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Abstract—Mobile Cloud Storage (MCS) systems – cloud stor-
age on mobile devices without access to remote data center-type
cloud resources, are not only interesting from a theoretical point
of view, as they pose the most challenging design settings, but also
important in enabling real-world applications such as disaster
relief, military operation, and mining in remote areas. Central
to MCS design is how to minimize the energy consumption
of the battery-powered devices while still maintaining the data
reliability and availability. Unfortunately, existing solutions do
not model the energy-efficiency and data reliability of MCS in
an integrated manner. Their formulations predominantly make
use of heuristics, which may over-emphasize energy efficiency and
not provide sufficient data reliability for some applications. In
this paper, we design an energy-efficient distributed data storage
framework in MCS under explicit data reliability requirement.
The novel formulations produce a reliability-compliant and
energy-efficient MCS system. The performance characteristics of
our solutions are extensively evaluated through both real-world
and synthetic mobility traces.

I. INTRODUCTION

Recent advances in the design and deployment of mobile
cloud systems tap into the increasingly abundant storage,
processing, and communication resources on smart devices. As
a result, mobile cloud computing is becoming a reality [1]. In
particular, a class of mobile cloud systems consisting entirely
of intermittently connected mobile devices has been conceived
and prototyped by researchers [2] [3] [4] [5]. Such mobile
cloud storage (MCS) systems are not only interesting from a
theoretical point of view, as they pose the most challenging

design settings, but also important in enabling real-world
applications. These applications include both military tactical
cloud systems [6] [7] (there is currently an effort by the U.S.
military to equip soldiers with smartphones [6]) and civilian
use cases such as disaster relief and mining operations in
remote areas, where a networking infrastructure does not exist
or is congested [1] [8].

MCSs share the same performance objectives with the
traditional distributed computing and cloud systems. Prior
works identified two major performance concerns unique to
MCSs; one is how to deal with the frequent and unpredictable
changes in network condition (e.g., network topology and
node’s availability) and the other is how to minimize the
energy consumption of the battery-powered devices while still
meeting the performance requirements of applications [9].
However, these studies, particularly those tackling the energy
efficiency problem, do not systematically model the reliability

of the data. As such, their formulations are mostly based on
heuristics derived from specialized network settings, which
may over-emphasize the energy efficiency and not provide
sufficient protection of the stored data. This is especially
problematic in ad-hoc network settings where a drastic and
unexpected change in the network topology or nodes’ avail-
abilities could greatly impair the performance of applications.

In this paper, we formulate the problem of designing an
energy-efficient distributed data storage framework in MCS
under explicit reliability requirement. Specifically, the frame-
work realizes a distributed file system in a set of mobile
devices. Reliability here indicates the probability that a stored
data object can be successfully recovered within a predefined
time period Ts. We seek fundamental insights towards a
systematic methodology for customizing the design to meet
a given mix of reliability and energy requirements. We then
investigate how each requirement may introduce tradeoffs
between application performance and energy efficiency.

We study the k-out-of-n storage system, a more general
framework that can describe most of the existing distributed
storage systems, e.g., the 1-out-of-n employed by HDFS [11].
Each data object is encoded into n fragments, and the data
object can be recovered from any subset of k fragments [3].
While large (k, n) values may be an overkill for static
networks, they are necessary for MCSs in order to ensure
reliability and more importantly, avoid over-taxing a small
number of devices (network hot-spots). We find that it is
possible to uphold the data reliability requirement under a
dynamic network topology, without re-encoding data most of
the time, by using two different (k, n) parameters for data
placement (storage parameter) and data encoding (fragment

parameter). When the data reliability drops due to the change
of network conditions (e.g. topology change or depleted bat-
tery), the framework dynamically reallocates/regenerates data
fragments to maintain the system optimality (energy-efficiency
and data reliability). Using two (k, n) parameters allows more
flexible fragments allocation, and effectively reduces the data
maintenance energy by up to 50% in our evaluations.

