observation nodes reporting failure. Except for highly
unlikely cases, these nodes will have a very low score and will

createBipartiteDigest(G)
1: Add node Lnew to G
2: for all SRG Si ∈ G
3: if (for all edges (Si, Lj) ∈ G, Lj is up)
4: then Prune Si and its edges (Si, Lj)
5: else
6: Collect edges (Si, Lj) ∈ G such that Lj is up
7: Add edge (Si, Lnew) using Eq. (4) on collected edges
8: Prune collected edges (Si, Lj)
9: Remove all isolated observation nodes Li

10: for all SRG Sx, Sy ∈ G
11: if Sx and Sy are indistinguishable
12: Aggregate Sx and Sy into S′x such that S′x = Sx∪Sy

13: Rename all SRGs that are not shared attributes
14: Rename all Observation nodes other than Lnew

Fig. 3. Algorithm for computing a digest from a bipartite causal graph G.

Fig. 4. Physical Topology of considered scenario.

not appear on a list of best explanations. The partial evaluation
step uses noisy-OR to combine all edges from an SRG Si that
point to k observation nodes L1, L2, ..., Lk reporting liveness
into a single node Lnew. The noisy-OR equation to compute
the new edge weight is:

Pr(Lnew|Si) = 1−
k∏

j=1

1− Pr(Lj |Si) (4)

The aggregation step of the algorithm combines SRGs that
have the same prior probabilities and edges. These SRGs
will have identical scores on a list of best explanations.
Aggregation of SRGs means that one SRG represents a set
of SRGs. The final step, renaming, is simply assigning a new
label on each node in the resultant graph, except for shared
attributes and Lnew.

B. Cross-domain scenario

Three months ago Blue Inc. (Domain 2) started a lease for
three optical circuits across the optical mesh provided by Red
Inc. (Domain 1), a large provider with many customers. The
physical view of the overlap between Blue and Red is depicted
in Fig. 4 and the view of provisioning in Fig. 5. Redundant
components in the mesh (not portrayed) provided by Red were

Fig. 5. View of leased circuits provisioned to Domain 2.
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Fig. 6. IP View of Domain 2.

Fig. 7. Domain 2 reflecting down state of L4, L5, and L6.

tested to ensure that Blue could transit the mesh in the event
of a failover. Two months ago Green Inc. subscribed to a
number of circuits across the Red mesh. Through oversight,
an older image was used to add the circuits for Green Inc.
to the tables in the backup Optical Digital Cross Connect
(ODCX) O2. The backup ODCX O2 has no records honoring
the leased circuits for Blue. This morning, O2 went offline
and the backup component came online, severing connectivity
for Blue across the mesh.

Conducting inference in isolation, neither Red nor Blue is
able to isolate the problem. From the perspective of Red, all
tools show a healthy network status and the circuits show
liveness. From the perspective of Blue, no traffic can cross
the leased circuits.

Fig. 6 portrays the IP link connectivity for Blue. The
administrators at Blue use the SHRINK algorithm for fault
localization, and Fig. 7 reflects the graph with the three failed
IP links highlighted. The optical circuits are shared attributes,
which Blue has modeled as SRGs C1−C3. Not knowing how
the optical mesh is configured, Blue has assigned a uniform
prior probability of failure at 10−5 for each SRG in the graph.
Inference for the best explanation returns {R4}, {R5}, {C1},
{C2}, and {C3} as equally likely.

Red agrees to perform probabilistic inference on a combined
inference graph using a digest from Blue. Blue has one
sensitive property to hide from Red: the internal reachability
between R4 and R5. Blue is interested in hiding whether

Fig. 8. Domain 2 graph after pruning nodes R1, P1, P2, and P4.

Fig. 9. Domain 2 partial evaluation by combining all IP link nodes reporting
liveness into Lu using noisy-OR.

Fig. 10. Domain 2 reflecting aggregation of R2, R6 into U1, and P3, P5

into U2.

Fig. 11. Completed Domain 2 digest. Internal SRGs renamed.

they are able to transmit data between R4 and R5 if Circuits
C1 − C3 fail. The digest construction proceeds with pruning
(Fig. 8), partial evaluation (Fig. 9), aggregation (Fig. 10), and
renaming (Fig. 11).

