
1

On Static Reachability Analysis of IP Networks
Geoffrey G. Xie

�
Jibin Zhan

�
David A. Maltz

�
Hui Zhang

�

Albert Greenberg
�

Gisli Hjalmtysson
�

Jennifer Rexford
�

ABSTRACT

The primary purpose of a network is to provide reach-
ability between applications running on end hosts. In
this paper, we describe how to compute the reachability
a network provides from a snapshot of the configuration
state from each of the routers. Our primary contribution
is the precise definition of the potential reachability of a
network and a substantial simplification of the problem
through a unified modeling of packet filters and routing
protocols. In the end, we reduce a complex, important
practical problem to computing the transitive closure to
set union and intersection operations on reachability set
representations. We then extend our algorithm to model
the influence of packet transformations (e.g., by NATs or
ToS remapping) along the path. Our technique for static
analysis of network reachability is valuable for verifying
the intent of the network designer, troubleshooting reacha-
bility problems, and performing “what-if” analysis of fail-
ure scenarios.

Index Terms—Routing, Static Configuration Analysis.

I. INTRODUCTION

While the ultimate goal of networking is to enable com-
munication between hosts that are not directly connected,
a wide variety of mechanisms are being used to limit the
set of destinations the hosts can reach. For example, back-
bone networks may provide Virtual Private Network ser-
vices to connect only remote offices belonging to the same
enterprise, and enterprise networks themselves are often
segmented into departments or offices whose hosts must
be isolated for business or security reasons. Also, due to
a configuration or design mistake, two hosts may not be
able to communicate under certain failure scenarios, even
though the network remains connected; knowing when
these vulnerabilities exist is crucial to building a more re-
liable network.

Research sponsored by the NSF under ANI-0085920, ANI-0331653,
and ANI-0114014. Views and conclusions contained in this document
are those of the authors.
* Naval Postgraduate School. xie@nps.edu. This work was done while
G. G. Xie was a visiting scientist at Carnegie Mellon University.�

Carnegie Mellon University. � jibin,dmaltz,hzhang � @cs.cmu.edu�
AT&T Labs–Research. � albert,gisli,jrex � @research.att.com.

G. Hjalmtysson is also with Reykjavík University.

Determining what kinds of packets can be exchanged
between two hosts connected to a network is a difficult
and critical problem facing network designers and opera-
tors. To our knowledge, the problem is largely unexam-
ined in the networking research literature. Solving the
problem requires knowing far more than the network’s
topology or the routing protocols it uses. For example,
despite having a route to a remote end-point, a sender’s
packets may be discarded by a packet filter on one of the
links in the path. The network’s packet filters, routing
policies, and packet transformations all must be taken into
account to even ask the simple and very important ques-
tion of “can these two hosts communicate?”

This paper crystallizes the problem of calculating the
reachability provided by a network. By mapping packet
filters, routing information, and packet transformations to
a single unified model of reachability we have determined
how to transform this seemingly intractable problem into
a classical graph problem that can be solved with polyno-
mial time algorithms such as transitive closure. This is the
primary contribution of this paper.

A. Advantages of Automated Static Analysis

Currently, the common practice to determine if pack-
ets can reach from one point in a network to another is to
use tools such as ping and traceroute to send probe
traffic that experimentally test whether reachability exists.
In contrast, we have developed a static-analysis approach
that can be applied even if only a description of the net-
work is available. Static analysis has many advantages
over ping and traceroute, including:

� The ability to determine a description of the set of
packets that could traverse the network from a given
starting point to a given ending point, whereas exper-
imental techniques can only check the reachability of
the specific probe traffic they send.

� The ability to calculate the set of routers and hosts
that a given packet could potentially reach, whereas
ping and traceroute can only check reachabil-
ity along the path currently selected by the routing
protocols.

� The ability to evaluate the reachability of a net-
work during its design phase—before the network

2

has been deployed or a problem has arisen. Network
operators can perform our static analysis using only
the configuration files used to program the network’s
routers, and these files are readily available to them.

� The ability to verify whether the reachability a net-
work actually provides matches the designer’s in-
tent. Static analysis can verify that Virtual Private
Networks are, in fact, isolated from other traffic. It
can also be used to conduct “what-if” analysis—
predicting the effects of equipment failures and
planned maintenance on the communication between
end hosts. While syntax verification of router config-
uration has been evaluated [3], [8], there is little un-
derstanding of the power and limitation of semantic
verification based on static analysis.

Manually calculating the static reachability of a net-
work is often impractical, as data show that campus, en-
terprise, and backbone networks vary in size from 5 to 500
routers, with the largest networks having on the order of
1,000 routers, and that real networks use a wide variety
of mechanisms to control the reachability they provide.
A survey of 31 production networks [10], including ex-
amples of both carrier backbone and enterprise networks,
found that 10 out of the 27 enterprise networks had packet
filters applied to their internal links. Several of the net-
works deliberately prevented some hosts from reaching
others by preventing the distribution of routing informa-
tion needed to direct packets between the hosts. Further
complicating the question of a network’s reachability is
the use of mechanisms that actually transform packets as
they travel across the network. For example, Network
Address Translators (NATs) [15] that change a packet’s
source and destination address were found in the inte-
rior of 10 of the 31 networks. Understanding the reach-
ability “matrix” created by a network requires a frame-
work for reasoning about the effects of all these different
mechanisms—packet filters, routing policy, and packet
transformations—at the same time.

B. Our Contributions

First, we formulate the problem of computing the reach-
ability of a network and argue for the importance of craft-
ing good solutions. We focus on the value of computing
reachability through static analysis. We rigorously define
the reachability of a network, and we define expressions
for upper and lower bounds on the reachability.

Second, we describe a tractable framework for jointly
reasoning about how packet filters, routing, and packet
transformations affect the reachability that a network pro-
vides. Bringing together these three very different types of

mechanisms is critical to accurately computing the reach-
ability of a network.

Third, we present an algorithm for the static analysis of
reachability for IP networks and explain how the network
model can be populated by static analysis of the network’s
router configuration files.

C. Structure of the Paper

In Section II, we present a brief overview of the most
relevant aspects of how routers operate and are config-
ured. We then formally describe our framework for ana-
lyzing a network’s reachability in Section III, beginning
our analysis by focusing on packet filters. We present
our algorithm for calculating reachability in Section IV.
In Section V we show how to map routing information
to packet filters and how this model of routing is popu-
lated by analyzing the router configuration files. In Sec-
tion VI we describe how packet transforming mechanisms
are handled. Section VII discusses the applications and
limitations of our approach. After a brief overview of re-
lated work in Section VIII, the paper concludes in Sec-
tion IX with a summary of our contributions.

II. BACKGROUND ON REACHABILITY

CONFIGURATION

In addition to forming the physical topology of routers
and links, network operators must configure the protocols
and mechanisms that collectively determine which hosts
can communicate. Today’s routers offer a wealth of con-
figuration options for enabling and tuning packet filters,
routing protocols, and packet transformations. Our analy-
sis techniques operate on a snapshot of the configuration
state for each of the routers in the network, as recorded in
a configuration file. In well-managed networks, these files
are routinely captured and archived for backup purposes,
and are available to network operators.

To make our discussion of the different reachability
configuration options more concrete, we focus on the ex-
ample enterprise network in Figure 1. The network has
five routers R1 to R5 (depicted as solid rectangles) con-
nected via physical links (depicted as solid lines) that ter-
minate at interfaces (depicted as small circles). R1 and R3
are remote sales offices connected directly to the central
office where R2, R4, and R5 reside. R6 represents the ex-
ternal router in the service provider’s network where the
enterprise connects to the Internet.

