
A Feedback Mechanism for
Mitigating Denial of Service Attacks against

Differentiated Services Clients*

Matthew Braun Geoffrey G. Xie

Computer Science Department
Naval Postgraduate School

Monterey, CA 93940
{mjbraun, xie}@nps.navy.mil

Abstract

Differentiated Service (DiffServ) networks provide Quality of Service (QoS)
guarantees by policing traffic into a fixed number of pre-existing classes. DoS1
attacks against DiffServ clients will be more targeted and require less attack
bandwidth than current attacks due to the per-client and per-class bandwidth
limitations which must be imposed to ensure QoS guarantees. In this paper, we
present a technique for defeating a DoS attack on a DiffServ client through
dynamic modification of packet headers. This technique allows the DiffServ
network to distinguish valid traffic from malicious traffic, but does not require
cryptographic processing on a per-packet basis and does not increase packet
size. We also examine the sensitivity of our system to the traffic policer’s token
bucket size.

1. Introduction

Differentiated Service provides QoS without maintaining per-flow state
information in core routers. Traffic classification is distributed to the edges of
the network where volume is lighter. Ingress (edge) routers police traffic

* Research supported in part by DARPA under the Next Generation Internet
Program (AO#417) and by National Science Foundation under grant no. ANI-
0114014.
1 In this paper the term Denial of Service (DoS) is used to encompass all forms
of denial of service attacks, including distributed (DDoS) and reflected
(RDDoS) attacks.

entering the network, classifying and conditioning it to conform to a specific
behavior aggregate based on the Service Level Agreement (SLA) between the
source and the DiffServ provider. Each behavior aggregate is identified by a
single DiffServ code-point, which is stored in the ToS field of the IP header.
Within the core of the network, packets are forwarded according to the per-hop
behavior associated with the DiffServ code-point [1]. Core routers do not track
the state of individual flows. They are only responsible for forwarding based on
the marking assigned to each packet when it entered the network.

DoS attacks attempt to artificially exhaust a service provider’s
resources, such as bandwidth, memory, or processor cycles. Legitimate users
are prevented from receiving service due to the lack of available resources.
Most DoS attacks rely on the same basic strategy. The attacker compromises a
group of non-target hosts, and causes them to send a flood of traffic to the
target2. The small floods from individual hosts eventually merge into a large
flood at the target’s upstream router. This flood traffic consumes the bandwidth
on the link to the target, causing an overflow of the queue on the link. The
source addresses in the packets’ headers are usually altered to prevent discovery
of the compromised hosts.

Various methods of countering DoS attacks have been proposed.
These include Ingress Filtering [3], IP Traceback [5,11], Router Throttling [14],
and Distributed Filtering [6]. The drawback common to these methods is the
requirement for third-party routers or hosts to cooperate in order for the
countermeasure to be effective. Cooperation issues aside, one would ideally
wish to counter a DoS flooding attack by stopping it at the source or the
source’s ISP. Without knowing the true source of the attack, all packets must
be treated as valid at the network layer. However, IP alone does not provide a
reliable way for the receiver to determine the true source of incoming packets,
since the source address field can easily be spoofed.

The Authentication Header (AH) extension to the IP protocol [4] is an
established means of verifying the source of a traffic flow. It is possible to
determine the validity of a packet’s source address for 100% of the packets
which use the AH. However, the per-packet cryptographic processing required
for IP AH does not scale well, and may be too computationally intensive to
implement while maintaining QoS guarantees. Additionally, IP AH requires the

2 In the case of a reflected DoS attack, the compromised hosts send their flood
traffic to a third party, which (unwittingly) sends a reply to the forged
source/target of the flood. This added step is used to further obfuscate the true
location of the compromised hosts, and in some cases, to multiply the effective
attack bandwidth.

xie
In Proceedings of 10th International Conference on Telecommunications Systems, pp 204-213, Monerey, CA , October 2002

insertion of an additional header field3 into each packet. This can lead to packet
fragmentation, which negatively affects QoS.