To the best of our knowledge, this is the first paper to
consider energy efficiency and storage reliability in an inte-
grated manner for MCSs. Focusing on the general problems for
designing a distributed data storage framework, we consider
only the homogeneous network where all mobile nodes are
identical, and leave the heterogeneous issues as future work.
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Fig. 1. (a). Data creation (top) and data retrieval/processing (bottom). A big
file is split into blocks, encoded into data fragments, and distributed to the
network. (b). MCS System design.

Our contributions are twofold:

• Novel formulation for a reliability-compliant and energy-
efficient MCS

• Extensive evaluation of the proposed design solutions on
multiple real-world and synthetic mobility traces

In this paper, Section II reviews the state of art. Sections III
and IV present our MCS design with performance constraints
and its extensive evaluation. The paper concludes in Section V.

II. MCS DESIGN WITH RELIABILITY CONSTRAINT

Without loss of generality, we assume that the MCS consists
of homogeneous mobile devices. Each of these nodes can join
or leave the cloud network freely. The mobility of the nodes
is primarily due to human movements, e.g., that of soldiers or
disaster responders. The mobile cloud provides storage service
for applications that need to share or store files reliably. We
assume all nodes can be used for storing data, and any node
can be a client node that retrieves the files stored in MCS.

Each application specifies a minimum reliability require-
ment. Similar to the traditional distributed computing settings,
reliability is defined as the probability that a stored data
object can be retrieved successfully. Each node can estimate
its own reliability based on the residual energy, mobility, and
some application-specific factors. The reliability estimation
procedure is described in [10]. A node is considered failed
if other nodes in the network cannot communicate with it,
which may be caused by hardware/software failure, depleted
battery, or network partition. Once a node fails, its stored data
are no longer accessible. We also assume the existence of
a middleware service which detects the change of network

condition (e.g., topology or residual energy). The general
operational concept of data storage in an MCS is depicted
in Figure 1.

Figure 1a shows that a file is first split into blocks and
each block is encoded into multiple data fragments. Splitting
a file into blocks allows a large file to be encoded/decoded
concurrently by multiple nodes. Figure 1b shows the three
primary operations of our MCS framework, data creation, data

retrieval, and data maintenance. When a file is created, MCS
framework estimates the system reliability, determines the
encoding parameters, and allocates the fragments to a subset
of selected storage nodes. Other nodes in the network can later
access the stored files. When the data reliability requirement
can no longer hold due to the change of network condition, the
scheme relocates or re-generates data fragments to achieve a
graceful degradation of reliability. In the remainder of this
section, we present the data allocation and data encoding
scheme that systematically optimizes the MCS system.

A. Reliability-compliant and Energy-aware Data Storage

In a traditional k-out-of-n storage system, files are encoded
using a single (k, n) parameter for both data encoding and
fragment placement: each file is encoded into n data fragments
and each fragment is distributed to a unique storage node. This
simple scheme, however, is not suitable for the MCS setting
where the network condition may change unpredictably. In
other words, each node’s reliability and its location can change
frequently. Consequently, a single assignment of the (k, n)
parameter is unlikely to be sufficient, and adjusting (k, n) on-
demand requires a full cycle of data retrieval, data recovery,
data encoding, and fragment placement, which not only costs
high energy but also incurs long delay. Instead, we propose a
proactive approach using two separate (k, n) parameters for
data placement and data encoding respectively so that the
MCS system can remain energy-efficient and reliable with
minimal maintenance cost. The maintenance cost here includes
the energy for reallocating, regenerating, and redistributing the
data fragments.

1) General Concept: We formally define (kf , nf ) and
(ks, ns) as the fragment parameter and storage parameter

respectively. nf is the number of data fragments that a
data object is encoded into, and ns is the total number of
storage nodes for placing these fragments. kf is the minimal
number of data fragments required for recovering the data
object and ks is the minimal number of storage nodes that
a client needs to contact in order to recover a data object. ks
should meet a feasibility requirement in that any subset of ks
storage nodes must provide kf or more distinct data fragments.
As an example, in Figure 1a where (ks, ns) = (3, 4) and
(kf , nf ) = (4, 6), the yellow block is encoded into nf = 6
data fragments and these fragments are stored on ns = 4
different storage nodes. To recover the yellow block, a client
needs to retrieve at least kf = 4 distinct data fragments. Our
algorithm ensures that any subset of ks = 3 storage nodes
contains at least kf = 4 distinct fragments. Note that for the



security purpose1, we assume that data fragments can not be
cached on clients and retrieved fragments are deleted once
clients finish reading the file.