Each sales office has two subnets, A and B. Critical ac-
counting applications are run by hosts connected to subnet
A, and general purpose computers are connected to subnet

3

= interface

R6 = external router
link to Internet

= packet filter

= primary link

= backup link

R5R1

R3

ACL 2

A
C

L
4

ACL 1

ACL 3

R6

B1

A1

A3

A5
ACL 1

B3

= subnet

R2 R4

Fig. 1. An example enterprise network with five routers

ACL Definition
ACL 1 permit tcp A1 A5 port eq 1433

deny tcp any any port eq 1433
ACL 2 deny 77 any any
ACL 3 permit tcp A3 A5 port eq 1433

deny tcp any any port eq 1433
deny ip any 224.0.0.0/8

ACL 4 deny 55 any any

TABLE I
FOUR PACKET FILTERS INSTANTIATED IN FIGURE 1

B. Hosts on subnets A1 and A3 must be able to commu-
nicate with corporate servers in subnet A5, but the net-
work’s policy is to prevent any other hosts from commu-
nicating with the servers on A5 to reduce the chances of a
server compromise. To make the network more resilient to
link failures, the operators are planning to add two backup
links (shown with dashed lines). In Section 4 and beyond,
we show that our reachability analysis technique can pre-
dict the effect of adding these links and prevent a design
error that would violate the network’s goals.

A. Packet Filters

The simplest way to control reachability is to configure
an interface to filter unwanted packets in the data plane.
Today’s routers allow operators to filter packets based on a
combination of fields in the packet header, such as source
and destination IP addresses, type-of-service (ToS) bits,
port numbers, and protocol. Each packet filter consists
of a sequence of clauses that that permit or deny certain
packets based on their header fields. A filter can be in-
stantiated on a particular interface to filter incoming or
outgoing packets. An interface may have different filters
for incoming and outgoing packets, and different inter-
faces may be assigned different filters.

Table I shows four access-control list (ACL) specifi-
cations, defined in the Cisco IOS language; packets not
matching any clause are permitted by default. Figure 1
shows where these ACLs are used to filter outgoing pack-
ets on four interfaces. ACL1 permits TCP packets des-
tined to Microsoft SQL servers (port 1433) in subnet A5
from hosts in A1, but denies them from any other sub-

net; instantiating this packet filter on the link from R1 to
R5 is meant to prevent other subnets from accessing the
corporate servers on subnet A5. ACL2 drops all Sun ND
protocol packets (protocol 77), which were implicated in
an earlier attack on Cisco routers. Like ACL1, ACL3 per-
mits TCP packets to the Microsoft SQL server (port 1433)
from hosts in A3, but denies them from any other subnet.
ACL 3 also prevents multicast packets (in the IP address
range 224.0.0.0/8) from leaving the office containing R3.
ACL4 drops all Mobile IP packets (protocol 55), which
were also implicated in an earlier attack on Cisco routers.

B. Routing Protocols

Routing protocols influence reachability by controlling
the construction of the forwarding table on each router.
Conceptually, a route is a network address (e.g., an IP ad-
dress and a mask length, such as 10.0.0.0/8) along with
additional attributes (e.g., numerical weights, AS paths,
or next-hop IP address) that a router can use to determine
which outgoing link to use to reach that subnet. A router
can learn a route in several ways. First, a router knows
locally how to reach all directly-connected subnets—the
incident links themselves. Second, the router may be con-
figured with static routes that map a destination subnet
directly to one or more outgoing interfaces. Third, the
router may learn the information dynamically through a
routing protocol, such as OSPF [11], IS-IS [4], BGP [13],
RIP [9], or EIGRP [17].

To control the sharing of routing information, each in-
stance of a routing protocol runs as a separate routing pro-
cess on the router. Just as with operating system process
boundaries, by default no information is exchanged be-
tween these entities, and they operate completely inde-
pendently. Each routing process has a Routing Informa-
tion Base (RIB) that stores the routes on which it operates,
similar to the virtual memory space of a process. To sim-
plify the discussion, we consider the directly-connected
subnets and static routes as belonging to a single process
that creates a local RIB. A router can run multiple routing
processes simultaneously, including multiple instances of
the same routing protocol. For example, Figure 2 illus-
trates the routing processes (as represented by their RIBs)
for the network in Figure 1, after the two backup links
have been added. Router 2 runs two instances of OSPF
and one instance of BGP, and has a local RIB.

Routing processes do not exchange information unless
specifically configured to do so. The dashed lines in Fig-
ure 2 indicate adjacencies between routing processes on
different routers, or route redistribution between RIBs on
the same router. For example, router 2 exchanges routing
information via OSPF with router 1 and router 3; routes

4

from the OSPF RIB are redistributed to BGP and adver-
tised via external BGP (EBGP) to router 6. The other in-
stance of OSPF on router 2 does the same for routers 4
and 5. The routes from router 2’s local RIB are also redis-
tributed to the BGP RIB, and onward to router 6. Thus,
router 2 takes responsibility for ensuring that the subnets
in the enterprise network are reachable from the rest of the
Internet via router 6.

Rather than exchanging routes to every subnet, the dis-
tribution of routes is governed by routing policies. A pol-
icy can be thought of as an annotation on the dashed line
denoting the exchange (e.g., routing policies 1 (RP1) and
2 (RP2) in Figure 2). For example, router 2 could be con-
figured to filter the route to subnet A5 (i.e., the sensitive
corporate servers) when distributing routes via eBGP to
router 6. Modern routers have rich languages for specify-
ing routing policies, including the ability to select which
routes should be imported or exported based on any of the
attributes associated with the route (e.g., the subnet or the
AS path). Routing policies can also alter the attributes of
the routes they accept (e.g., changing metrics or adding an
AS number onto an AS path).

Upon receiving multiple routes for the same subnet, the
routing process must select a single best route. The se-
lection of the best route depends on the route attributes
and logic defined for the particular protocol. For exam-
ple, BGP has a complex multi-stage process for identi-
fying the best route [16], whereas OSPF selects the path
with the smallest cost as the sum of the link weights [11].
If multiple RIBs on the same router have a best route for
the same subnet, the router must determine which routing
process should control the entry in the forwarding table.
For example, the router may impose a static ranking on
the routing processes (e.g., giving the local RIB priority
over BGP-learned routes).

C. Packet Transformations

The routers make packet filtering and forwarding deci-
sions based on fields in the header of each packet. How-
ever, these header fields may change as a packet flows
through the network. For example, the network operator
may configure router R2 in Figure 1 to reset the ToS bits
of incoming packets from R6. If the enterprise network
assigns packets to different queues based on the ToS bits,
setting the ToS bits to a default value would ensure that
traffic coming from the Internet does not enter the same
queue as high-priority internal traffic. Similarly, R2 could
be configured to map the source IP addresses of pack-
ets leaving the network via R6, in order to use private
IP addresses inside the enterprise and public addresses
in communicating with the external Internet. Although

���������������
���������������

BGP
RIBRIB

OSPF

��������������������

��������������������

RIB
BGP

RIB
OSPF ������������������������������

RIB
OSPF

���������������
���������������

RIB
OSPF	�	�		�	�		�	�	

�
�

�
�

�
�

Router 2

Router RIB

Router RIB

Router RIB

Router 4

Router 5

Router 6

Router RIB

RIB
OSPF

Router 1

i11

i12

i13

i31

i32

i21

i23

i24

i42

i51

i52

i22

i41

Router RIB
Router 3

RIB
OSPF

i14

i33

i43

i53

RP1 RP2

E
B

G
P

RIB
Local

RIB
Local

RIB
Local

RIB
Local

RIB
Local

Fig. 2. Interactions of routing processes in the example network in
Figure 1. Each routing process is depicted by the RIB that stores its
routes. Dashed lines indicate the import, export, and redistribution
of routes. Interfaces are marked with identifiers and the solid lines
between interfaces are the physical links.

stateful Network Address Translator (NAT) and firewall
devices may transform or rate-limit packets in complex
ways, the functionality supported (and enabled) directly in
the routers is often much simpler. In our analysis, we fo-
cus on this simpler form of statically-configured transfor-
mations and how they influence the reachability between
end hosts.

