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Abstract—Despite the advances in hardware for hand-held mobile devices, resource-intensive applications (e.g., video and image

storage and processing or map-reduce type) still remain off bounds since they require large computation and storage capabilities.

Recent research has attempted to address these issues by employing remote servers, such as clouds and peer mobile devices. For

mobile devices deployed in dynamic networks (i.e., with frequent topology changes because of node failure/unavailability and

mobility as in a mobile cloud), however, challenges of reliability and energy efficiency remain largely unaddressed. To the best

of our knowledge, we are the first to address these challenges in an integrated manner for both data storage and processing in

mobile cloud, an approach we call k-out-of-n computing. In our solution, mobile devices successfully retrieve or process data,

in the most energy-efficient way, as long as k out of n remote servers are accessible. Through a real system implementation we

prove the feasibility of our approach. Extensive simulations demonstrate the fault tolerance and energy efficiency performance

of our framework in larger scale networks.

Index Terms—Mobile Computing, Cloud Computing, Mobile Cloud, Energy-Efficient Computing, Fault-Tolerant Computing

✦

1 Introduction

Personal mobile devices have gained enormous
popularity in recent years. Due to their limited

resources (e.g., computation, memory, energy), how-
ever, executing sophisticated applications (e.g., video
and image storage and processing, or map-reduce type)
on mobile devices remains challenging. As a result,
many applications rely on offloading all or part of
their works to “remote servers” such as clouds and
peer mobile devices. For instance, applications such as
Google Goggle and Siri process the locally collected
data on clouds. Going beyond the traditional cloud-
based scheme, recent research has proposed to offload
processes on mobile devices by migrating a Virtual
Machine (VM) overlay to nearby infrastructures [1],
[2], [3]. This strategy essentially allows offloading any
process or application, but it requires a complicated
VM mechanism and a stable network connection. Some
systems (e.g., Serendipity [4]) even leverage peer mobile
devices as remote servers to complete computation-
intensive job.

In dynamic networks, e.g., mobile cloud for disas-
ter response or military operations [5], when select-
ing remote servers, energy consumption for accessing
them must be minimized while taking into account
the dynamically changing topology. Serendipity and
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other VM-based solutions considered the energy cost
for processing a task on mobile devices and offloading
a task to the remote servers, but they did not con-
sider the scenario in a multi-hop and dynamic network
where the energy cost for relaying/transmitting packets
is significant. Furthermore, remote servers are often
inaccessible because of node failures, unstable links,
or node-mobility, raising a reliability issue. Although
Serendipity considers intermittent connections, node
failures are not taken into account; the VM-based so-
lution considers only static networks and is difficult to
deploy in dynamic environments.

In this article, we propose the first framework to sup-
port fault-tolerant and energy-efficient remote storage
& processing under a dynamic network topology, i.e.,
mobile cloud. Our framework aims for applications that
require energy-efficient and reliable distributed data
storage & processing in dynamic network. E.g., military
operation or disaster response. We integrate the k-out-
of-n reliability mechanism into distributed computing
in mobile cloud formed by only mobile devices. k-out-of-
n, a well-studied topic in reliability control [6], ensures
that a system of n components operates correctly as
long as k or more components work. More specifically,
we investigate how to store data as well as process the
stored data in mobile cloud with k-out-of-n reliability
such that: 1) the energy consumption for retrieving dis-
tributed data is minimized; 2) the energy consumption
for processing the distributed data is minimized; and
3) data and processing are distributed considering dy-
namic topology changes. In our proposed framework, a
data object is encoded and partitioned into n fragments,
and then stored on n different nodes. As long as k or
more of the n nodes are available, the data object can be
successfully recovered. Similarly, another set of n nodes
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are assigned tasks for processing the stored data and all
tasks can be completed as long as k or more of the n
processing nodes finish the assigned tasks. The param-
eters k and n determine the degree of reliability and
different (k, n) pairs may be assigned to data storage
and data processing. System administrators select these
parameters based on their reliability requirements. The
contributions of this article are as follows:

• It presents a mathematical model for both optimiz-
ing energy consumption and meeting the fault tol-
erance requirements of data storage and processing
under a dynamic network topology.

• It presents an efficient algorithm for estimating the
communication cost in a mobile cloud, where nodes
fail or move, joining/leaving the network.

• It presents the first process scheduling algorithm
that is both fault-tolerant and energy efficient.

• It presents a distributed protocol for continually
monitoring the network topology, without requir-
ing additional packet transmissions.

• It presents the evaluation of our proposed frame-
work through a real hardware implementation and
large scale simulations.

The article is organized as follows: Section 2 intro-
duces the architecture of the framework and the math-
ematical formulation of the problem. Section 3 describes
the functions and implementation details of each com-
ponent in the framework. In section 4, an application
that uses our framework (i.e., a mobile distributed file
system – MDFS) is developed and evaluated. Section
5 presents the performance evaluation of our k-out-of-
n framework through extensive simulations. Section 6
reviews the state of art. We conclude in Section 7.

2 Architecture and Formulations

An overview of our proposed framework is depicted
in Figure 1. The framework, running on all mobile
nodes, provides services to applications that aim to:
(1) store data in mobile cloud reliably such that the
energy consumption for retrieving the data is minimized
(k-out-of-n data allocation problem); and (2) reliably
process the stored data such that energy consumption
for processing the data is minimized (k-out-of-n data
processing problem). As an example, an application
running in a mobile ad-hoc network may generate a
large amount of media files and these files must be
stored reliably such that they are recoverable even if
certain nodes fail. At later time, the application may
make queries to files for information such as the number
of times an object appears in a set of images. Without
loss of generality, we assume a data object is stored
once, but will be retrieved or accessed for processing
multiple times later.