In this manner, the reliability of a data object depends
entirely on the storage parameter and the reliability of the stor-
age nodes. (This claim is substantiated in the next subsection.)
In other words, we can determine a starting value of (ks, ns)
from the application data reliability requirement and only need
to adjust this parameter (and/or select a different set of storage
nodes) to adapt to the changing network condition. As such,
we then carefully choose a single fragment parameter (kf , nf )
for which a range of expected (ks, ns) values is feasible, so
that when the storage parameter or the set of storage nodes
changes, the system simply reallocates the existing fragments
and thus avoids going through the full cycle of re-encoding
and re-distributing the data object.

R(ks, ns) =
ns
∑

i=ks

Si (1)

Si =

(ns
i )

∑

j=1

∏

l∈c

Rl

∏

m∈c̄

Qm (2)

where ∀c ⊂ n and |c| = i

2) Estimating Data Relia-

bility from (ks, ns): Given the
storage parameter (ks, ns), a
set of ks storage nodes, and
the reliability of each storage
node, the reliability of a stored
data object can be estimated.
Suppose n is the set of ns selected storage nodes, c is the
subset of functional nodes in n, and c̄ = c \ n is the subset
of failed nodes in n. We consider the probability that ks or
more storage nodes remain functional (ks ≤ |c| ≤ ns).

For each size of |c|, there are
(

ns

|c|

)

combinations that need to
be considered. Equation 1 evaluates the reliability of a system
with parameter (ks, ns). Si is the reliability of a system of
exactly i functional nodes; Rl is the reliability of the lth

node in c; Qm is the failure probability of the mth node in
c̄. Although this is a straightforward computation, its time
complexity is O(n!) because the number of combinations of
subset c in Equation 2 is large. Furthermore, because we are
to search for a single storage parameter in Equation 1 that
satisfies the reliability requirement, there are

∑N
n n possible

(ks, ns) pairs that need to be considered (N is the network
size). To account for this computation infeasibility on mo-
bile devices, we propose an approximation algorithm to pre-
compute the reliability offline and perform a table-lookup at
run time. More specifically, we discretize all the variables in
Equation 1 and Equation 2, and build a table of reliability with
respect to different (ks, ns) and node’s reliability.

We first approximate Rl and Qm by the mean reliabil-

ity r and the mean failure probability (1 − r). We then
discretize parameters ks, ns, and r so that a set of reli-
abilities can be pre-computed and stored in a table. The
reliability calculation in Equation 1 is thus simplified to
R(ks, ns) =

∑ns

i=ks

(

ns

i

)

ri(1− r)ns−i. This simplified re-
liability computation can further be written recursively as
R(ks, ns) = R(i, j) = (1− r)R(i, j − 1) + rR(i − 1, j − 1).
The recursive form allows the table to be built efficiently with

1E.g., military applications require high security and forbid adversaries from
recovering intelligence from a single compromised device. It also serves as
the performance lower bound.

TABLE I

ns=5 ns=6 ns=7 ns=8 ns=9

ks=1 0.92 0.95 0.99 0.999 0.999

ks=2 0.82 0.85 0.87 0.89 0.92

ks=3 0.72 0.79 0.82 0.84 0.85

Reliability Lookup Table. A 2-D slice of a 3-D lookup table. The
reliability r in this 2-D table is 0.8.

dynamic programming. Table I is an example look-up table.
We will show in the evaluation section (Figure 3a) that this
approximation can accurately guide the searching procedure
(Tabu search) to derive a good storage parameter.