III. PROBLEM FORMULATION

In this section, we formulate the reachability analysis
problem. We first describe a graph model for computing
reachability which allows joint reasoning of the effects of
packet filters and routing protocols. We then formally de-
fine the reachability metrics targeted by our analysis. In
particular, we introduce the concept of the instantaneous
reachability provided by a network, and explain why it is
useful to develop bounds on the reachability provided by
the network. We end this section with an example illus-
trating the potential value of being able to compute the
reachability bounds.

A. A Unifying Model

The crux of determining the reachability of a network is
finding a way to unify two very different views of the net-
work. The first is the graph of routers and links, illustrated
in Figure 1, where vertices are routers and edges are phys-
ical links that may have packet filters applied on them.
The second is the routing process graph, illustrated in Fig-
ure 2, where vertices are routing processes and edges are
adjacencies that implement routing policy. Unifying these
views requires combining the policies governing redistri-
bution of routes with the packet filters governing which

5

packets can traverse a link. This unified framework un-
derlies our reachability analysis, and will be extended to
address packet transforms in Section VI.

We define the reachability analysis problem by extend-
ing the graph of links and routers – annotating the edges
of the graph more elaborately. Formally, we define the
graph ���������
	����� where � is the set of routers, 	 is
the set of directed edges defining the connectivity between
the routers, and � is a labeling function that annotates the
edges in 	 . As the graph is directed, two routers directly
connected by a physical link will have two edges between
them, one in each direction. For each edge ������������	 ,����� �!� represents the policies governing the flow of
packets from � to � .1

The challenge in building this graph model � from the
static analysis of configuration data is that

� ���
cannot be

a simple metric like an integer weight. It must embody the
effects of the complex collection of packet filters and rout-
ing protocols used by the network, but still be amenable
to efficient arithmetic-like manipulations. We define

� ���
to be the set of packets that the network is able to carry
from � to � . �"��� can also be represented by a packet filter# ���

containing predicates that test properties of packet $,
returning true if the packet should be in the set

� �%�
. De-

termining which packets can flow from router � to router� to router & can then be written simply as
� ��� (' �)� *

or# ��� ,+ # -� *
.

The advantage of representing the reachability problem
as a graph �.�/�����
	����� is that it exposes the similarity
between our problem and the class of well-known prob-
lems such as transitive closure and shortest-path compu-
tation, allowing us to use their efficient solutions [1], [6]
when computing the reachability of a network.

Packet filters defined by the network can be easily rep-
resented in the graph model � . Network configuration
files define a packet filter

#
as a series of predicates over

packet elements. For example,
#

may be “p.src addr �
128.2/16

+
p.dest port 0�21)3�4 ”, which accepts all packets

from the 128.2/16 subnet except for those going to port
135. By parsing the configuration files we can extract the
predicate

#
applied to the link from router � to router � ,

and annotate the edge �5�����6����	 with the set of pack-
ets that

#
accepts, i.e.,

� ��� �87�$:9 # �;$<�=�!1?> .
The intuition behind our framework for jointly mod-

eling routing and packet filtering is that routing can be
thought of as a kind of dynamically constructed packet fil-
ter. If routing process on router A holds a route for subnet
@
We believe our framework can be trivially extended to handle mul-

tiple physical links between A and B , but for the remainder of this
paper we assume there is at most one physical link between each pair
of routers.

C
with a next hop of interface D , it means A might forward

packets to
C

out that interface. Therefore, we can treat this
route as if it were a permit clause for

C
in the packet filter

on interface D . Inversely, if router A holds no routes that
could possibly send packets to destination

C
out interfaceD , then we can add a clause to the packet filter on interfaceD to drop all packets headed to destination

C
.

B. Formal Definitions of Reachability Metrics

We describe the reachability between two points in a
network in terms of the the subset of packets (from the
universe of all IP packets) that the network will carry be-
tween those points. Thus, reachability from router D to
router E is given by the subset of packets that the network
will carry from D to E and is denoted as F�G � H . Note that
it is common for F G � H to include packets that are neither
sourced by a host connected to D nor destined to a host
connected to E — this must be true if routers are to for-
ward packets along multiple hops.

Clearly, the action of the network’s routing protocols
will directly influence F G � H , for if router D has no routes
for destination

C
, then packets to

C
cannot be elements ofF G � H , since D will be dropping those packets. More gen-

erally, the network is continually affected by events such
as link failures and changes in routing advertisements re-
ceived from peer networks. Through the action of routing
protocols and other mechanisms, each router will populate
its Forwarding Information Base (FIB) with information
determining the interface(s) out which each packet should
be sent. We define the collective contents of the FIB on
each router in the network to be the network’s forwarding
state, denoted by I . We also define J to represent the set
of all possible forwarding states that the network can pos-
sibly enter, as it responds to any imaginable set of external
advertisements, link failures, etc.2

1) Instantaneous reachability: The Reachability pro-
vided by the network will change as a function of the net-
work’s forwarding state I , which may change from instant
to instant as the network responds to events. Therefore,
our first step is to precisely define the reachability pro-
vided by a network at a single instant in time, assum-
ing that the forwarding state I in effect at that instant is
known.

The influence of any given forwarding state I6�KJ on
the reachability in the network can be accounted for by
incorporating additional packet filters into

� ���
. In doing

so, the policy annotation at each edge in the reachabilityL
When conducting a particular analysis of a particular network, the

human conducting the analysis might want to restrict M to the forward-
ing states reachable under a more restricted set of events, such as “no
more than one link or router will fail at a time.”

6

analysis graph becomes a function of I , written as
� ��� � I � .

Assume
�-� � I � C � to be a function that returns the set of

next hop routers to which router � will forward packets
destined to IP subnet

C
while the network is in forward-

ing state I . � ��� � I � can then be formally defined as an
extension to the statically configured packet filters

� �%�
.

� �%� � I?�=� � ��� ' 7�$ 9 $.dst addr � 7 C 9?��� � � � I%� C � >�>
(1)

Let � � D
� E � be the set of all loop-free paths from D to E in
the network’s physical topology. Using all these concepts,
we can now precisely define the instantaneous reachabil-
ity from D to E provided by the network while at routing
state I as:

F G � H � I �=� �
�����
	�������

�
� ��� �� ���

����� � I?� (2)

2) Bounding the Instantaneous Reachability: In the-
ory, it should be possible to compute exactly what for-
warding state, and thus what reachability, a network pro-
vides at any instant in time. After all, each router in
the network is a computing device with its behavior pro-
grammed and controlled by configuration commands. Un-
fortunately, computing the instantaneous reachability of
a network requires knowing the current topology (e.g.,
which links and routers are up or down) and the exact in-
formation given to the network by neighboring domains
in the outside world (e.g., the routing updates from BGP
peers). Dynamic information of this kind might not be
available (e.g., the network is not deployed yet), and its
use makes the instantaneous reachability results depend
heavily on the exact inputs used. For example, if the ex-
act set of routes offered by external peers to the network
under analysis is known, then the reachability to those
destinations at that instant could be calculated. However,
the calculated reachability is applicable only in situations
where the external peers offer exactly those routes, which
severely limits the usefulness of the reachability analysis.