We first define several terms. As shown in Figure 1,
applications generate data and our framework stores
data in the network. For higher data reliability and
availability, each data is encoded and partitioned into
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Fig. 1. Architecture for integrating the k-out-of-n com-
puting framework for energy efficiency and fault-tolerance.
The framework is running on all nodes and it provides data
storage and data processing services to applications, e.g.,
image processing, Hadoop.

fragments; the fragments are distributed to a set of
storage nodes. In order to process the data, applications
provide functions that take the stored data as inputs.
Each function is instantiated as multiple tasks that pro-
cess the data simultaneously on different nodes. Nodes
executing tasks are processor nodes; we call a set of
tasks instantiated from one function a job. Client nodes

are the nodes requesting data allocation or processing
operations. A node can have any combination of roles
from: storage node, processor node, or client node, and
any node can retrieve data from storage nodes.

As shown in Figure 1, our framework consists of
five components: Topology Discovery and Monitoring,
Failure Probability Estimation, Expected Transmission
Time (ETT) Computation, k-out-of-n Data Allocation
and k-out-of-n Data Processing. When a request for
data allocation or processing is received from applica-
tions, the Topology Discovery and Monitoring compo-
nent provides network topology information and fail-

ure probabilities of nodes. The failure probability is
estimated by the Failure Probability component on
each node. Based on the retrieved failure probabilities
and network topology, the ETT Computation com-
ponent computes the ETT matrix, which represents
the expected energy consumption for communication
between any pair of node. Given the ETT matrix, our
framework finds the locations for storing fragments or
executing tasks. The k-out-of-n Data Storage compo-
nent partitions data into n fragments by an erasure code
algorithm and stores these fragments in the network
such that the energy consumption for retrieving k
fragments by any node is minimized. k is the minimal
number of fragments required to recover a data. If an
application needs to process the data, the k-out-of-n
Data Processing component creates a job of M tasks
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and schedules the tasks on n processor nodes such that
the energy consumption for retrieving and processing
these data is minimized. This component ensures that
all tasks complete as long as k or more processor nodes
finish their assigned tasks. The Topology Discovery and
Monitoring component continuously monitors the net-
work for any significant change of the network topology.
It starts the Topology Discovery when necessary.

2.1 Preliminaries

Having explained the overall architecture of our frame-
work, we now present design primitives for the k-out-
of-n data allocation and k-out-of-n data processing. We
consider a dynamic network with N nodes denoted by
a set V = {v1, v2, ..., vN}. We assume nodes are time
synchronized. For convenience, we will use i and vi

interchangeably hereafter. The network is modeled as a
graph G = (V, E), where E is a set of edges indicating
the communication links among nodes. Each node has
an associated failure probability P [fi] where fi is the
event that causes node vi to fail.

Relationship Matrix R is a N × N matrix defining
the relationship between nodes and storage nodes. More
precisely, each element Rij is a binary variable – if Rij

is 0, node i will not retrieve data from storage node j;
if Rij is 1, node i will retrieve fragment from storage
node j. Storage node list X is a binary vector containing
storage nodes, i.e., Xi = 1 indicates that vi is a storage
node.

The Expected Transmission Time Matrix D is defined
as a N×N matrix where element Dij corresponds to the
ETT for transmitting a fixed size packet from node i to
node j considering the failure probabilities of nodes in
the network, i.e., multiple possible paths between node
i and node j. The ETT metric [7] has been widely used
for estimating transmission time between two nodes in
one hop. We assign each edge of graph G a positive
estimated transmission time. Then, the path with the
shortest transmission time between any two nodes can
be found. However, the shortest path for any pair of
nodes may change over time because of the dynamic
topology. ETT, considering multiple paths due to nodes
failures, represents the “expected” transmission time, or
“expected” transmission energy between two nodes.

Scheduling Matrix S is an L×N ×M matrix where
element Slij = 1 indicates that task j is scheduled at
time l on node i; otherwise, Slij = 0. l is a relative time
referenced to the starting time of a job. Since all tasks
are instantiated from the same function, we assume
they spend approximately the same processing time on
any node. Given the terms and notations, we are ready
to formally describe the k-out-of-n data allocation and
k-out-of-n data processing problems.

2.2 Formulation of k-out-of-n Data Allocation

Problem

In this problem, we are interested in finding n storage
nodes denoted by S = {s1, s2, ...sn} , S ⊆ V such that

the total expected transmission cost from any node to
its k closest storage nodes – in terms of ETT – is
minimized. We formulate this problem as an ILP in
Equations 1 - 5.

Ropt = arg min
R

N∑

i=1

N∑

j=1

DijRij (1)

Subject to:

N∑

j=1

Xj = n (2)

N∑

j=1

Rij = k ∀i (3)

Xj −Rij ≥ 0 ∀i (4)

Xj and Rij ∈ {0, 1} ∀i, j (5)

The first constraint (Eq 2) selects exactly n nodes as
storage nodes; the second constraint (Eq 3) indicates
that each node has access to k storage nodes; the
third constraint (Eq 4) ensures that jth column of
R can have a non-zero element if only if Xj is 1;
and constraints (Eq 5) are binary requirements for the
decision variables.

2.3 Formulation of k-out-of-n Data Processing

Problem

The objective of this problem is to find n nodes in V
as processor nodes such that energy consumption for
processing a job of M tasks is minimized. In addition,
it ensures that the job can be completed as long as
k or more processors nodes finish the assigned tasks.
Before a client node starts processing a data object,
assuming the correctness of erasure coding, it first needs
to retrieve and decode k data fragments because nodes
can only process the decoded plain data object, but not
the encoded data fragment.

In general, each node may have different energy cost
depending on their energy sources; e.g., nodes attached
to a constant energy source may have zero energy cost
while nodes powered by battery may have relatively
high energy cost. For simplicity, we assume the network
is homogeneous and nodes consume the same amount
of energy for processing the same task. As a result, only
the transmission energy affects the energy efficiency of
the final solution. We leave the modeling of the general
case as future work.

Before formulating the problem, we define some func-
tions: (1) f1(i) returns 1 if node i in S has at least one
task; otherwise, it returns 0; (2) f2(j) returns the num-
ber of instances of task j in S; and (3) f3(z, j) returns
the transmission cost of task j when it is scheduled for
the zth time. We now formulate the k − out − of − n
data processing problem as shown in Eq 6 - 11.