New types of DoS attacks will accompany implementation of the
Differentiated Services model. The separation of traffic into distinct classes and
policing traffic on a per client basis will make it easier for an attacker to target a
specific subset of the traffic flowing between nodes. Since resources for
individual traffic classes will be limited, it may be easier to exhaust resources
available to those classes. Furthermore, bandwidth limits imposed on sources in
order to maintain QoS guarantees will impose an artificial bottleneck that
attackers can exploit. If the DiffServ network reduces the bandwidth available
to best effort traffic in order to maintain service guarantees to other traffic, it
may inadvertently facilitate a DoS attack against best effort traffic. Service
theft, the unauthorized use of guaranteed services, may also result in a denial of
service to legitimate users of those services.

Differentiated Service offers new possibilities for the prevention of
DoS attacks as well. Since QoS guarantees are only provided to paying clients,
the DiffServ provider must maintain a database of clients in order to properly
meter traffic and provide appropriate QoS. The provider can use this data at
ingress routers to quickly downgrade or drop packets marked with non-client
source addresses. Of course, an attacker could simply forge the source
addresses of actual clients, so the router must have another means of filtering
malicious traffic. However, this requires the attacker to use addresses of hosts
that the DiffServ provider knows are valid and can contact to verify the
authenticity of the traffic being received.

Based on this observation, we have designed a feedback mechanism
through which a provider can notify clients when their traffic does not conform
to the profile specified in the SLA. We also have developed a marking method
that the client can use in certain cases to make its packets readily
distinguishable from traffic with forged headers. The resulting DoS
countermeasure

a) does not require per-packet cryptographic processing,
b) does not rely on cooperation from third-party hosts or routers,
c) does not increase the likelihood of packet fragmentation, and
d) has negligible or no effect on the provider’s ability to guarantee QoS.
 We have not attempted to devise a solution that will guarantee

authentication of 100% of incoming packets or a zero loss rate for valid, in-

3 The minimum size of the AH header is 16 bytes; the maximum size depends
on the size of the encrypted packet and the AH options selected

profile traffic. We present the conditions under which our marking method will
guarantee 100% authentication, and those under which it will not. For the latter
cases, we have derived a formula for predicting the loss rate of valid traffic. We
have implemented our solutions in the ns2 network simulator to confirm the
correctness of our formula.

The remainder of this paper is organized as follows. Section 2 details
the DoS attack scenario that has motivated this work. Our countermeasure for
this attack is described in Section 3. The performance analysis and simulation
results are presented in Section 4. Section 5 describes several refinements to the
countermeasure to enhance its robustness and make it suitable for detection of
service theft. Finally in Section 6, we offer some concluding remarks.

2. Attack Scenario

If an attacker could compromise hosts or routers within the DiffServ domain, it
could create a DoS for traffic flowing in the domain. Similarly, an attacker
could deny service to a client by compromising client systems. While these
types of DoS are both possible and effective, solutions to them are beyond the
scope of this paper. Our research focuses on a method of attack similar to the
most common types of attacks employed in the current Internet. Below, we set
out the conditions under which this type of attack is possible.

A bandwidth consumption attack is harder to accomplish if the flood
traffic must traverse a DiffServ network. The network will give preferential
treatment to packets from paying clients. Packets from unrecognized sources
will be assigned a default code-point, which equates to best effort service.
Valid packets will be more likely to reach their destination because of the
priority they receive over best-effort traffic. While this will provide more DoS
protection for the endpoints of flow paths, the overall effect will be a shift in the
focus of DoS attacks to the point at which the flow enters a DoS domain. This
is the logical point to attack the traffic since bandwidth limitations imposed by
SLA enforcement will make the DiffServ network the narrowest section of the
path.