Further, computing the instantaneous reachability of a
network requires knowing not only the configuration state
of each router, it requires the tedious and error-prone cod-
ing of an exact bug-for-bug emulation of the decision
logic used by the particular version of the software run-
ning on each router. (More than 200 different software
versions were used by the routers in the 31 production
networks we recently examined in our study of IP routing
design [10].) While the routing protocols are defined by
standards, each vendor has implemented them differently.
For example, the Border Gateway Protocol (BGP) [13]
defines a seven-step process for selecting a route to a des-

tination, but Cisco has added several more decision steps
in their implementation [16].

The goal of most network designers is to ensure that
the network’s behavior remains within some “acceptable
operating region” under reasonable predictions of how
routers/links might fail or outside events might change.
This means that more useful than calculating the instanta-
neous reachability of a network is the ability to calculate
bounds on the reachability provided by the network. That
is, given some set of reasonable events, predict the “op-
erating region” of the network. We do this by defining
two key bounds: the upper bound on reachability, which
is the largest set of packets the network will ever deliver
between two points, and the lower bound on reachability,
which is the largest set of packets the network will always
deliver between two points.

Reachability upper bound: Formally, we define the
upper bound of the reachability over all routing states as
follows:

F��G � H � �
� ��� F G

� H � I?� (3)

Conceptually, F �G � H captures the notion that as external
events change, the path the network chooses for a packet
moving from D to E will change as a function of the route
selection logic and the external routing advertisements.
Therefore, taking the union of the set of packets that can
traverse each path from D to E under each state I produces
a superset of the instantaneous reachability — that is, F �G � H
is the set of packets that could potentially reach from D to E
if the routing decisions were made appropriately. The set
negation of F �G � H is particularly useful, as a packet appear-
ing in this complement of F �G � H cannot ever reach from D
to E . Essentially, the packet is blocked along every pos-
sible path. This allows us to verify whether the network
enforces security policies intended to isolate traffic.

Reachability lower bound: Formally, we define the
lower bound for reachability as follows:

F��G � H � �
� ��� F G

� H � I?� (4)

Conceptually, F �G � H captures the notion that a packet per-
mitted to reach between D and E under all possible for-
warding states I � J will always be able to get from D toE . For the lower bound to give useful information about
the network’s routing design, we first need to restrict J to
those routing states induced from a set of network events
targeted by the analysis. In particular, J should not in-
clude any forwarding states corresponding to failure sce-
narios that would physically disconnect D and E (or F �G � H
will be trivially �).

7

F �G � H is useful to network designers because the net-
work’s routing design guarantees that packets appearing
in this set will be deliverable between D and E as long as
the network is not physically partitioned. Designers can
then verify that traffic requiring robustness appears in this
set.

3) Approximating the Reachability Bounds: As dis-
cussed earlier, it is difficult and error-prone to precisely
model the route selection logic and external routing ad-
vertisements under all events. Further, the size of J is
enormous, even for small networks. Combined together,
these two factors make it seem impossible to accurately
compute J or

� ��� � I � for every I . Therefore, we cannot
use equation (3) to exactly compute F �G � H or equation (4)
to compute F �G � H . Instead, we must develop estimators for
F �G � H and F �G � H .

We denote estimators to F �G � H and F �G � H as �F �G � H and �F �G � H ,
respectively. Ideally, these estimators should be looser
bounds, that is:

�F �G � H�� F �G � H�� F G � H � I � � F��G � H�� �F��G � H

as this property maximizes the utility of �F �G � H and �F �G � H in

verifying network properties. For example, a �F �G � H that is
looser than F �G � H may incorrectly warn an operator that the

packets in �F �G � H�� F �G � H could violate the network’s traffic
isolation policies, but in this situation a false-positive is
much better than a false-negative.

Even simple estimators to F �G � H and F �G � H still have value
in predicting network properties. For example, we can ob-
tain simple estimators by ignoring the effect of the rout-
ing protocols entirely, so that

� ���
models only the static

packet filters defined on edge �K������� . The upper bound
can then be calculated by finding the set of packets that at
least one path through the network will allow to pass fromD to E , since there could be some routing state that chooses
this path for the packets.

�F �G � H � �
�����
	�������

�
� ��� �� ���

� ���
(5)

Similarly, the lower bound can be calculated by finding
the set of packets that all paths from D to E allow to pass,
since, so long as D and E are not partitioned, at least one of
these paths will exist and could be chosen by the routing
protocols.

�F �G � H � �
�����
	�������

�
� ��� �� ���

� ���
(6)

It is straightforward to prove that this estimator �F �G � H��
F �G � H [19]. It can be shown that �F �G � H � F �G � H if we can as-
sume that when only one path exists from D to E the routing
design of network is such that the path will be used.3

In Section V, we describe an approach to approximat-
ing the effect of the routing protocols on reachability that
yields tighter estimators. Our expectation is that further
research will lead to better and better estimators.

C. Example Application of Reachability Analysis

To illustrate the value of the reachability bounds, let us
revisit the example network defined in Section II where
network operators were considering adding two backup
links. At a first glance, it may seem to be sufficient to
reconfigure routing parameters on the routers to use the
backup links under failure scenarios. However, checking
the reachability bounds reveals that such a design is incor-
rect. Specifically, the table below compares two particular
reachability bounds before and after the backup links are
added, where ��	�
 7 1 ��� �� > represents the set of packets

Before After���� @�� � ����� ��� ����� � ����� ��� ���! ��� ���#"$%� � ����� � ����� � ����� ��� �'& ����� � ������ �
permitted by ACL 1, 2 and 4, and so on. (The algorithms
for computing these bounds are given in Section IV.) On
one hand, the lower bound from router R1 to router R5
is further constrained by the addition of ��	�
 3 . Recall
that for TCP packets with port number 1433 (SQL traf-
fic), ��	�
 1 permits only those from hosts in A1 to hosts
in A5 and ��	�
 3 permits only those from A3 to A5. To-
gether, ��	�
 1 and ��	�
 3 will deny all TCP packets with
port number 1433 from R1 to R5 as A1 and A3 use dis-
tinct address ranges. This defeats the purpose of adding
the new backup links as they will be totally ineffective for
SQL traffic from R1 to R5 under failure senarios. On the
other hand, the upper bound from R3 to R5 is expanded,
allowing a portion of multicast traffic to spill out of R3
against the security policy established by ��	�
,3 . Since
the backup links are not used under normal conditions,
ping and traceroute tools would not be of much help
in detecting these problems without destructive tests (e.g.,
by shutting down a primary path).

IV. COMPUTING THE REACHABILITY BOUNDS

In this section, we present basic algorithms for com-
puting the simple reachability bound estimators defined$

It is completely conceivable that a network could have a routing
design such that not all paths can be used, meaning that � and � can
be effectively partitioned even when there are still physical paths that
connect them.

8

by equations (5) and (6). The same algorithms can also
be used to calculate other (potentially tighter) reachability
bound estimators as long as the approximation is based
on adding additional static restrictions to pre-configured
packet filters.4 Section V describes such an approxima-
tion method.

We assume that there are no packet transformers in the
network. We will relax this condition in Section VI.

Lower bound calculation. To compute �F �G � H , we first
prune all the edges � ����� � � 	 that cannot be in any
path from D to E . This is accomplished by applying the
“Articulation Points and Biconnected Components” algo-
rithm for any pair of D and E , which is � � 	��.� � [1].
After that, �F �G � H is simply the intersection of

� ���
for t he

remaining edges.
Upper bound calculation. While the calculation of

�F �G � H is not as straightforward, we observe that it closely
relates to the classical transitive closure algorithm. Con-
sider

� ���
as describing the set of packets that

� �%�
ac-

cepts, with empty set � and the set of all possible pack-
ets denoted as � . Our labeling function,

�=���
, is a map

from 	 to the power set of � , � ��� � , which is closed un-
der the operators � and

'
. It follows that properties and

algorithms in classical literature apply; in particular, so-
lutions to compute transitive closure [1] and classical all-
pairs shortest paths algorithms [6]

Below is a dynamic programming formulation (as in
[1]) for calculating �F �G � H , with the recurrence relation
F�� D
� E ���8�
	�� �� F�� D
��� � ' F���� � E ������� , where F�� D
� E ���
represents the set of packets that can go from D to E in up to� hops. The calculation starts from the destination routerE and extends the path by one hop with each iteration of
the outermost loop, and eventually taking all paths from D
to E into consideration.