The objective function (Eq 6) minimizes the total
transmission cost for all processor nodes to retrieve
their tasks. l represents the time slot of executing a
task; i is the index of nodes in the network; j is the
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index of the task of a job. We note here that T r, the
Data Retrieval Time Matrix, is a N ×M matrix, where
the element T r

ij corresponds to the estimated time for
node i to retrieve task j. T r is computed by summing
the transmission time (in terms of ETT available in D)
from node i to its k closest storage nodes of the task.

minimize

L∑

l=1

N∑

i=1

M∑

j=1

SlijT r
ij (6)

Subject to:

N∑

i

f1(i) = n (7)

f2(j) = n− k + 1 ∀j (8)
L∑

l=1

Slij ≤ 1 ∀i, j (9)

N∑

i=1

Slij ≤ 1 ∀l, j (10)

M∑

j=1

f3(z1, j) ≤
M∑

j=1

f3(z2, j) ∀z1 ≤ z2 (11)

The first constraint (Eq 7) ensures that n nodes in
the network are selected as processor nodes. The second
constraint (Eq 8) indicates that each task is replicated
n− k + 1 times in the schedule such that any subset of
k processor nodes must contain at least one instance of
each task. The third constraint (Eq 9) states that each
task is replicated at most once to each processor node.
The fourth constraint (Eq 10) ensures that no duplicate
instances of a task execute at the same time on different
nodes. The fifth constraint (Eq 11) ensures that a set
of all tasks completed at earlier time should consume
lower energy than a set of all tasks completed at later
time. In other words, if no processor node fails and each
task completes at the earliest possible time, these tasks
should consume the least energy.

3 Energy Efficient and Fault Tolerant Data

Allocation and Processing

This section presents the details of each component in
our framework.

3.1 Topology Discovery

Topology Discovery is executed during the network
initialization phase or whenever a significant change
of the network topology is detected (as detected by
the Topology Monitoring component). During Topol-
ogy Discovery, one delegated node floods a request

packet throughout the network. Upon receiving the
request packet, nodes reply with their neighbor tables
and failure probabilities. Consequently, the delegated
node obtains global connectivity information and fail-
ure probabilities of all nodes. This topology information
can later be queried by any node.

3.2 Failure Probability Estimation

We assume a fault model in which faults caused only
by node failures and a node is inaccessible and cannot
provide any service once it fails. The failure proba-
bility of a node estimated at time t is the proba-
bility that the node fails by time t + T , where T
is a time interval during which the estimated failure
probability is effective. A node estimates its failure
probability based on the following events/causes: en-
ergy depletion, temporary disconnection from a net-
work (e.g., due to mobility), and application-specific
factors. We assume that these events happen indepen-
dently. Let fi be the event that node i fails and let
fB

i , fC
i , and fA

i be the events that node i fails due
to energy depletion, temporary disconnection from a
network, and application-specific factors respectively.
The failure probability of a node is as follows: P [fi] =
1 −

(
1− P

[
fB

i

]) (
1− P

[
fC

i

]) (
1− P

[
fA

i

])
. We now

present how to estimate P [fB
i ], P [fC

i ], and P [fA
i ].

3.2.1 Failure by Energy Depletion

Estimating the remaining energy of a battery-powered
device is a well-researched problem [8]. We adopt the
remaining energy estimation algorithm in [8] because of
its simplicity and low overhead. The algorithm uses the
history of periodic battery voltage readings to predict
the battery remaining time. Considering that the error
for estimating the battery remaining time follows a
normal distribution [9], we find the probability that the
battery remaining time is less than T by calculating
the cumulative distributed function (CDF) at T . Con-
sequently, the predicted battery remaining time x is a
random variable following a normal distribution with
mean µ and standard deviation σ, as given by:

P
[
fB

i

]
= P [Rem. time < T | Current Energy]

=

∫ T

−∞

f(x; µ; σ2)dx,f(x; µ; σ2) =
1

σ
√

2π
e−

1

2
( x−µ

σ
)2

3.2.2 Failure by Temporary Disconnection

Nodes can be temporarily disconnected from a network,
e.g., because of the mobility of nodes, or simply when
users turn off the devices. The probability of temporary
disconnection differs from application to application,
but this information can be inferred from the history:
a node gradually learns its behavior of disconnection
and cumulatively creates a probability distribution of
its disconnection. Then, given the current time t, we
can estimate the probability that a node is disconnected
from the network by the time t+T as follows: P

[
fC

i

]
=

P [Node i disconnected between t and t + T ].

3.2.3 Failure by Application-dependent Factors

Some applications require nodes to have different roles.
In a military application for example, some nodes are
equipped with better defense capabilities and some
nodes may be placed in high-risk areas, rendering differ-
ent failure probabilities among nodes. Thus, we define
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the failure probability P [fA
i ] for application-dependent

factors. This type of failure is, however, usually explic-
itly known prior to the deployment.

3.3 Expected Transmission Time Computation

It is known that a path with minimal hop-count does
not necessarily have minimal end-to-end delay because
a path with lower hop-count may have noisy links,
resulting in higher end-to-end delay. Longer delay im-
plies higher transmission energy. As a result, when
distributing data or processing the distributed data, we
consider the most energy-efficient paths – paths with
minimal transmission time. When we say path p is the
shortest path from node i to node j, we imply that path
p has the lowest transmission time (equivalently, lowest
energy consumption) for transmitting a packet from
node i to node j. The shortest distance then implies
the lowest transmission time.

Given the failure probability of all nodes, we calculate
the ETT matrix D. However, if failure probabilities of
all nodes are taken into account, the number of possible
graphs is extremely large, e.g., a total of 2N possible
graphs, as each node can be either in failure or non-
failure state. Thus, it is infeasible to deterministically
calculate ETT matrix when the network size is large.
To address this issue, we adopt the Importance Sam-

pling technique, one of the Monte Carlo methods, to
approximate ETT. The Importance Sampling allows
us to approximate the value of a function by eval-
uating multiple samples drawn from a sample space
with known probability distribution. In our scenario,
the probability distribution is found from the failure
probabilities calculated previously and samples used for
simulation are snapshots of the network graph with
each node either fails or survives. The function to be
approximated is the ETT matrix, D.