DiffServ domains only provide preferred service to recognized clients.
At the network layer, incoming packets are classified to receive preferential
treatment if their source address matches the address associated with an existing
SLA. Consequently, an attacker must mark malicious packets with the address
of a valid DiffServ client to attack the class of traffic associated with that client
or SLA.

The DiffServ domain must be able to meter each client’s traffic in
order to ensure client adherence to SLAs with regard to usage amounts. It is

possible to distribute this metering across all ingress routers, or to process and
store metering information in a central database. We assume that this metering
is not distributed or managed in a centralized manner. Instead, the DiffServ
domain assigns a specific ingress router as the designated entry point for traffic
from a given client. This eliminates overhead associated with intra-domain
metering communications. It also allows the DiffServ domain to filter incoming
traffic based on the router it arrives at. Therefore, to conduct a successful
attack, the attacker must not only spoof the address of a valid client, but it must
ensure that flooding traffic arrives at the ingress router assigned to that client.

In a wired network, if a client is only one hop away form the ingress
router, the DiffServ domain will also be able to filter traffic based on the
incoming link. In this case, it will be impossible for an attacker to flood
spoofed traffic using this client’s source address, since we have already stated
that the client itself cannot be compromised. It follows that no attack is possible
unless the client is more than one hop away from its assigned ingress router.
This does not hold true, however, if the client’s connection to the ingress router
is a wireless link, since the transmission medium itself is not secure.

We make the assumption that the bandwidth of the path between the
client gateway and the ingress router is sizeable enough that attacker will not be
able to conduct a bandwidth consumption attack against the ingress router or the
client gateway. Further, we assume that the attacker is limited to monitoring the
client’s traffic, and cannot alter, delay, or destroy packets while in transit.

3. Countermeasure for DoS Attacks

We propose a technique that will allow the ingress router of the DiffServ
domain to distinguish valid packets from malicious ones based on signature.
We define a packet’s signature as a combination of the source address field and
one or more other fields in the IP header. Our method relies on the ability of the
client to alter this signature. We assume that an attacker will be able to observe
traffic flowing between the client and the DiffServ domain, and that the attacker
will be able to instruct the flood sources to mimic any changes to packet
signatures that it observes. Therefore changing the headers once is insufficient.
Changes must be made on a periodic basis, and must be done faster than the
attacker can duplicate them.

Figure 1 is a time diagram showing the sequence of actions involved in
our proposed countermeasure. When the ingress router marks a packet that
appears to originate from a DiffServ client as out-of profile, it will log the
source and time (t1) of the drop. When the rate of out-of-profile marking
exceeds a pre-set threshold (t2), the router will send a feedback message (A) to

the client. Upon receipt (t3), the client will begin altering the signature of its
packets. The ingress router will use these alterations to identify valid packets.
It will drop all packets with an invalid signature. Details of the individual
actions taken by the client and DiffServ router are given below

The router feedback to the client will consist of a router-generated seed
key for an algorithm that generates a sequence of signatures. The client and
router will be able to independently calculate what the correct signature should
be using this algorithm and the seed-key. The algorithm can be well known as
long as the seed key being used remains secret. The seed key will be encrypted
using a shared secret key and digitally signed. The seed key is used to generate
new signatures instead of the shared secret key to avoid compromising the
secret key through overuse. The digital signature provides authentication for
the feedback message, so attackers will be unable to create a DoS by forging

time

Client
Gateway

Ingress
Router

S0

A

Flooding
Sources

S0

S1

S2

t1

S1

S3

W

W
W - d

Attack
Controller

C

Attack
initiated

S2

S3 Traffic
Sniffer

t2

t3
B

d

Figure 1. Time Sequence for DoS Attack and Countermeasure

these messages. Payload encryption is required since the attacker can monitor
traffic flowing between the client and the DiffServ domain. Since the algorithm
for generating signature values is not secret, access to unencrypted seed keys,
would allow the attacker to change the signature of the attack packets as rapidly
as the sender could, thus circumventing the countermeasure.