//Computing reachability upper bound matrix column �
1. Initialize F�� D
� E � to

� G � H for all D ;
2. for (� �!1 to � ��� � �) do
3. for (D(� 1 to � ���) do
4. F�� � D � E � � � ;
5. for (� �!1 to � ���) do
6. if (��D
�������6)

then F�� � D
� E �,�5F�� � D
� E � 	 7 � G � ��� F���� � E � > ;
7. F�� D
� E �,�5F � � D
� E � ;

Table II shows the intermediate results of F�� D
� E � � ,
when running the dynamic program on the example net-
work shown in Figure 3. (This network has a more com-

Also, the upper bound algorithm can compute the instantaneous

reachability if !#" � $ 	&% � is known for every edge.

{3−5}

4,2F

{3,4,6,7}

5

4

3

21
2,1F {6−8}

{3−5}

5,3F

5,4F

{5−8}

{6,7}

3,2F

{5,8}

Fig. 3. Example network for illustrating execution of algorithm.

TABLE II
EXAMPLE EXECUTION OF BASIC ALGORITHM

')(+* ')(� ')(� , (.-� 	 � �/ � 0 0 1 �2 3 �4� 	 ���/ � 0 �� 51 52 �� �1 �2 - �6 �3 54� 	 �/ � �� �1 �2 �� 51 52 �� �1 �2 - �6 �3 54� 	 ���/ � 1 �2 �� 51 52 �� �1 �2 - �6 �3 54

plex structure than the one defined in Section II.) For
links with packet filters defined, the figure shows the set
of packets the filters will pass. For simplicity, packets are
represented by integers: 7 4 �87 > refers to packets 5,6,7,
and 8. An uninstantiated

� ���
set indicates a filter that

passes all packets. The destination router E is set to 5.
The last column, when � � 3 , gives the final result of the
reachability from routers 1–4 to router 5.

Algorithm Complexity. The complexity of the illus-
trative upper bound algorithm above is ������9)� .5 However,
the reachability between all pairs of routers can be com-
puted also in � ��� 9 � via the same techniques used in the
Floyd-Warshall method [6] for computing all-pairs short-
est paths.

Our reachability analysis framework is targeted at com-
puting the reachability for a network operated and con-
trolled by a single organization, rather than the Internet
as a whole. As discussed earlier, the sizes of such net-
works typically range from 5 to 1,000 routers. With �
bounded like that, the ����� 9 � time complexity is very rea-
sonable. It should also be noted that the algorithm will
be run mainly as part of a design time tool installed on an
off-line system. In that case, timely execution is not a pri-
mary concern. For on-line troubleshooting, the size of �
can be reduced by refining the reachability analysis graph
model to incorporate the routing realm abstraction so that
a node in the graph may represent a collection of routing
processes with the same external reachability [10].

�
It should be noted that we have made a simplifying assumption that

step 6 has complexity : 	 � � . In real networks, !;" � $ is often a nontrivial
predicate representation of a set of packets. Performing set operations
over such representations may incur higher cost than : 	 � � . We are
currently investigating this issue.

9

V. CONVERTING ROUTING INFORMATION INTO

PACKET FILTERS

In this section, we explain how the effects of routing on
reachability can be incorporated into our unified frame-
work by adding additional terms to the static packet filters
defined in router configuration files. (We will use

� ���
to denote the intersection of all packet filters configured
over edge �K������� .) These terms restrict the set of pack-
ets that can travel from � to � to those packets that the
network might route over the link � �����2� . The fol-
lowing subsections define the key elements in our model
and then describe a four step algorithm for computing the
additional terms that must be added to

� ���
. The algo-

rithm starts with the routes that are explicitly specified in
the configuration of the network. It then computes the
maximal set of routes that could possibly end up in each
router, subject to the network’s routing policies. Finally,
it uses these maximal sets of routes to compute the addi-
tional terms.

We have formally established that our algorithm com-
putes a tighter estimator for the reachability upper bound
than the simple one defined by equation (5). The details
are omitted here for brevity. Instead, we refer interested
readers to [19], which also discusses a limitation of our al-
gorithm in producing a tight estimator for the reachability
lower bound.

A. Definitions for Modeling Routes and RIBs

A destination subnet is traditionally defined as an ad-
dress and netmask (Section II). However, we need the
ability to reason about how routers will handle a set of
destinations. In particular, we will need a means to de-
scribe the set of all possible destinations. The conceptual
representation of this set as a list of all � 9 � possible IPv4
destinations is unwieldy to work with in practice, so we
must find a more concise notation.

We adopt the representation defined by Cisco, where
a set of destination subnets is represented by a list of7 address/netmask-range > . For example, 7 128.2/16-24 >
represents the set of all destinations whose first bits are
128.2 and whose netmasks are from 16 to 24 bits long;7 0/0-32 > represents the set of all possible IPv4 destina-
tion subnets; and 7 0/1-32,128/1-32 > represents the set of
all possible destinations with the default route 7 0/0 > re-
moved. Our algorithms require that union and subtraction
be well defined on these sets of destinations, and this is
easily proven. Where an algorithm in this paper calls for a
destination

C
, we can use either a single destination subnet

or a set of destination subnets interchangeably.
As described in Section II, each router contains one

RIB for each routing process that it runs. A RIB � D � is

conceptually a function � D � � C � that maps destination ad-
dress

C
to a list of “routes.” A route ��� is a tuple with the

following fields defined:
� ��� .d = set of destination subnets this route applies to� ��� .interfaces = the set of interfaces on the router that
packets matching ��� .d might be routed out
� ��� .next hop ip = the set of routers (identified by their IP
address) whom packets matching ��� .d might be routed to-
wards
� ��� .type = 7 interface,static > original source of this route� attributes.... = a list of key-value pairs

The Router RIB (i.e., the routing table) of each router
maps the complete IP address space onto the set of in-
terfaces according to a longest prefix match. If there is
no default route, all packets not matching a more specific
route are dropped. We formalize the action of the Router
RIB on router � as

� � � I � C � , which returns the set of in-
terfaces that packets to destination

C
should be sent out

when in forwarding state I .6 In this paper, we only con-
sider converged forwarding states — analysis of transient
states is beyond the scope of this work. Previous works
have shown how network configurations can be statically
checked to verify the forwarding state will converge.

For computing the upper and lower bounds on reach-
ability, which predict the network’s reachability over allI � J , we do not need to compute

� � � I � C � but rather
the function �� � � C � that specifies all the interfaces router �
might potentially use to forward packets to destination

C
.

That is, �� � � C � � 	 � � J � � � I � C � . Step 2 below shows how

we calculate �� � C � by flooding routes through the network
and identifying on each router the interfaces that will be
candidates for carrying traffic to

C
.

While functions like �� , � , and others are router specific,
for brevity we will omit the subscript (e.g., using �� � C �
instead of �� � � C �) when it is clear from the context which
router these functions are associated with.

B. Step 1: Initializing the RIBs

Initially all RIBs are cleared of all routes. Then the Lo-
cal RIB on each router is populated with all the routes that
are explicitly created on the router by its configuration.
For each router � , each interface D on � will be assigned a
subnet

C
by the configuration file: this is represented by

setting LocalRIB � C � � � C � 7)D�>%� 7	� >%� type=interface � .
Routes manually configured to direct packets to des-
tination

C
out interface D are represented in the same

way. Static routes, which are manually configured routes
that direct packets to destination

C
out whichever in-

terface is used to reach address � , are represented as

�� " 	&% � � usually maps to a single interface, but may contain sev-

eral interfaces if Equal Cost Multiple Path (ECMP) is in use.