A sample graph is obtained by considering each
node as an independent Bernoulli trial, where the suc-
cess probability for node i is defined as: pXi

(x) =
(1 − P [fi])

xP [fi]
1−x, where x ∈ {0, 1}. Then, a set

of sample graphs can be defined as a multivariate
Bernoulli random variable B with a probability mass
function pg (b) = P [X1 = x1, X2 = x2, ..., Xn = xn] =∏N

i=1 pXi
(x). x1, x2, ..., xn are the binary outcomes of

Bernoulli experiment on each node. b is an 1 × N
vector representing one sample graph and b [i] in binary
indicating whether node i survives or fails in sample b.

Having defined our sample, we determine the number
of required Bernoulli samples by checking the variance
of the ETT matrix denoted by V ar (E [D (B)]) ,
where the ETT matrix E [D (B)] is defined as follows:

E [D (B)] =
(∑K

j=1 bjpg (bj)
)

where K is the number

of samples and j is the index of each sample graph.
In Monte Carlo Simulation, the true E [D (B)] is

usually unknown, so we use the ETT matrix estimator,
D̃ (B), to calculate the variance estimator, denoted

by V̂ ar
(
D̃ (B)

)
. The expected value estimator and
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Fig. 2. (a) Root Mean Square Error (RMSE) of each
iteration of Monte Carlo Simulation. (b) A simple graph
of four nodes. The number above each node indicates the
failure probability of the node.

variance estimator below are written in a recursive form
and can be computed efficiently at each iteration:

D̃ (BK) =
1

K

(
(K − 1) D̃ (BK−1) + bK

)

V̂ ar
(
D̃ (BK)

)
=

1

K (K − 1)

K∑

i=1

(
bj − D̃ (BK)

)2

=
1

K


 1

K − 1

K∑

j=1

(bi)
2 − K

K − 1

(
D̃ (BK)

)2




Here, the Monte Carlo estimator D̃ (B) is an unbiased
estimator of E [D (B)], and K is the number of samples
used in the Monte Carlo Simulation. The simulation
continues until V̂ ar

(
D̃ (B)

)
is less than dist varth, a

user defined threshold depending on how accurate the
approximation has to be. We chose dist varth to be
10% of the smallest node-to-node distance in D̃ (B).

Figure 2 compares the ETT found by Importance
Sampling with the true ETT found by a brute force
method in a network of 16 nodes. The Root Mean

Square Error (RMSE) is computed between the true
ETT matrix and the approximated ETT matrix at each
iteration. It is shown that the error quickly drops below
4.5% after the 200th iteration.

3.4 k-out-of-n Data Allocation

After the ETT matrix is computed, the k-out-of-n data
allocation is solved by ILP solver. A simple example
of how the ILP problem is formulated and solved is
shown here. Considering Figure 2(b), distance Matrix
D is a 4 × 4 symmetric matrix with each component
Dij indicating the expected distance between node i
and node j. Let’s assume the expected transmissions
time on all edges are equal to 1. As an example, D23

is calculated by finding the probability of two possible
paths: 2 → 1 → 3 or 2 → 4 → 3. The probability of
2 → 1 → 3 is 0.8 × 0.8 × 0.9 × 0.4 = 0.23 and the
probability of 2 → 4 → 3 is 0.8 × 0.6 × 0.9 × 0.2 =
0.08. Another possible case is when all nodes survive
and either path may be taken. This probability is 0.8×
0.8×0.6×0.9 = 0.34. The probability that no path exists
between node 2 and node 3 is (1-0.23-0.08-0.34=0.35).
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Fig. 3. k-out-of-n data processing example with N = 9, n = 5, k = 3. (a) and (c) are two different task allocations
and (b) and (d) are their tasks scheduling respectively. In both cases, node 3, 4, 6, 8, 9 are selected as processor nodes
and each task is replicated to 3 different processor nodes. (e) shows that shifting tasks reduce the job completion time
from 6 to 5.

We assign the longest possible ETT=3, to the case when
two nodes are disconnected. D23 is then calculated as
0.23×2+0.08×2+0.34×2+0.35×3 = 2.33. Once the
ILP problem is solved, the binary variables X and R
give the allocation of data fragments. In our solution,
X shows that nodes 1−3 are selected as storage nodes;
each row of R indicates where the client nodes should
retrieve the data fragments from. E.g., the first row of R
shows that node 1 should retrieve data fragments from
node 1 and node 3.

D =




0.6 1.72 1.56 2.04
1.72 0.6 2.33 2.04
1.56 2.33 0.3 1.92
2.04 2.04 1.92 1.2




R =




1 0 1 0
1 1 0 0
1 0 1 0
0 1 1 0


 X = (1 1 1 0)

3.5 k-out-of-n Data Processing

The k-out-of-n data processing problem is solved in two
stages – Task Allocation and Task Scheduling. In the
Task Allocation stage, n nodes are selected as processor

nodes; each processor node is assigned one or more
tasks; each task is replicated to n − k + 1 different
processor nodes. An example is shown in Figure 3(a).
However, not all instances of a task will be executed
– once an instance of the task completes, all other
instances will be canceled. The task allocation can be
formulated as an ILP as shown in Eqs 12 - 16. In the
formulation, Rij is a N×M matrix which predefines the
relationship between processor nodes and tasks; each
element Rij is a binary variable indicating whether task
j is assigned to processor node i. X is a binary vector
containing processor nodes, i.e., Xi = 1 indicates that
vi is a processor node. The objective function minimizes
the transmission time for n processor nodes to retrieve
all their tasks. The first constraint (Eq 13) indicates
that n of the N nodes will be selected as processor
nodes. The second constraint (Eq 14) replicates each
task to (n− k + 1) different processor nodes. The third
constraint (Eq 15) ensures that the jth column of R
can have a non-zero element if only if Xj is 1; and

Ropt = arg min
R

N∑

i=1

M∑

j=1

T r
ijRij (12)

Subject to:
N∑

i=1

Xi = n (13)

N∑

i=1

Rij = n− k + 1 ∀j (14)

Xi −Rij ≥ 0 ∀i (15)

Xj and Rij ∈ {0, 1} ∀i, j (16)

the constraints (Eq 16) are binary requirements for the
decision variables.