Ropt = argmin
R

s/fk(
N
∑

j=1

Xj)×

(
N
∑

i=1

N
∑

j=1

DijRij +
N
∑

j=1

DjcXj) (3)

Subject to:
N
∑

j=1

Xj ≥ Ns/M (4)

N
∑

j=1

Rij ≥ fk(
N
∑

j=1

Xj) ∀i (5)

NXj ≥
N
∑

i=1

Rij ≥ Xj ∀j (6)

Xj and Rij ∈ {0, 1} ∀i, j (7)

3) Determining

(ks, ns): Storage
parameter (ks, ns)
and the allocation of
ns storage nodes are
obtained by solving
the k-out-of-n storage
allocation problem
(Equations 3-7). A set
of Candidate Storage

Parameters is first
selected from the table
lookup, and a single
storage parameter is
then found by solving
the optimization problem. Suppose the reliability requirement
is 0.8. By checking Table I, we find a set of (ks, ns) that
meets the reliability requirement (values ≥ 0.8). Although
multiple ks in each column may satisfy the reliability
requirement, only the one with the highest ks is selected,
as using lower ks incurs higher data redundancy and
maintenance cost. For each possible column where ns ≤ N ,
we pick ks = max{k : R(k, ns)} ≥ Rreq where Rreq is the
reliability requirement. We call these shaded cells in Table I
as candidate storage parameters ((2, 5), (2, 6), (3, 7)...).

To finally select a single storage parameter, we consider
how the storage parameter affects the load on each storage
node. Assume a data object of size s bytes is stored into a
system of N nodes and each node requests the data object
once during the effective time period Ts. The total number of
fragments transmitted during Ts is Nkf (each node downloads
kf fragments) and each storage node delivers on average
Nkf/ns fragments, or equivalently Nkf/ns×s/kf = Ns/ns

bytes (each data fragment is approximately s/kf bytes). To
limit the traffic on each storage node, each storage should
not transmit more than M bytes within Ts. This bandwidth

constraint is then written as Ns/ns ≤ M or ns ≥ Ns/M .

We now describe how the k-out-of-n storage allocation
problem is formulated. The objective function, Equation 3,
minimizes the data retrieval time. Note that the “transmis-
sion time” here implies the “transmission energy” as the RF
energy consumption is proportional to the radio transmitting
time [10]. Hereafter, we use the terms transmission energy
and transmission time interchangeably when referring to the



energy. In Equation 3, Dij is the expected transmission time
for node j to send a byte to node i, index c is the file creator,
Rij is a decision variable indicating whether client node i
retrieves data from storage node j, and Xj is a decision
variable indicating whether node j is selected as a storage
node. The expected transmission time matrix D is estimated
based on [15]. DijRij indicates total data retrieval cost,

DjcXj indicates the data creation cost, and s/fk(
∑N

j=1
Xj)

is the size of each data fragment. Constraint 1 (Equation 4)
enforces a lower bound on ns according to the bandwidth
constraint; constraint 2 (Equation 5) ensures that each client is
assigned enough storages nodes (ks or more); function fk(ns)
returns the corresponding ks of the given ns in the candidate
storage parameters; constraint 3 (Equation 6) ensures that Xj

is 1 if and only if jth column of R has non-zero values. The
solution for the optimization problem gives a single storage
parameter (ks, ns) and the allocation of the storage nodes
(Xi) such that the system minimizes the transmission energy
while meeting the reliability requirement. This combinatorial
optimization problem is solved by our customized Tabu Search
heuristic [16].

4) Determining (kf , nf ): Fragment parameter (kf , nf )
controls how a data object is encoded and the level of data
redundancy. We aim to reduce the data maintenance cost
and data redundancy when selecting the fragment parameter.
Recall that a storage parameter is considered feasible if all the
nf data fragments can be distributed to the ns selected storage
nodes such that any subset of ks storage nodes contains at
least kf data fragments. When the network topology changes,
the number of available fragments nf may change due to
nodes failure or departure from the network. If the remaining
fragments can still achieve a feasible allocation (Algorithm 1),
the system can be repaired by reallocating data fragments. If
there is no feasible allocation, the data object needs to be re-
encoded and re-distributed. Note that an infeasible allocation
does not mean the data is lost; it simply indicates that the
reliability requirement imposed by the storage parameter can
no longer be satisfied. The data are still recoverable as long
as kf data fragments are available.