Upon receipt of a feedback message, the client will authenticate it,
decrypt the payload, and use the seed key to calculate the sequence of signature
values that it will use. The client will immediately begin using the values in the
designated fields of the IP headers of its packets. It will switch to the next
signature (Si) in the sequence at regular intervals denoted by W. The attacker
will not know what each new signature is until it receives the information from
the monitor installed along the path of the client traffic (B). When it knows the
new signature, it can direct the flood sources to change the signatures they are
using (C). The time between when the ingress router receives the first valid
packet with a new signature and when it receives the first attack packet with the
same signature, denoted by d, is the window in which 100% authentication is
possible. The importance of the relative values of d and W are discussed in
section 4.

The seed key is also used to create the same sequence of signature
values at the router. After sending a feedback message, the router will treat all
packets as valid until it receives the first packet with the first altered signature.
All successive packets with an incorrect signature are dropped, except the first
packet received with the second signature. When the first packet with the
second signature is received, the router will drop all successive packets that do
not match the second signature, including those marked with the first signature.
This prevents an attacker from using old signatures to circumvent the DoS
countermeasures.

4. Performance Evaluation

In this section, we try to evaluate the effectiveness of the feedback mechanism
in mitigating the DoS attack. The main performance metric of interest is the
client’s packet out-of-profile rate, i.e., the percentage of the DiffServ client’s
packets being marked out of profile at the ingress router. We consider a DoS
countermeasure more effective than another if it achieves a smaller rate of out-
of-profile packets for the client given the same network setup and attack
scenario. As a secondary interest we also examine the fairness aspect of the
feedback mechanism. Obviously it is desirable that a DoS countermeasure be
able to distribute out-of-profile packets evenly among all current connections of
the DiffServ client. Finally, we are also interested in how the feedback

mechanism may aid in the detection of DoS attacks and the more elusive service
thefts. We will treat this important topic separately in Section 5.2.
 Our performance evaluation consists of two steps. In the first step, we
create an analytical model of the feedback mechanism with a set of simplifying
assumptions and then derive from this model a closed form solution for the
DiffServ client’s packet out-of-profile rate. In the second step, we verify the
analytical results via simulation experiments.

4.1. Derivation of Client’s Packet Out-Of-Profile Rate
Denote the percentage of the client’s packets being marked out of profile at the
ingress router by p. In order to derive p, we make the following additional
assumptions:

1. All packets have the same size.

2. The client’s traffic arrives at the ingress router at a constant rate of r
packets per second, which is less than or equal to CIR, the client’s allocated
committed information rate in packets per second.

3. The attack traffic arrives at the ingress router at a constant rate of A packets
per second such that

 CIRAr ≥+ (1)

This means the percentage of valid traffic received by the ingress router is
equal to

Ar

r
+

. (2)

4. The client traffic switches to a new signature every W seconds. The attack
traffic tries to make the same signature change, but the change always
happens d seconds later from the ingress router’s perspective. In other
words, there is a fixed lag of d between the arrival time at the ingress of the
first valid packet with a new signature and the arrival time of the first attack
packet with the same signature.

5. The ingress router’s traffic metering process for the client is fair so that if
the traffic being metered is made of several flows, each flow will be
ensured of a share of in-profile packets that is proportion to the flow’s
packet arrival rate.