Once processor nodes are determined, we proceed
to the Task Scheduling stage. In this stage, the tasks
assigned to each processor node are scheduled such that
the energy and time for finishing at least M distinct
tasks is minimized, meaning that we try to shorten
the job completion time while minimizing the overall
energy consumption. The problem is solved in three
steps. First, we find the minimal energy for executing M
distinct tasks in Rij . Second, we find a schedule with the
minimal energy that has the shortest completion time.
As shown in Figure 3(b), tasks 1 to 3 are scheduled on
different nodes at time slot 1; however, it is also possible
that tasks 1 through 3 are allocated on the same node,
but are scheduled in different time slots, as shown in
Figure 3(c) and 3(d). These two steps are repeated n-
k+1 times and M distinct tasks are scheduled upon
each iteration. The third step is to shift tasks to earlier
time slots. A task can be moved to an earlier time slot
as long as no duplicate task is running at the same
time, e.g., in Figure 3(d), task 1 on node 6 can be
safely moved to time slot 2 because there is no task
1 scheduled at time slot 2.

The ILP problem shown in Equations 17 - 20 finds
M unique tasks from Rij that have the minimal trans-
mission cost. The decision variable W is an N × M
matrix where Rij = 1 indicates that task j is selected
to be executed on processor node i. The first constraint
(Eq 18) ensures that each task is scheduled exactly one
time. The second constraint (Eq 19) indicates that Wij

can be set only if task j is allocated to node i in Rij .
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WE = arg min
W

N∑

i=1

M∑

j=1

TijRijWij (17)

Subject to:

N∑

i=1

Wij = 1 ∀j (18)

Rij −Wij ≥ 0 ∀i, j (19)

Wij ∈ {0, 1} ∀i, j (20)

minimize Y
Y

(21)

Subject to:

N∑

i=1

M∑

j=1

Tij ×Rij×Wij ≤ Emin (22)

N∑

i=1

Wij = 1 ∀j (23)

Rij −Wij ≥ 0 ∀i, j (24)

Y −
M∑

j=1

Wij ≥ 0 ∀i (25)

Wij ∈ {0, 1} ∀i, j (26)

The last constraint (Eq 20) is a binary requirement for
decision matrix W .

Once the minimal energy for executing M tasks
is found, among all possible schedules satisfying the
minimal energy budget, we are interested in the
one that has the minimal completion time. There-
fore, the minimal energy found previously, Emin =∑N

i=1

∑M
j=1 TijRijWE , is used as the “upper bound”

for searching a task schedule.

If we define Li =
∑M

j=1 Wij as the number of tasks
assigned to node i, Li indicates the completion time
of node i. Then, our objective becomes to minimize

the largest number of tasks in one node, written as
min

{
maxi∈[1,N ] {Li}

}
. To solve this min-max problem,

we formulate the problem as shown in Equations 21 -
26.

The objective function minimizes integer variable Y ,
which is the largest number of tasks on one node. Wij

is a decision variable similar to Wij defined previously.
The first constraint (Eq 22) ensures that the schedule
cannot consume more energy that the Emin calculated
previously. The second constraint (Eq 23) schedules
each task exactly once. The third constraint (Eq 25)
forces Y to be the largest number of tasks on one node.
The last constraint (Eq 26) is a binary requirement
for decision matrix W . Once tasks are scheduled, we
then rearrange tasks – tasks are moved to earlier time
slots as long as there is free time slot and no same task
is executed on other node simultaneously. Algorithm 1
depicts the procedure. Note that k-out-of-n data pro-
cessing ensures that k or more functional processing
nodes complete all tasks of a job with probability 1. In

Algorithm 1 Schedule Re-arrangement

1: L=last time slot in the schedule
2: for time t = 2→ L do

3: for each scheduled task J in time t do

4: n← processor node of task J
5: while n is idle at t− 1 AND
6: J is NOT scheduled on any node at t− 1 do

7: Move J from t to t− 1
8: t = t− 1
9: end while

10: end for

11: end for

Algorithm 2 Distributed Topology Monitoring

1: At each beacon interval:
2: if p > τ1 and s 6= U then

3: s← U
4: Put +ID to a beacon message.
5: end if

6: if p ≤ τ1 and s = U then

7: s← NU
8: Put −ID to a beacon message.
9: end if

10:

11: Upon receiving a beacon message on Vi:
12: for each ID in the received beacon message do

13: if ID > 0 then

14: ID ← ID⋃{ID}.
15: else

16: ID ← ID \ {ID}.
17: end if

18: end for

19: if |{ID}| > τ2 then

20: Notify Vdel and Vdel initiate topology discovery
21: end if

22: Add the ID in V ′

i s beacon message.

general, it may be possible that a subset of processing
nodes, of size less than k, complete all tasks.

3.6 Topology Monitoring

The Topology Monitoring component monitors the net-
work topology continuously and runs in distributed
manner on all nodes. Whenever a client node needs
to create a file, the Topology Monitoring component
provides the client with the most recent topology in-
formation immediately. When there is a significant
topology change, it notifies the framework to update
the current solution. We first give several notations. A
term s refers to a state of a node, which can be either U
and NU . The state becomes U when a node finds that
its neighbor table has drastically changed; otherwise, a
node keeps the state as NU . We let p be the number
of entries in the neighbor table that has changed. A
set ID contains the node IDs with p greater than τ1,
a threshold parameter for a “significant” local topology
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Fig. 4. An overview of improved MDFS.

change.
The Topology Monitoring component is simple yet

energy-efficient as it does not incur significant commu-
nication overhead – it simply piggybacks node ID on
a beacon message. The protocol is depicted in Algo-
rithm 2. We predefine one node as a topology delegate

Vdel who is responsible for maintaining the global topol-
ogy information. If p of a node is greater than the
threshold τ1, the node changes its state to U and
piggybacks its ID on a beacon message. Whenever a
node with state U finds that its p becomes smaller than
τ1, it changes its state back to NU and puts −ID in
a beacon message. Upon receiving a beacon message,
nodes check the IDs in it. For each ID, nodes add the
ID to set ID if the ID is positive; otherwise, remove
the ID. If a client node finds that the size of set ID
becomes greater than τ2, a threshold for “significant”
global topology change, the node notifies Vdel; and Vdel

executes the Topology Discovery protocol. To reduce
the amount of traffic, client nodes request the global
topology from Vdel, instead of running the topology dis-
covery by themselves. After Vdel completes the topology
update, all nodes reset their status variables back to
NU and set p = 0.