Algorithm 1: FeasibilityTest

Input: (ks, ns, kf , nf )
Output: feasible
feasible = false
uf = ns − (nf mod ns)
if uf ≥ ks then

if ⌊
nf

ns
⌋ks ≥ kf then

feasible = true
end

else
if
⌊
nf

ns
⌋uf + ⌈

nf

ns
⌉(ks − uf) ≥ kf

then
feasible = true

end
end

return feasible

We derive a simple
feasibility test to check
whether a feasible
allocation exists for
the given (ks, ns) and
(kf , nf). Algorithm 1
tries to distribute
nf data fragments
uniformly to ns storage
nodes. Once all nf

fragments have been
allocated, we find the
subset of ks storage
nodes with the least

number of fragments; if
this subset contains nf

or more fragments, the current parameter settings have at

uf = ns − (nf mod ns)

kf ≤

{

⌊
nf

ns
⌋ks if uf ≥ ks

⌊
nf

ns
⌋uf + (ks − uf)⌈

nf

ns
⌉ otherwise

(8)

least one feasible allocation. Otherwise, there is no feasible
allocation. uf indicates the number of “under-filled nodes”,
in which each node has ⌊nf

ns
⌋ fragments (assume nf ≥ ns).

uf helps identify the ks storage nodes that has the fewest
data fragments.

Similar to the feasibility test, Equation 8 finds the largest
feasible kf when given the storage parameter and nf . The
rationale is that the subset of ks storage nodes with the fewest
data fragments must have at least kf fragments in order to
have a feasible allocation.

Overall, we prefer a fragment parameter that can support
multiple possible storage parameters. The fragment parameter
must be carefully selected to adapt to the most possible storage
parameters while keeping the data redundancy low. Naturally,
the possible storage parameters are those in the candidate

storage parameters. Suppose (k̂s, n̂s) is the selected storage
parameters and r̂ is the mean reliability of the selected storage
nodes. We select a (kf , nf ) that can adapt to the storage
parameters in the range specified in Equation 9. α determines
the range of storage parameters that (kf , nf) can support, and
β determines the mean reliability reduction that (kf , nf ) can
tolerate. Rreq is the minimum reliability requirement.

For example, if we refer to Table I and set (k̂s, n̂s) = (3, 7),
r̂ = 0.8, α = 0.2, and β = 0.1. Assume the table contains
21 discrete reliability uniformly spread in [0, 1]. The mean
reliability that the fragment parameter needs to support is r =
0.8 and r = 0.75 because these are the only two discrete
reliability within range 0.8 ≥ r ≥ 0.72. For r = 0.8, the
storage parameters in the range are (2, 6), (3, 7) and (3, 8) (by
table lookup); for r = 0.75, another three storage parameters
(2, 6), (2, 7) and (3, 8) are in the range. The selected fragment
parameter needs to support all these storage parameters.

n̂s + αn̂s ≥ ns ≥ n̂s − αn̂s ≥ 0

r̂ ≥ r ≥ r̂ − βr̂ ≥ Rreq (9)

α,β ≥ 0; ns ∈ integer

To determine
a single fragment
parameter (k̂f , n̂f),
n̂f is set to the
maximum ns in Equation 9, i.e., n̂f = ⌈(1 + α)n̂s⌉. Using
this n̂f and Equation 8, we find the feasible fragment
parameters for each candidate storage parameter. E.g, given
(ks, ns) = (3, 7) and n̂f = 8, the feasible kf are 1, 2, and 3.
In this manner, we obtain an intersection of all the feasible
fragment parameters. In the intersection set, the one with the
highest kf is selected. This selected (k̂f , n̂f) is feasible to
all storage parameters in the range specified by Equation 9.

5) Fragment Re-allocation: When the network monitoring
component detects a significant change of network topology or
nodes’ reliabilities, the system re-evaluates the parameters and
the allocation of the data fragments. If there are sufficient data
fragments, the system simply moves the fragments from the
old storage nodes to the new storage nodes. In this section, we
present an algorithm based on the minimum-cost flow problem

to reallocate the fragments with minimal transmission energy.
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Fig. 2. The minimum cost flow problem formulation

xopt = argmin
x

ns
∑

i=1

ns
∑

j=1

aijxij (10)

Subject to:

∑

j

xji −
∑

j

xij =

⎧

⎨

⎩

V, i = src,
0, i ̸= src, dest,
−V, i = dest.