Consider the time window for an arbitrary signature used by the client’s traffic.
There are two cases:

• Case 1: .dW ≤ From assumption 4, during the entire time period, every
attack packet carries an expired signature when inspected by the ingress
router. Such packets will be dropped before being counted against the
client’s committed rate in the metering process. From assumption 2, the
rate of the valid traffic alone does not exceed the committed rate. Thus, we
have .0=p

• Case 2: .dW > From assumption 4, during an initial time period equal to
d, the ingress router will be able to drop all attack packets. However, for
the remaining time of dW − , the ingress will not be able to distinguish
valid traffic from attack traffic because they have the same signature. In
that case, some of the client’s packets will be marked out-of-profile. From
assumption 5 and Equation (2), the percentage of client packets marked as
in-profile during this period is:

Ar
r

IRCdW
+

⋅−])[(. (3)

So the number of client’s packets marked out of profile during this period
is:

Ar
r

IRCdWdWr
+

⋅−−−⋅])[()(, (4)

)1()(
Ar

CIR
rdW

+
−×⋅−= . (5)

Dividing (5) by the total number of packets sent by the client during the
entire time window, Wr ⋅ , we obtain:

)1()(
Ar

CIR
W

dW
p

+
−×

−
= . (6)

It can be shown via a similar derivation that 0p , the packet out-of-profile
rate for a client that does not use any DoS countermeasure, is equal to

)1(0 Ar
CIRp

+
−= . (7)

Using equation (7), we rewrite equation (5) as:

0)1(p
W
d

p ×−= . (8)

Equation (8) clearly indicates that the reduction in the packet out-of-profile
rate due to the feedback mechanism is inversely proportional to W, the
period between signature changes by the client.

Combining both cases, we have proved the following theorem.

Theorem 1. If assumptions 1-5 hold, then after the client initiates the DoS
countermeasure as a result of the feedback mechanism, the client’s packet out-
of-profile rate becomes

)}1()1(,0max{
Ar

CIR
W
d

p
+

−×−= . (9)

4.2. Fairness
The DiffServ client’s traffic is typically an aggregation of packets from a
number of application flows. Theorem 1 gives the packet out-of-profile rate for
the aggregate. One can use it to predict the total number of client packets
marked out of profile in any given time period. However, Theorem 1 does not
tell how these out-of-profile packets are distributed among the flows. In other
words, we need to examine further how fairly each flow is treated by the DoS
countermeasure. It is important that the out-of-profile packets be spread out
evenly. The application associated with an individual flow, such as a TCP
connection or a Voice-over-IP (VoIP) receiver, is usually designed to resist a
limited amount of QoS degradation to the flow’s packets. If the QoS
degradation exceeds that limit, as in the case where the flow has a
disproportionately large number of packets marked out-of-profile, the
application may not be able to function properly.

Denote the set of flows carried by the client traffic by S. Let)(fp be
the packet out-of-profile rate of flow f. We measure the fairness of a DoS
countermeasure by the following metric, called fairness index:

)}({min)}({max gpfpF
SgSf ∈∈

−= . (10)

Clearly the value of F has a range between 0 and 1. The closer F is to 0, the
smaller the maximum difference between any two flows’ packet out-of-profile
rates is. Therefore, it is important for a DoS countermeasure to minimize F.

Next we evaluate the fairness property of the DoS countermeasure
based on our feedback mechanism. It is possible to develop an analytical
solution for F by making additional assumptions on each flow’s packet arrival
process. However for brevity, we will skip such a formal treatment. Instead, we
try to qualify the fairness performance of the DoS countermeasure with the
following observation.

Recall the steps for deriving the client’s out-of-profile rate. If W is a
constant and if W is larger than d, the DoS countermeasure creates periodic DoS
effective time intervals as illustrated in Figure 2 blow.

During these time intervals, the countermeasure is ineffective and the
DoS attack causes high packet out-of-profile rates for the client. Now suppose
that one of the client’s flows, e.g., created by a NetMeeting application,
generates packets periodically. It is possible that the flow started during a DoS
effective interval and its packet generation period is similar to W. In such a
case, the flow’s packets always arrive at the ingress during DoS effective
periods, resulting a disproportionately high out-of-profile rate for the flow.

Therefore, the DoS countermeasure may not treat the flows fairly. One
fix is to have the client randomize the value of W. We intend to evaluate the
performance of this fix and other solutions to enhance the fairness of the
countermeasure in our follow-on work

4.3. Experimental Results
In this subsection we describe the simulator, the extensions that were made to
the simulator to implement our countermeasure, the experimental network
topology used during simulation, and the simulation results.