10

RIB
OSPF

���������������
���������������

RIB
OSPF

��������������������
��������������������

RIB
OSPF

���������������
���������������

RIB
BGP

RIB
OSPF

RIB
OSPF

���������������
���������������

BGP
RIB 	�	�		�	�		�	�	

�
�

�
�

�
�

Router 2
Router 3

E
−

B
G

P
Router RIB

Router RIB

Router RIB

Router RIB

Router 4

Router 5

Router 6

Router 1

Router RIB

RIB
OSPF

d3

d3

d3

d3

d3

d3

d1

d1

d1

d1

d1

d3 d3 d3 d3 d3

d3

d3

d3
d1

d1

d1

+d3,+d1
d3,d1

+d3,−d1

i11

i12

i13

i52

i51

i42

i41

i31

i32

i22 i23

d3d1

+d1,−d3
d1

d5

d5

i21

i24

i14

i33

i53

i43
RIB

Local
RIB

Local

RIB
Local

RIB
Local

RIB
Local

Fig. 4. RIB level view of the network illustrating the movement of
routes between RIBs. Routes, such as “d1”, “d3”, route filters, such as
“+d1,-d3” (“+” as permit, “-” as deny), and flow of routes according to
redistribution policies are shown. Following the route flow diagram,
we can identify the origins of routes and through which interfaces the
routes are imported or exported.

LocalRIB � C ��� � C � 7�>%� 7)� >%� type=static � . The outgo-
ing interface for a static route is determined in Step 3 us-
ing a recursive lookup.

If we are computing the reachability upper bound, the
RIBs of all routers external to the network are populated
with a single route with destination 7 0/0-32 > — the set
of all possible destinations. This is a conservative ap-
proximation consistent with computing the upper bound
on reachability, since whatever destinations the peer does
advertise will be covered by 7 0/0-32 > .

If we are computing the lower bound on reachability,
the RIBs of all routers external to the network are left
empty. This conservative approximation is consistent with
computing the lower bound on reachability, since in the
worst case the external routers will export no routes what-
soever to our routers, perhaps due to misconfiguration,
bugs, crashes, etc.

If the routes the external peers are expected to export
are known, the RIBs in our model can be initialized ac-
cordingly and the bounds computed on reachability will
be correspondingly tighter.

C. Step 2: Computing the Potential Set of Routes

In this step, we compute the set of routes that could
potentially occupy each RIB by flooding routes from the
local RIBs and external RIBs throughout the network.
The flooding process is governed by the routing policies
between adjacent RIBs that determine which routes are
passed, modified, or dropped. At the end of the step, we
will have calculated for each RIB � D � the maximal set of
routes that �?D � could potentially hold and ����� D � � , the set
of destinations that � D � covers.

As illustrated in Figure 4, the routing design of a net-
work forms a graph � RIB ����� RIB �
	 RIB � � � , where � RIB

is the set of RIBs in the network and 	 RIB describes
the adjacencies between RIBs over which routes are im-
ported, exported, and redistributed. � is the set of routing
policies that govern how routes move between RIBs, i.e.,
for ������2� � 	 RIB, the policy ��� � � � � determines
which routes can move from RIB � to RIB . Unlike
packet filters in � , routing policies in � can transform
the routes they are applied to by changing the route’s at-
tributes.

Note that graph � RIB may be partitioned and that adja-
cencies among RIBs need not follow the physical links of
the network. That is, the edge set of the RIB graph 	 RIB

can be different from the edge set 	 of the physical graph� in Section III. For example, there is a physical link be-
tween routers 1 and 5 in Figure 4, but no RIB adjacency
traverses it, or, in the case of networks using internal BGP
(IBGP), a single edge in � RIB representing an IBGP adja-
cency may traverse multiple physical links.

We first define a helper function push(� D � � ���) that
takes route ��� found in � D � and pushes it into all the ad-
jacent RIBs. Lines 2-5 prepare a candidate route for entry
into the adjacent RIB. Line 6 applies the routing policy
governing which routes can be pushed into the adjacent
RIB, potentially altering or dropping the route in the pro-
cess. Lines 7-8 add the candidate route into the adjacent
RIB.

push(RIB � ,Route ���) =
1. Forall ���������� 	 RIB

2. � = router on which RIB � resides
3. � = router on which RIB resides
4. ��� .interfaces = 7 interfaces on � where

edge ������ � could arrive >
5. ��� .next hop ip = �
6. ��� � � ��� � � �����
�
7. ��������� d �=�� ��������� d � 	 �����
8. � �� ��� � �� � 	 ��� � � d

Using push(� D � � ���), we compute �?D � for each RIB on
each router by iterative relaxation: applying push() to
each route in each RIB until there are no changes in the
contents of any RIB.

Much of the work in modeling routing lies with the pol-
icy ��� � � ������� in step 6. However, these expressions can be
directly extracted by parsing the description of the net-
work (e.g., the router configuration files). ��� � � must im-
plement the export policy of RIB � and the import pol-
icy of , but has tremendous flexibility given its ability to
modify the routes it is applied to. Typical policies seen in
real networks include:

– A policy that passes routes to destination subnets 1/8

11

and 128.2/16 and drops all other routes.

��� � � ������� � ��� � � d � ��� � d � 7 1 � 7�� 7 �)1 � 7 � � � 1�� � 1�� >
if ��� � � d 0� � then return ��� � else �

– A policy that governs the EBGP adjacency between
AS1 and AS2, where all routes are passed, but AS1 must
prepend its AS number to the route’s AS path.

��� � � �������=� ��� � as path = concatenate � ��� 1 � ��� � as path �
– A policy that governs the EBGP adjacency between

AS1 and AS2, where routes whose AS path matches a
regular expression looking for AS3 are dropped.

��� � � �����
� � ��� � � as path � ��� � as path
�

/AS3/

if ��� � as path 0� � then return ��� � else �
The time complexity of this step is ���
9 � RIB 9����	� 9 ���)9��

��
��� � where � is the length of the longest cycle in the
graph � RIB and 9 ���)9 is the number of initial routes. The
��
��� factor results from the potential need to split a route
into multiple routes each time it is pushed, where � is the
fraction of policies that require splitting routes. From our
experience so far, � is small for real networks.

D. Step 3: Computing �� � C � for each router

Recall that �� � C � is a router specific function that returns
the set of interfaces out which the corresponding router
might forward a packet destined to

C
. To calculate �� � C �

for a router, we go through all the RIBs on that router
looking for routes that cover

C
, and then union together the

interfaces for those routes. �� � C � is defined recursively, and
the base cases are generally routes found in the Local RIB.
For readability, we introduce a helper function ifs(��� � �?D �)
that computes the interfaces to which route ��� in � D � might
direct packets.

�� � C ��� �
� G������ ����� � G����

� �! ����� � � D � � � where ���=� � D � � C �

� �! ����� � � ���

"###########$ ###########%

��� � interfaces if & is a LocalRIB, and

rt.type = interface;

	 � � rt.next hop ips �� � C � if & is a LocalRIB, and

rt.type = static;

	 � � rt.next hop ips �� � C � if & is a BGP-RIB;

��� � interfaces '��)(* � & D I+* �

Case 1 handles the base case of a simple route that for-
wards packets out a specific interface. Case 2 handles
static routes, which require a recursive lookup to deter-
mine which interfaces are used to reach the next-hop spec-
ified in the route. Case 3 handles BGP sessions, which are
carried in TCP session that can traverse multiple routers.
A recursive lookup for the address at the other end of the
session is required to determine which interfaces the TCP
session might arrive on, and thus what outgoing interfaces
might be used for routes learned from that session.7 Case
4 handles all other routing protocols, where the poten-
tial outgoing interfaces are those leading to the neighbor
routers from which the router imported route

C
.