∀i (11)

0 ≤ xij ≤ cij (12)

The problem is formulated as a directed graph shown in
Figure 2 where the left side is the set of current storage nodes
and the right side is the set of newly selected storage nodes.
All current nodes are connected to a virtual source node and
all new nodes are connected to a virtual destination node.

Each arc is associated with a cost aij and a capacity cij ,
represented by (aij , cij); the arcs between the current nodes
and the new nodes are assigned infinite capacity and their costs
are set to Dij ; the arcs from the virtual source to the current
nodes are assigned zero cost and their capacities are equal to
the number of fragments on the current node; the arcs from the
new storage nodes to the virtual destination are assigned zero
cost and their capacities are equal to the number of required
fragments on the new node. The supply of the virtual source
and the demand of the virtual destination are both set to the
total number of fragments to be transferred.

The optimization problem is expressed as a Linear Pro-
gramming problem in Equations 10-12; the objective function
(Equation 10) minimizes the cost for sending supply from
the source to the destination; xij is the decision variable
indicating the number of fragments node i sends to node
j. Equation 11 ensures that the flow conservation property
on all nodes except the source and the destination; V is the
magnitude of supply/demand; Equation 12 ensures the flow on
each arc does not exceed the capacity. This particular linear
programming problem is solved efficiently in polynomial time
by the network simplex algorithm [17].

III. PERFORMANCE EVALUATION

We evaluate our algorithms by extensive trace driven
simulations using synthetic traces and Dartmouth Network
Trace [18]. Specifically, we are interested in the accuracy
of reliability estimation and data maintenance/reallocation
energy consumption. These metrics are measured for different
network sizes, number of storage nodes, and number of failure
nodes. Given an application reliability requirement, we com-
pare the energy consumption for data storage and maintenance
using either the traditional single (k, n) parameter and our
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Fig. 3. (a) The error of system reliability estimation in different network sizes.
(b) The effect of (ks, ns) on the system reliability and data redundancy.

proposed split parameters. When evaluating our framework
on the real network trace, we also compare the performance
with Hadoop Distributed File System (HDFS).

A. Synthetic Network Trace

We consider a 400×400m2 field where 10 to 45 mobile
nodes are randomly deployed. The communication range of
each node is 130m, as measured on HTC Evo smartphones.
Each mobility trace contains 4 hours of data with 1Hz
sampling rate, and nodes move with an average speed of 1
m/s. Mobility traces are generated using the Group Mobility
(RPGM) model. Figure 3a depicts the accuracy of the table-
lookup reliability estimation. Given the storage parameter
(ks, ns), we compare the true reliability using Equation 1 and
the approximated reliability estimated by table lookup. The
results show that the error is less than 1% and decreases as ns

increases. When more than half of the nodes in the network are
selected, the error drops to below 0.1%. The error decreases
with ns because a larger selected subset is better approximated
by the mean network reliability.

Figure 3b shows the effects of storage parameter (ks, ns) on
the system reliability and data redundancy. In this experiment,
the network size is 16, ks is fixed at 4, (kf , nf )=(ks, ns),
and ns varies from 4 to 16. Four networks with different
mean reliabilities are evaluated. Data redundancy is defined
as the increase in size after a data object is encoded by
erasure coding. It is obvious that both the system reliability
and the data redundancy increase with ns. Data redundancy
is essentially the price of higher system reliability. Assume
the reliability requirement is 0.9. The network with 0.9 mean
reliability needs only 50% redundancy while the network
with 0.5 mean reliability needs 200% redundancy in order
to achieve the same reliability requirement.