4 System Evaluation

This section investigates the feasibility of running our
framework on real hardware. We compare the perfor-
mance of our framework with a random data allocation
and processing scheme (Random), which randomly se-
lects storage/processor nodes. Specifically, to evaluate
the k-out-of-n data allocation on real hardware, we
implemented a Mobile Distributed File System (MDFS)
on top of our k-out-of-n computing framework. We also
test our k-out-of-n data processing by implementing a
face recognition application that uses our MDFS.

Figure 4 shows an overview of our MDFS. Each file is
encrypted and encoded by erasure coding into n1 data
fragments, and the secret key for the file is decomposed
into n2 key fragments by key sharing algorithm. Any
maximum distance separable code can may be used
to encoded the data and the key; in our experiment,
we adopt the well-developed Reed-Solomon code and
Shamir’s Secret Sharing algorithm. The n1 data frag-
ments and n2 key fragments are then distributed to

Fig. 5. Energy measurement setting.
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nodes in the network. When a node needs to access a
file, it must retrieve at least k1 file fragments and k2 key
fragments. Our k-out-of-n data allocation allocates file
and key fragments optimally when compared with the
state-of-art [10] that distributes fragments uniformly to
the network. Consequently, our MDFS achieves higher
reliability (since our framework considers the possible
failures of nodes when determining storage nodes) and
higher energy efficiency (since storage nodes are se-
lected such that the energy consumption for retrieving
data by any node is minimized). Any

We implemented our system on HTC Evo 4G Smart-
phone, which runs Android 2.3 operating system us-
ing 1G Scorpion CPU, 512MB RAM, and a Wi-Fi
802.11 b/g interface. To enable the Wi-Fi AdHoc mode,
we rooted the device and modified a config file –
wpa supplicant.conf. The Wi-Fi communication range
on HTC Evo 4G is 80-100m. Our data allocation was
programmed with 6,000 lines of Java and C++ code.

The experiment was conducted by 8 students who
carry smartphones and move randomly in an open
space. These smartphones formed an Ad-Hoc network
and the longest node to node distance was 3 hops.
Students took pictures and stored in our MDFS. To
evaluate the k-out-of-n data processing, we designed an
application that searches for human faces appearing in
all stored images. One client node initiates the process-
ing request and all selected processor nodes retrieve,
decode, decrypt, and analyze a set of images. In average,
it took about 3− 4 seconds to process an image of size
2MB. Processing a sequence of images, e.g., a video
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stream, the time may increase in an order of magnitude.
The peak memory usage of our application was around
3MB. In addition, for a realistic energy consumption
model in simulations, we profiled the energy consump-
tion of our application (e.g., WiFi-idle, transmission, re-
ception, and 100%-cpu-utilization). Figure 5 shows our
experimental setting and Figure 6 shows the energy pro-
file of our smartphone in different operating states. It
shows that Wi-Fi component draws significant current
during the communication(sending/receiving packets)
and the consumed current stays constantly high during
the transmission regardless the link quality.

Figure 7 shows the overhead induced by encoding
data. Given a file of 4.1MB, we encoded it with different
k values while keeping parameter n = 8. The left y-axis
is the size of each encoded fragment and the right y-
axis is the percentage of the overhead. Figure 8 shows
the system reliability with respect to different k while
n is constant. As expected, smaller k/n ratio achieves
higher reliability while incurring more storage overhead.
An interesting observation is that the change of system
reliability slows down at k = 5 and reducing k further
does not improve the reliability much. Hence, k = 5
is a reasonable choice where overhead is low (≈ 60%
of overhead) and the reliability is high(≈ 99% of the
highest possible reliability).

To validate the feasibility of running our framework
on a commercial smartphone, we measured the ex-
ecution time of our MDFS application in Figure 9.
For this experiment we varied network size N and set
n = ⌈0.6N⌉, k = ⌈0.6n⌉, k1 = k2 = k, and n1 =
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n2 = n. As shown, nodes spent much longer time in dis-
tributing/retrieving fragments than other components
such as data encoding/decoding. We also observe that
the time for distributing/retrieving fragments increased
with the network size. This is because fragments are
more sparsely distributed, resulting in longer paths to
distribute/retrieve fragments. We then compared the
data retrieval time of our algorithm with the data re-
trieval time of random placement. Figure 10 shows that
our framework achieved 15% to 25% lower data retrieval
time than Random. To validate the performance of our
k-out-of-n data processing, we measured the completion
rate of our face-recognition job by varying the number
of failure node. The face recognition job had an average
completion rate of 95% in our experimental setting.

5 Simulation Results

We conducted simulations to evaluate the performance
of our k-out-of-n framework (denoted by KNF) in larger
scale networks. We consider a network of 400×400m2

where up to 45 mobile nodes are randomly deployed.
The communication range of a node is 130m, which is
measured on our smartphones. Two different mobility
models are tested – Markovian Waypoint Model and
Reference Point Group Mobility (RPGM). Markovian
Waypoint is similar to Random Waypoint Model, which
randomly selects the waypoint of a node, but it accounts
for the current waypoint when it determines the next
waypoint. RPGM is a group mobility model where a
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subset of leaders are selected; each leader moves based
on Markovian Waypoint model and other non-leader
nodes follow the closest leader. Each mobility trace
contains 4 hours of data with 1Hz sampling rate. Nodes
beacon every 30 seconds.