E. Step 4: Computing Packet Filters that Represent the
Effects of Routing

With �� � C � in hand, we know the set of interfaces out
which packets destined to

C
might be sent. We first com-

pute the inverse mapping of �� � C � , �, � D � , which returns the
set of destination subnets that potentially map to interfaceD , i.e., �, � D � � 7 C 9<D � �� � C � > . Using �, � D � we map the
routing table information to packet filters as follows:

Let � denote the router under consideration. For all in-
terfaces D on � and for all routers � that are directly con-
nected to � via interface D , add the following clauses to� � � .

� � � � � � � ' 7�$ 9 p.dst addr � �, � D� > (7)

This filter will pass any packet going to a destination
that � might possibly route out the link to � , and drop all
the packets that � would never route via � .

VI. HANDLING PACKET TRANSFORMS

In this section, we refine the basic algorithm presented
in Section IV so that it will work with networks that in-
clude packet transforming filters.8

We have found that this refinement can be accom-
plished without changing the fundamental structure of
the basic algorithm. Specifically, we separate the packet
transforming parts from these filters and introduce virtual-

In IBGP it is possible to explicitly set a “third-party” next-hop, but
this is unusual. If we see the configuration commands for this, we set�� 	 � to be all interfaces on the router for all potentially learned over
this session..

For networks containing packet transformers, the set of packets that
a destination can receive may be different than the set a source can send
to that destination. For this paper, we calculate reachability as the set
of packets the source can send, although our results can be extended to
also calculate a set describing what those packets might look like on
arrival at the destination.

12

u v

u v
t v’,v

u’

v’

u,vFt u,u’

u,vF

(Case 1)

(Case 2)

Fig. 5. Explicitly modeling packet transformations using ��� � � and a
virtual node.

components to represent them explicitly in the reachabil-
ity analysis graph � . This is illustrated in Figure 5. There
are two cases: (1) the packet transformation � is applied
after the packet filtering (e.g., ToS remarking), and (2) the
transformation � is applied before the packet filtering (e.g.,
NAT). In ether case, a virtual node-edge pair is introduced
to model the separate processing stage. Each virtual edge
is labeled with a � function representing a packet trans-
form.

We have discovered that packet transforms may have
two undesirable properties that can complicate the reacha-
bility analysis. First, a transform might not be one-to-one.
For example, in the case of ToS remarking, multiple ToS
values may be mapped into one single ToS value. Also,
in the case of NAT, one external address pool is typically
reused for many hosts as long as no two hosts use the same
external address and port number at the same time.

Second, a transform may not even be a deterministic
function. In some modes of NAT, a packet is not always
transformed into the same packet; the source address the
packet gets depends on the current availability of the ad-
dress pool. To address these problems, we define a gen-
eralized inverse function of � , over an arbitrary packet set�

, as: � ��� � � � � 	�� ��� 7�$ 9���� � �;$<� > , which returns the
set of all possible packets that can be transformed using �
to a packet in

�
.

Using the inverse transform function, we have refined
the basic algorithm to handle packet transforms. Specifi-
cally, only steps 1 and 6 of the original algorithm need to
be changed.

1’.For all D , initialize F�� D � E � as follows:
to
� G � H , if �KD
� E�� is filter

to set of all packets, if �KD
� E�� is transformer
to � , if �KD � E � 0� 	

6’. if (��D
�������6	 and �KD
����� is transformer)
then F�� � D
� E �,�5F�� � D
� E � 	 � ���G � � � F���� � E ��� ;

else if (�KD
��� ���6	 and �KD
����� is filter)

3,2F

{3,4,5}

4,2F

{3,4,6,7}

5

4

3

2
2,1F {6−8}

{3−5}

5,3F

5,4F{6,7}

{5−8}
1 1’ {5,8}

{1,2}−>{5,6}

Fig. 6. Packet transform example

then F � � D
� E �,�5F � � D � E � 	 7 � G � � � F���� � E � > ;
The intuition behind the new clause in 6’ is that if the

set of packets described by F���� � E � can reach from � toE , then only those packets arriving at D that � G � � transforms
into a packet in the set F���� � E � will be able to reach fromD to E . To find this set of packets that � will transform intoF���� � E � , we calculate � ���G � � � F���� � E ��� .

The complexity of the new algorithm is still � ��� 9 � .
It should be noted that the algorithm requires two addi-
tional elements to be complete: (i) an efficient method to
compute the inverse function, and (ii) a condition to throw
out paths with loops because a looping path containing a
packet transform edge may alter the outcome. Luckily,
the inverse function for commonly used transforms, such
as NAT and ToS remarking, are very simple — though in
general the inverse of other transforms may be more com-
plicated. For brevity, the details of (ii) are omitted.

Let’s revisit the example network in Figure 3 to illus-
trate the steps of the refined algorithm. Suppose node 1
now uses a leading packet transform: 7 1 ��� >
	 7 4 � � > ,
meaning that packets 1 and 2 each will be mapped into
either packet 5 or 6 before processed by node 1’s packet
filter. The new reachability analysis graph becomes Fig-
ure 6 and the execution steps of the refined algorithm are
shown in Table III. At the last step (� �), F��1 � 4%� is
changed due to the transform.

Our framework currently requires that packet trans-
forms be maps over sets of packets. They cannot test
a property of a packet and behave one way if the prop-
erty is true and another way if the property is false. In
particular, some networks include functionality called a
“stateful firewall”. These are like a NAT, but only cre-
ate the mapping when a packet traverses from the inside
of the firewall to the outside. Since our framework cur-
rently has no notion of whether a packet has already been
sent through the stateful firewall from inside to outside,
we cannot directly model the reachability the stateful fire-
wall provides. However, we can calculate the reachabil-
ity assuming a packet has traversed the firewall, in which
case the firewall functions as a NAT described above, and
again assuming no packet has traversed it, in which case
the firewall functions as a block.

13

TABLE III
EXAMPLE EXECUTION OF REFINED ALGORITHM

')(+* ')(� ')(� ')(, (6� 	 � �/ � 0 0 1 52 1 �2 � �� �3 54� 	 ���/ � 0 �� �1 �2 �� 51 52 �� 51 52 - �6 �3 54� 	 �/ � ��51 �2 �� �1 �2 �� 51 52 �� 51 52 - �6 �3 54� 	 ���/ � 1 �2 �� �1 �2 �� 51 52 �� 51 52 - �6 �3 54

VII. REACHABILITY ANALYSIS IN LARGER

CONTEXT

In this section, we describe how static reachability anal-
ysis relates to our larger goal of understanding and im-
proving the design of IP networks and routing policies.
We also discuss the limitations of static analysis and how
to move beyond them.

A. Understanding and Improving Routing Design

Our work on static reachability analysis contributes to
our broader research agenda of improving routing design
and network robustness. Today, routing design is largely a
complex “art” mastered by an increasingly overwhelmed
community of highly-skilled human operators. We aim to
uncover the fundamental abstractions, such as the reach-
ability bounds F �G H and F �G H , that can be used to validate,
evaluate, and even generate the routing design for a net-
work. Our analysis framework opens several avenues for
ongoing work:

Verification of network design goals: A network has
some (explicit or implicit) design goals for providing
reachability between certain parties under certain condi-
tions. For example, a network may need to ensure that
two business competitors (customers � and

�
) can never

reach each other under any circumstances. This property
can be checked directly by ensuring that F �G H is empty for
all D in customer � ’s network and E in

�
’s network, and

vice versa. Alternatively, a network may need to ensure
that a customer can reach a data center; this can be as-
sured by analyzing the lower bound on reachability. Re-
peating the reachability analysis on the subgraphs formed
after link and node deletions can test that network reacha-
bility persists under certain failure modes.