4.3.1. Simulator and Extensions
 The experiments were conducted using version 2.1b8a of ns2, a
discrete event simulator targeted at networking research [6]. The simulator is
object-oriented, written in C++, and uses Otcl as a command and configuration
interface [2]. The simulator includes a DiffServ module with implementations
of distinct core and edge routers, several marking policies, and built-in tracing
for DiffServ queues.

The DoS countermeasure was implemented through creation of new
objects inherited from existing ns2 objects. Significant changes include
modification of the existing policing algorithm employed by DiffServ edge
routers, implementation of a means of periodically altering the IP ToS field at
run-time, and creation of a new agent to carry the feedback messages from the
DiffServ ingress router to the client. Several Otcl functions were also added to
provide necessary links between the command interface and the C++ classes.

After examining the IP header format, we have chosen to use the Type
of Service (ToS) field in the IP header as the mutable portion of the packet
signature in our simulation. The ToS field is unused in the non-DiffServ routers
between the client and the DiffServ provider, so modifying it at the source will
not affect packet routing outside of the DiffServ domain.4. DiffServ ingress
routers change this field after receipt based on the client’s SLA, so modifying it
will not affect routing within the DS domain. In the remainder of this section,,
signature refers specifically to the combination of IP source address and IP ToS
field. However, other fields such as ID or Options could be used in place of or
in combination with the ToS field to determine packet signature.

4.3.2. Topology
 Figure 3 shows the ns2 topology that was used to conduct experiments.
The times t , tA , tC , and tF represent the sum of all delays incurred by a packet
transiting the respective link, including processing, transmission, and
propagation delays. We observe that the difference in arrival times at the
ingress router of the first valid and invalid packets with the same signature,
which we have previously named d, can be written

() ttttd FCA −++= . (11)

For all simulations the client and flood sources were set to transmit fixed sized
packets at a constant bit rate. A small degree of random variation in packet

4 In practice we would not choose to use this field exclusively, since it may be
used in transit by networks that implement IP Precedence [10].

 W

d Time
… …

DoS effective

Figure 2. Periodic DoS Effective Time
intervals

inter-departure times was introduced to eliminate synchronization of packet
arrival at the ingress router. The ingress router used a Token Bucket policing
method to assign code points to incoming packets.

4.3.2. Experiments
In our first set of experiments, we compared the out-of-profile rate

produced in the simulation to that calculated using Equation (9). Runs were
conducted for several different values of p0. The values of W, and p0 were held
constant during each run, and the value of d was manipulated by varying tA
while holding tC, tF, and t constant. The results of these trials are shown in
Figure 4.

The simulated results correlated well with our predicted results. For
cases in which W > d, but the difference was small, the countermeasure was
effective in limiting the out-of-profile rate for valid packets. When W >> d, the
out-of-profile rate for valid packets approached p0.

Ratio of Valid Traffic
 to Attack Traffic

0

10

20

30

40

50

60

70

80

90

100

1 10 100
W / d

P
ac

ke
ts

 M
ar

ke
d

 O
u

t-
o

f-
p

ro
fil

e
(%

)

0.5 Predicted
0.5 Results
0.33 Predicted
0.33 Results
0.1 Predicted
0.1 Results
0.01 Predicted
0.01 Results

Figure 4. Predicted Out-of-Profile Rates vs. Measured Results

Our secondary interest was to observe the effect changing the bucket

size for the Token Bucket policer would have on the DoS countermeasure. In
each run, the values of W, d, and p0 were held constant. The size of the token
bucket was increased exponentially until it was large enough to prevent any
packets from being dropped regardless of their true source. Runs were
conducted for cases in which W>d and W<d. The results are plotted in Figure 5.
They indicate that for our countermeasure, a small token bucket size is required

tA

t

tC

tF

DiffServ DomainAttacker

Client
Gateway

Compromised
Flood Sources

Ingress
Router

Figure 3. Experimental Network Topology

to minimize out-of-profile marking for valid traffic while maximizing it for
invalid traffic. We also note that the marking rate for valid traffic is higher than
predicted if the token bucket size is not optimized. We attribute this to the
longer delay in starting the countermeasure that logically accompanies a larger
token bucket. If the ingress router allows larger bursts of traffic, then it will
take longer for packets to be marked out-of-profile once an attack commences.