We compare our KNF with two other schemes – a
greedy algorithm (Greedy) and a random placement
algorithm (Random). Greedy selects nodes with the
largest number of neighbors as storage/processor nodes
because nodes with more neighbors are better can-
didates for cluster heads and thus serve good facil-
ity nodes. Random selects storage or processor nodes
randomly. The goal is to evaluate how the selected
storage nodes impact the performance. We measure the
following metrics: consumed energy for retrieving data,
consumed energy for processing a job, data retrieval
rate, completion time of a job, and completion rate of
a job. We are interested in the effects of the following
parameters – mobility model, node speed, k/n ratio, τ2,
and number of failed nodes, and scheduling. The default
values for the parameters are: N = 26, n = 7, k = 4,
τ1 = 3, τ2 = 20; our default mobility model is RPGM
with node-speed 1m/s. A node may fail due to two
independent factors: depleted energy or an application-
dependent failure probability; specifically, the energy
associated with a node decreases as the time elapses,
and thus increases the failure probability. Each node
is assigned a constant application-dependent failure
probability.

We first perform simulations for k-out-of-n data al-
location by varying the first four parameters and then
simulate the k-out-of-n data processing with different
number of failed nodes. We evaluate the performance of
data processing only with the number of node failures
because data processing relies on data retrieval and
the performance of data allocation directly impacts
the performance of data processing. If the performance
of data allocation is already bad, we can expect the
performance of data processing will not be any better.

The simulation is performed in Matlab. The energy
profile is taken from our real measurements on smart-
phones; the mobility trace is generated according to
RPGM mobility model; and the linear programming
problem is solved by the Matlab optimization toolbox.
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n = 7.

5.1 Effect of Mobility

In this section, we investigate how mobility models af-
fect different data allocation schemes. Figure 11 depicts
the results. An immediate observation is that mobility
causes nodes to spend higher energy in retrieving data
compared with the static network. It also shows that
the energy consumption for RPGM is smaller than that
for Markov. The reason is that a storage node usually
serves the nodes in its proximity; thus when nodes move
in a group, the impact of mobility is less severe than
when all nodes move randomly. In all scenarios, KNF
consumes lower energy than others.

5.2 Effect of k/n Ratio

Parameters k and n, set by applications, determine
the degree of reliability. Although lower k/n ratio
provides higher reliability, it also incurs higher data
redundancy. In this section, we investigate how the
k/n ratio (by varying k) influences different resource
allocation schemes. Figure 12 depicts the results. The
data retrieval rate decreases for all three schemes when
k is increased. It is because, with larger k, nodes have
to access more storage nodes, increasing the chances
of failing to retrieve data fragments from all storage
nodes. However, since our solution copes with dynamic
topology changes, it still yields 15% to 25% better
retrieval rate than the other two schemes.

Figure 13 shows that when we increase k, all three
schemes consume more energy. One observation is that
the consumed energy for Random does not increase
much compared with the other two schemes. Unlike
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KNF and Greedy, for Random, storage nodes are ran-
domly selected and nodes choose storage nodes ran-
domly to retrieve data; therefore, when we run the
experiments multiple times with different random selec-
tions of storage nodes, we eventually obtain a similar
average energy consumption. In contrast, KNF and
Greedy select storage nodes based on their specific
rules; thus, when k becomes larger, client nodes have
to communicate with some storage nodes farther away,
leading to higher energy consumption. Although lower
k/n is beneficial for both retrieval rate and energy
efficiency, it requires more storage and longer data
distribution time. A 1MB file with k/n = 0.6 in a
network of 8 nodes may take 10 seconds or longer to
be distributed (as shown in Figure10).

5.3 Effect of τ2 and Node Speed

Figure 14 shows the average retrieval rates of KNF for
different τ2. We can see that smaller τ2 allows for higher
retrieval rates. The main reason is that smaller τ2 causes
KNF to update the placement more frequently. We are
aware that smaller τ2 incurs overhead for relocating
data fragments, but as shown in Figure 15, energy
consumption for smaller τ2 is still lower than that for
larger τ2. The reasons are, first, energy consumed for
relocating data fragments is much smaller than energy
consumed for inefficient data retrieval; second, not all
data fragments need to be relocated. Another interest-
ing observation is that, despite higher node speed, both
retrieval rates and consumed energy do not increase
much. The results confirm that our topology monitoring
component works correctly: although nodes move with
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Fig. 17. Effect of node failure on energy efficiency with
fail-fast.

different speeds, our component reallocates the storage
nodes such that the performance does not degrade
much.

5.4 Effect of node failures in k-out-of-n data pro-

cessing

This section investigates how the failures of processor
nodes affect the energy efficiency, job completion time,
and job completion rate. We first define how Greedy
and Random work for data processing. In Greedy, each
task is replicated to n-k+1 processor nodes that have
the lowest energy consumption for retrieving the task,
and given a task, nodes that require lower energy for
retrieving the task are scheduled earlier. In Random,
the processor nodes are selected randomly and each task
is also replicated to n-k+1 processor nodes randomly.
We consider two failure models: fail-fast and fail-slow.
In the fail-fast model, a node fails at the first time slot
and cannot complete any task, while in the fail-slow
model, a node may fail at any time slot, thus being
able to complete some of its assigned tasks before the
failure.

Figure 16 and Figure 17 show that KNF consumes
10% to 30% lower energy than Greedy and Random.
We observe that the energy consumption is not sensitive
to the number of node failures. When there is a node
failure, a task may be executed on a less optimal
processor node and causes higher energy consumption.
However, this difference is small due to the following
reasons. First, given a task, because it is replicated to n-
k+1 processor nodes, failing an arbitrary processor may
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Fig. 18. Effect of node failure on completion ratio with
fail-slow.
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Fig. 19. Effect of node failure on completion ratio with
fail-fast.

have no effect on the execution time of this task at all.
Second, even if a processor node with the task fails, this
task might have completed before the time of failure.
As a result, the energy difference caused by failing an
additional node is very small. In the fail-fast model, a
failure always affects all the tasks on a processor node,
so its energy consumption increases faster than the fail-
slow model.