The purpose of having split storage and fragment parameters
is to provide more flexibility and reduce the maintenance cost.
If a single fragment parameter can adapt to several storage
parameters, the chance of expensive data re-encoding and re-
distribution will be lower. The maintenance cost here includes
the energy consumption for data reallocation, data retrieval,
data encoding, and data redistribution. We estimate the energy
consumption based on the energy profile measured from a real
smartphone (HTC Evo). Figure 4a shows that split scheme
reduces the overall maintenance energy by around 50%. Fig-
ure 4b considers only the “data reallocation energy” from
the total maintenance energy and compares the performance
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Fig. 4. (a) Performance comparison of unsplit storage parameter, i.e.
(ks, ns) = (kf , nf ), and split parameter. (b) Compare the energy consump-
tion of random reallocation and min-cost flow reallocation.
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Fig. 5. (a) The effectiveness of the maintenance algorithm. (b) Maintenance
energy of Dartmouth dataset at different times.

between minimum-cost flow reallocation and Random reallo-
cation. Random scheme randomly pairs up the new storage
node and the old storage node when reallocating fragments.
An interesting observation is that network size 10 and 14 have
relatively high reallocation energy. The reason is that these
two networks have higher data redundancy and more topology
changes; when the network size is small, the ratio ns/ks
is usually higher in order to achieve the system reliability
requirement, causing higher redundancy ratio nf/kf . More
redundant data thus increases the overall reallocation cost.

In our network trace, each node’s reliability gradually
decreases as time elapsed. Upon a topology change event, the
maintenance algorithm may update the storage parameter or
data allocation to maintain the system optimality. Figure 5a
compares the data retrieval energy of our solution and Random

solution. In Random, ns storage nodes are randomly selected
and clients access data from their closest ks storage nodes.
The x-axis represents the time the maintenance algorithm is
triggered and the updated storage parameter is shown at the top
of the plot; the left and the right y-axis represent the overall
data retrieval energy and system reliability at each time point
respectively. The energy efficiency of both schemes degrade
as the time elapses because routes between clients and storage
nodes become less reliable and the average retrieval time
becomes longer. One interesting observation that the system
reliability remains almost constant in both schemes. This
is because the updated storage parameter keeps the system
reliability high regardless of the data allocation.

1) Dartmouth Network Trace: The Dartmouth Outdoor
Dataset [18] includes the GPS locations and routing tables of
41 laptops moving in a 255×365m2 athletic field for 1.5 hours.
During the experiment, 7 laptops failed to generate any data,
and another 8 laptops became inactive after 30-40 minutes.
Less than 26 nodes completed the entire experiment, as most
of the laptops reached the end of battery life. This realistic

TABLE II

5 min. 20 min. 30 min. 40 min.

Avg. N2N dist. 1.84 2.51 3.22 3.27

Avg.Degree 6.97 4.86 4.63 4.11

MCC 20 29 28 26

# of failures 3 3 5 8

Statistics of Network Trace

trace serves as a good model for evaluating our solutions.

A set of files are created at the beginning of the experiment,
and each file is split into 4MB data blocks. We then evaluate
the average maintenance energy (reallocation, retrieval, and
redistribution) of each data block. Some important network
statistics are summarized in Table II. It shows the average node
to node distance in terms of hop-count, the average degree
of each node, the size of the maximal connected component
(MCC), and the number of failed nodes. Figure 5b shows the
maintenance energy at three different times.

Similar to Figure 4, we compare the maintenance cost of
single and of split parameter solutions. We then compare the
energy consumption of the min-cost flow reallocation and Ran-

dom reallocation. At the beginning of the experiment, all nodes
have high reliability and the network has good connectivity.
As a result, very low data redundancy is necessary to achieve
the reliability requirement and the overall maintenance cost
is low. As the time elapses, nodes move towards wider area,
some nodes become inactive, and most nodes’ reliability drop.
These cause higher data redundancy, unstable connectivity,
and thus higher maintenance energy. When data re-distribution
is inevitable, e.g., at 40 and 70 minutes, the performance of
split parameter becomes close to the single storage parameter.
Overall, the min-cost flow fragment reallocation achieves 20-
50% lower energy than random fragment reallocation.