Red creates a union of their graph with the digest from
Blue. Red also uses SHRINK for inference, so the combined
graph must be converted to a bipartite graph. The provided
circuits C1, C2, and C3 are logical in nature and although
they are needed to connect the graphs, they are not needed
in the final graph for inference. Each edge in the Red portion
of the graph that is directed to one of the circuit nodes is
redirected to each observation node that the circuit node is
directed to, and all of the shared attribute nodes are then
pruned from the graph. The final causal graph is shown in
Fig. 13. Red uniformly assigns 10−5 prior probability to each
SRG. SHRINK inference run on the graph returns Bd = {O2}
as the best explanation, with a score significantly higher than
the other hypotheses. Convinced that the lost connectivity for
Blue is most likely caused by O2, Red proceeds to diagnose
the ODCX and restore service to Red.

C. Analysis of criteria

Running SHRINK on the union of the Red graph with the
undigested Blue graph returns Bu = {O2} as the best explana-

Fig. 12. G1 ∪ f(G2). The nodes C1 − C3 serve as shared attributes and
make the graph union possible.

Fig. 13. G1 ] f(G2).
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tion with a score significantly higher than the other hypotheses.
The hit ratio h and coverage ratio c are both 1.0, resulting in
a perfect inference preservation score (α = 1.0). To further
illustrate the α criterion, suppose instead the inference results
received were Bd = {O2, F3, S4} and Bu = {O2, F1}. For
this scenario h = 0.33, c = 0.5, and α would be 0.4.

To evaluate privacy protection, we first need a technique to
create an adjacency matrix using the SHRINK inference graph.
Since the privacy hiding goal is based on hiding reachability
between hardware components, we populate the elements of
the adjacency matrix with the SRGs. For each SRG, all of the
parents of the observation nodes that the SRG has an edge
to are considered adjacent to the SRG. For example, R1 in
Fig. 7 is adjacent to R1, P1, and R2 via L1; and R1, P2, and
R3 via L2. In building the adjacency matrix for the digest,
we can’t use Lu to establish adjacency since the parent nodes
of Lu don’t necessarily reach each other. We can’t use any
observation nodes for which C1 − C3 is a parent since Blue
wants to hide reachability between R4 and R5 in the event of
failure across the optical mesh. Since there are no observation
nodes available to establish adjacency, privacy protection for
the sensitive property is trivially satisfied.

Suppose that the digest for Blue included the IP links L7

and L8 as down observation nodes. By the algorithm (Fig. 3),
these nodes and all SRGs that can affect them will appear
in the digest. Constructing the adjacency matrix as above
and computing the transitive closure will clearly reveal the
sensitive property. The algorithm may be refined so that the
SRG reachable by both R4 and R5 in the closure that has
the lowest inference result using the undigested graph can
be pruned from the digest. This process can be repeated and
checked until R4 and R5 are no longer reachable in the closure
matrix. Clearly accuracy may suffer from such a heuristic,
further highlighting the tension between accuracy and privacy.

V. CONCLUSION

Network faults often have observable effects in multiple
domains. This paper demonstrated that cross-domain fault
localization, by correlating the observations from different
domains, has the potential to significantly increase the accu-
racy of network fault localization. It also articulated the main
challenges to realize the inference gain, particularly the privacy
consideration. The main contribution is an inference-graph-
digest based formulation of the problem. The formulation not
only explicitly models the inference accuracy and information
hiding requirements, but also facilitates the re-use of exist-
ing fault localization algorithms without compromising each
domain’s information hiding policy.

To move forward certainly requires a fundamental under-
standing of the issues that is beyond the formulation and
scenario described in this paper. Is the graph digest approach
applicable to a wide range of network scenarios? What about
scenarios involving more than two domains? Does there exist
a general, yet easily calculable metric for quantifying the
highly domain-specific information hiding policy? How should
observation errors and graph model inaccuracies be detected

and controlled? We believe these and other similar questions
constitute a new area of networking research which may have
a major impact on how we trouble-shoot network faults.
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