Design patterns and best common practices: The
same reachability goals can be satisfied by a wide variety
of different routing designs. Our concise representation
of reachability provides an appealing way to characterize
and compare routing designs and identify common ways
of configuring a network to satisfy the goals. Using router
configuration data for several networks, we plan to iden-
tify common kinds of reachability goals and the combi-
nations of routing protocols, routing policies, and packet

filters used to achieve them. We also plan to explore the
trade-offs between using routing policies and packet fil-
ters in constraining reachability, and create guidelines for
selecting one mechanism over the other. In particular, we
hope to understand the motivations for applying packet fil-
ters in the interior of routing domains, rather than simply
at the periphery.

Influence of dynamic routing information: Our up-
per and lower bounds (F �G H and F �G H) define an “envelope”
that constrains the influence of dynamic information, such
as topology changes or routes learned from neighboring
domains, on network reachability. We plan to analyze
existing networks in terms of the range between the up-
per and lower bounds. The gap between the upper and
lower bounds may reflect the purpose of the network—
to provide broad reachability for many client domains to
the entire Internet or to to provide narrow reachability for
client domains to specific network services. Alternatively,
a wide range might imply the need for more protective
packet and route filtering, whereas a narrow range may
overly constrain the ability of the network to adapt to dy-
namic changes.

For each of these avenues for future work, our reacha-
bility analysis offers a general and concise way to analyze
and compare routing designs at a level of abstraction well
above the low-level details of router configuration com-
mands and specific routing protocols.

B. Moving Beyond Static Analysis

Although static analysis provides significant insights,
dynamic information determines where a network actu-
ally operates in the space between the lower and upper
bounds on reachability. Our static analysis can be ex-
tended by incorporating measurements of the dynamic
state of the network and the routes learned from neigh-
boring domains:

Dynamic network state: The configuration state de-
fines the IP links and routing protocol adjacencies that
could exist, without indicating whether they do exist at
any given time. Various kinds of measurement data can
provide the missing information. The up/down status of
links and sessions can be tracked via the Simple Network
Management Protocol (SNMP) or vendor-specific “sys-
log” data. In addition, a routing monitor [14] can contin-
uously track the topology (routers and links) and config-
urable parameters (e.g., OSPF link weights) within each
routing instance.

Routing information from neighbors: Similarly,
static analysis considers the route advertisements that
could come across links and sessions to neighboring do-
mains, rather than the ones that are available at any given

14

time. The set of routes announced by a neighboring do-
main could be gleaned through route monitoring or peri-
odic dumps of the Routing Information Base (RIB) at the
edge routers. In addition to identifying which prefixes are
advertised, the RIB data would identify the route attributes
(such as AS path in BGP) that might affect how the receiv-
ing router modifies or selects routes. In addition, the RIB
would indicate whether the neighbor advertises subnets of
a given prefix that would have preference over the super-
net in “longest prefix match” forwarding of IP packets.

VIII. RELATED WORK

Many “ping” and “traceroute” tools have been de-
veloped to help troubleshoot reachability problems in a
live network. However, they are limited to the check-
ing the instantaneous reachability for the particular type
of probe packets they generate. There has been signifi-
cant progress [18], [12], [5] in understanding the behav-
ior of operating networks by measuring the routing pro-
tocols and establishing the root cause of changes. Our
approach does not attempt to describe the detailed behav-
ior of the routing protocols, and it applies to packet filters
and packet transformation as well as routing.

Bush and Griffin [2] formulate and derive sufficient
conditions for the connectivity (reachability) constraints
of Virtual Private Routed Networks (VPRNs). Our work
is complementary, but broader in scope in that we frame
and tackle the general problem of reachability.

IX. CONCLUSIONS

This paper rigorously formulates the challenging prob-
lem of computing the reachability an IP network provides
and describes a framework that can be used to calculate it.

The framework provides a unified way for jointly rea-
soning about the effects the three very different mecha-
nisms of packet filters, routing policy, and packet trans-
formations have on the network’s reachability.

Finally, we show how the framework can be applied to
a static description of the network’s definition, allowing
it to be applied either during the network design process
or to a deployed network. Our technique for static anal-
ysis of network reachability is valuable for verifying the
intent of the network designer, troubleshooting reachabil-
ity problems, and performing “what-if” analysis of failure
scenarios.

Now that we have this formal framework, our future
work is focused on experimental evaluation of the algo-
rithms on a set of networks. For example, our frame-
work can be extended for computing finer-grain reacha-
bility bounds, such as ones that consider only a subset of
packets (e.g., those carrying TCP port 1443 traffic) or a
subset of paths (e.g., excluding certain links).

ACKNOWLEDGMENT

We thank Nick Feamster and the anonymous reviewers
for their valuable comments and suggestions.

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Anal-
ysis of Computer Algorithms. Addison-Wesley, 1974.

[2] Randy Bush and Timothy G. Griffin. Integrity for virtual private
routed networks. In Proc. IEEE INFOCOM, 2003.

[3] Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert Greenberg,
Gisli Hjalmtysson, and Jennifer Rexford. The cutting EDGE of
IP router configuration. In Proc. ACM SIGCOMM Workshop on
Hot Topics in Networking, November 2003.

[4] R. Callon. RFC 1195 - Use of OSI IS-IS for routing in TCP/IP
and dual environments, 1990.

[5] D.-F. Chang, R. Govindan, and J. Heidemann. The temproal and
topological characteristics of BGP path changes. In Proc. Inter-
national Conference on Network Protocols, November 2003.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press (McGraw-Hill), 1990.

[7] Nick Feamster and Hari Balakrishnan. Verifying the correctness
of wide-area Internet routing. Technical Report MIT-LCS-TR-
948, Massachusetts Institute of Technology, May 2004.

[8] Anja Feldmann and Jennifer Rexford. IP network configuration
for intradomain traffic engineering. IEEE Network Magazine,
pages 46–57, September/October 2001.

[9] C. Hedrick. RFC 1058 - Routing Information Protocol, 1988.
[10] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and

A. Greenberg. Routing design in operational networks: A look
from the inside. In Proc. ACM SIGCOMM, August 2004.

[11] J. Moy. RFC 2178 - OSPF Version 2, 1997.
[12] Packet Design, Inc. Route Explorer.

http://www.packetdesign.com/products/products.htm.
[13] Y. Rekhter and T. Li. RFC 1771 - A Border Gateway Protocol 4

(BGP-4), 1995.
[14] Aman Shaikh and Albert Greenberg. OSPF monitoring: Ar-

chitecture, design, and deployment experience. In Proc.
USENIX/ACM NSDI, March 2004.

[15] P. Srisuresh and M. Holdrege. IP Network Address Translator
(NAT) Terminology and Considerations. Internet Engineering
Task Force, Aug 1999. RFC 2663.

[16] Cisco Systems. BGP Best Path Selection Algorithm.
http://www.cisco.com/warp/public/459/25.shtml.

[17] Cisco Systems. Enhanced IGRP. http://www.cisco.com/-
univercd/cc/td/doc/cisintwk/ito doc/en igrp.htm.

[18] Renata Teixeira and Jennifer Rexford. A measurement frame-
work for pin-pointing routing changes. In ACM SIGCOMM
Workshop on Network Troubleshooting, September 2004.

[19] Geoffrey Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert
Greenberg, Gisli Hjalmtysson, and Jennifer Rexford. On static
reachability analysis of IP networks. Technical Report CMU-
CS-04-146, Carnegie Mellon University, June 2004.