In Figure 18 and Figure 19, we see that the com-
pletion ratio is 1 when no more than n − k nodes
fail. Even when more than n − k nodes fail, due to
the same reasons explained previously, there is still
chance that all M tasks complete (tasks may have
completed before the time the node fails). In general,
for any scheme, the completion ratio of the fail-slow
model is higher than the completion ratio of the fail-
fast model. An interesting observation is that Greedy
has the highest completion ratio. In Greedy, the load on
each node is highly uneven, i.e., some processor nodes
may have many tasks but some may not have any task.
This allocation strategy achieves high completion ratio
because all tasks can complete as long as one such high
load processor nodes can finish all its assigned tasks.
In our simulation, about 30% of processor nodes in
Greedy are assigned all M tasks. Analytically, if three
of the ten processor nodes contain all M tasks, the
probability of completion when 9 processor nodes fail
is 1 −

(
7
6

)
/
(

10
9

)
= 0.3. We note that load-balancing

is not an objective in this article. As our objectives
are energy-efficiency and fault-tolerance, we leave the
more complicated load-balancing problem formulation
for future work.
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Fig. 20. Effect of node failure on completion time with
fail-slow.
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Fig. 21. Effect of node failure on completion time with
fail-fast.

In Figure 20 and Figure 21, we observe that comple-
tion time of Random is lower than both Greedy and
KNF. The reason is that both Greedy and KNF try to
minimize the energy at the cost of longer completion
time. Some processor nodes may need to execute much
more tasks because they consume lower energy for
retrieving those tasks compared to others. On the other
hand, Random spreads tasks to all processor nodes
evenly and thus results in lowest completion time.

5.5 Effect of scheduling

Figure 22 and Figure 23 evaluate the performance of
KNF before and after applying the scheduling algo-
rithms to k-out-of-n data processing. When the tasks
are not scheduled, all processing nodes try to execute
the assigned tasks immediately. Since each task is repli-
cated to n− k + 1 times, multiple instances of a same
task may execute simultaneously on different nodes.
Although concurrent execution of a same task wastes
energy, it achieves lower job completion time. This is
because when there is node failure, the failed task still
has a chance to be completed on other processing node
in the same time slot, without affecting the job comple-
tion time. On the other hand, because our scheduling
algorithm avoids executing same instances of a task con-
currently, the completion time will always be delayed
whenever there is a task failure. Therefore, scheduled
tasks always achieve minimal energy consumption while
unscheduled tasks complete the job in shorter time. The
system reliability, or the completion ratio, however, is
not affected by the scheduling algorithm.
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Fig. 22. Comparison of performance before and after
scheduling algorithm on job completion time.
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Fig. 23. Comparison of performance before and after
scheduling algorithm on job consumed energy.

6 Related Work

Some researchers proposed solutions for achieving
higher reliability in dynamic networks. Dimakis et al.
proposed several erasure coding algorithms for main-
taining a distributed storage system in a dynamic
network [11]. Leong et al. proposed an algorithm for
optimal data allocation that maximizes the recovery
probability [12]. Aguilera et al. proposed a protocol to
efficiently adopt erasure code for better reliability [13].
These solutions, however, focused only on system reli-
ability and do not consider energy efficiency.

Several works considered latency and communication
costs. Alicherry and Lakshman proposed a 2-approx
algorithm for selecting optimal data centers [14]. Be-
loglazov et al. solved the similar problem by applying
their Modified Best Fit Decreasing algorithm [15]. Liu
et al. proposed an Energy-Efficient Scheduling (DEES)
algorithm that saves energy by integrating the process
of scheduling tasks and data placement [16]. [17]
proposed cloudlet seeding, a strategic placement of
high performance computing assets in wireless ad-hoc
network such that computational load is balanced. Most
of these solutions, however, are designed for powerful
servers in a static network. Our solution focuses on
resource-constrained mobile devices in a dynamic net-
work.

Storage systems in ad-hoc networks consisting of
mobile devices have also been studied. STACEE uses
edge devices such as laptops and network storage to
create a P2P storage system. They designed a scheme
that minimizes energy from a system perspective and

simultaneously maximizes user satisfaction [18]. Mo-

biCloud treats mobile devices as service nodes in an
ad-hoc network and enhances communication by ad-
dressing trust management, secure routing, and risk
management issues in the network [19]. WhereStore is a
location-based data store for Smartphones interacting
with the cloud. It uses the phone’s location history to
determine what data to replicate locally [20]. Segank

considers a mobile storage system designed to work in
a network of non-uniform quality [21].

[22], [23] distribute data and process the distributed
data in a dynamic network. Both the distributed data
and processing tasks are allocated in an energy-efficient
and reliable manner, but how to optimally schedule the
task to further reduce energy and job makespan is not
considered. Compared with the previous two works, this
paper propose an efficient k-out-of-n task scheduling
algorithm that reduces the job completion time and
minimizes the energy wasted in executing duplicated
tasks on multiple processor nodes. Furthermore, the
tradeoff between the system reliability and the over-
head, in terms of more storage space and redundant
tasks, is analyzed.

Cloud computing in a small-scale network with
battery-powered devices has also gained attention re-
cently. Cloudlet is a resource-rich cluster that is well-
connected to the Internet and is available for use by
nearby mobile devices [1]. A mobile device delivers
a small Virtual Machine (VM) overlay to a cloudlet
infrastructure and lets it take over the computation.
Similar works that use VM migration are also done
in CloneCloud [2] and ThinkAir [3]. MAUI uses code
portability provided by Common Language Runtime to
create two versions of an application: one runs locally
on mobile devices and the other runs remotely [24].
MAUI determines which processes to be offloaded to
remote servers based on their CPU usages. Serendipity
considers using remote computational resource from
other mobile devices [4]. Most of these works focus
on minimizing the energy, but do not address system
reliability.

7 Conclusions

We presented the first k-out-of-n framework that jointly
addresses the energy-efficiency and fault-tolerance chal-
lenges. It assigns data fragments to nodes such that
other nodes retrieve data reliably with minimal energy
consumption. It also allows nodes to process distributed
data such that the energy consumption for processing
the data is minimized. Through system implementa-
tion, the feasibility of our solution on real hardware
was validated. Extensive simulations in larger scale
networks proved the effectiveness of our solution.
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