Figure 6 compares the performance of our storage system
and the Hadoop Distributed File System (HDFS) in Dartmouth
Network Trace. In our storage system (MDFS), a file is
encoded, distributed, and maintained based on the framework
presented in Sec. II-A. HDFS replicates each data block 3
times to 3 different nodes. Figure 6a evaluates the energy
consumption for each node to retrieve the file at different
times. The y-axis is the mean retrieval energy of all nodes
in the network, and the error bar indicates the standard
deviation of data retrieval energy among all nodes. It can
be seen that our storage framework achieves better energy
efficiency, and the variance of data retrieval energy among
clients nodes is also much lower than HDFS. This is because
our framework allocates data considering the energy efficiency
and the data fragments are more evenly distributed in the
network. Figure 6b estimates the number of nodes that can
successfully retrieve the stored data at different times. The y-
axis is the percentage of nodes that can successfully retrieve
the stored data. In HDFS, the data becomes unavailable if all
3 nodes fail or if a client node can not access any of the 3
storage nodes. Because our framework continuously maintains
the stored data, client nodes in MDFS have much higher
probability to successfully recover a file than HDFS.

Node failures are expected in MCS (e.g., data loss, broken
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Fig. 6. Comparison of our storage system (MDFS) with HDFS. (a) Mean
data retrieval energy from each node in the network in different times. (b)
Data retrieval rate – the percentage of nodes that can recover the data.

links, task re-execution, unstable links, and network partition).
Also, when the physical size of the network increases due
to mobility, the average node to node distance (hop-count)
increases and the number of reachable nodes in the network
decreases (some nodes may leave the network). All these
changes make the data retrieval and data processing in MCS
more difficult, and thus impair the data processing energy as
well as job makespan. When all 35 nodes are operational,
close to each other, and have good network connectivity at
the beginning of the experiment, both processing energy and
job makespan achieve the minimal. However, as the network
topology changes with time, the performance of all three
solutions degrades. One interesting result is that all three
solutions have very close data processing energy. A possible
explanation is that the network spreads very uniformly and
node to node distance has low variance, so the data allocation
does not have significant impact on the data retrieval energy.
As for the job makespan, minimal-energy solution again has
the worst job makespan, and the Greedy has slightly longer
job makespan than the minimal-makespan solution.

IV. RELATED WORK

Distributed data storage on mobile devices in an infras-
tructureless network had been studied in many prior works.
For example, STACEE [12] creates a peer to peer storage
system from connected laptops and mobile devices, with an
explicit goal to minimize the total energy consumption while
maximizing user satisfaction. WhereStore [13] is a location-
based data storage for smart devices interacting with the cloud.
It uses each device’s location history to determine what data to
replicate locally. Phoenix [14] is a distributed communication
and storage protocol aiming to make efficient use of storage
space and communication bandwidth while maximizing the
longevity of stored data. Neither the data reliability or data
maintenance are explicitly considered in these works.

Huchton et al. [3] were first to introduce the concept of
k-out-n reliability to a mobile cloud setting while target-
ing primarily military operations. Chen et al. [9] [10] later
proposed several generalizations to the concept and a new
resource allocation scheme to improve energy efficiency. These
constraints have been modeled in ad-hoc routing and other dis-
tributed computing literature, however, none of the prior efforts
systematically models the reliability and deadline constraints
of applications in its problem formulations. By modeling these
constraints, we hope to obtain a deeper understanding of

the important tradeoff between application performance and
energy efficiency in designing MCSs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we study the issues and challenges for
designing an energy-efficient mobile cloud storage (MCS)
with explicit reliability constraint. The mobile cloud consists
entirely of mobile devices and nodes are connected in ad-hoc
manner. We propose algorithms that adaptively reconfigure the
system parameters such that the stored data can be accessed
and maintained with minimal energy cost while continuously
meeting the reliability requirement. The evaluation results
show the performance advantages of using our algorithms
when compared with the traditional k-out-ofn storage system.
Our future work will look at the MCS in an delay-tolerant
networking environment where connectivity is more sparse.
We will also consider the heterogeneous network where each
node may have different communication interfaces, computa-
tion capabilities, and energy capacities.
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