Figure 5. Effect of Token Bucket Size on Out-of Profile Rate

5. Discussion

In this section, we point out some potential weaknesses of a naïve
implementation of the proposed DoS countermeasure algorithm and describe
how to refine the algorithm to eliminate them. We also discuss ways of
extending the algorithm to aid in detection of service theft.

5.1. Algorithm Refinements
So far in the discussions, we have assumed that the attacker behaves in a
predictable way. In reality, however, the attacker will be much less predictable.
One sure thing is that the attacker will try to find holes in the DoS
countermeasure algorithm itself and attack them directly. It is important to
anticipate such attacks and refine the algorithm to fix these holes.
 One direct attack on the DoS countermeasure as we have implemented
it can be launched as follows. The attacker contrives its attack traffic so that
every possible ToS value is used at a high frequency. Since there are a total of
only 256 different ToS values, it is not difficult for the attacker to do so. As a
result, it occurs frequently that an attack packet carries a ToS matching the next
ToS expected by the ingress router. Processing that packet will trigger a
premature signature change at the ingress. The resulting signature asynchrony
between the client traffic and the ingress router will cause all future client
packets to be dropped by the DoS countermeasure.

The above scenario actually does more damage to the client than the
target scenario described in Section 2. To deal with this problem, the DoS
countermeasure algorithm must be refined to include a reliable method for the
client traffic and the ingress router to synchronize their signature updates. For
this paper, we first examined a solution based on the concept of time-driven key
sequencing [13]. The client and the ingress router both update their signatures
periodically and each uses its own local clock to determine the update instances.
This method has the advantage of low communication overhead because it
requires no additional message exchange between the client and the ingress
router. However, it requires tight synchronization between the clocks of the
client and the ingress router. Unfortunately, achieving tight clock
synchronization in a secure fashion without using specialized hardware (e.g.,
GPS clocks) remains an open problem.
 When tight clock synchronization between the client and the ingress
router is not possible, we propose to refine the DoS countermeasure algorithm
as follows. The client sends a special signaling packet to request the ingress
router begin accepting packets marked with the next signature in the sequence.

W = 100ms
p0 = 0.33

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

Token Bucket Size (packets)

P
ac

ke
ts

 M
ar

ke
d

 O
u

t-
o

f-
p

ro
fi

le
 (

%
)

Invalid, d = 75ms

Valid, d = 75ms

Invalid, d = 110ms

Valid, d = 110ms

Valid (predicted), d= 75ms

Valid (predicted), d=110ms

Each signaling packet is marked with the signature in use prior to the update so
that it will not be dropped due to the DoS countermeasure. Like the signatures,
the sequence of payloads of these signaling packets, e.g., a sequence of 64-bit
values, may be pre-computed5 at both the client and the ingress router based on
the seed key and the shared secret. Therefore, their creation incurs little extra
latency to the data path of normal client traffic. The ingress router checks the
validity of a signaling packet based on the packet’s payload. A valid signaling
packet should carry the next payload expected by the ingress router. The large
number of bits in the payload makes it virtually impossible for the attacker to
succeed in producing a valid signaling packet with a brute-force approach.

The signaling packets may be identified in several ways. For example,
the client may put an all-zero Identification field in their IP header. For
reliability, the client may send multiple signaling packets for each signature
update. These packets will not be metered against the client’s committed rate,
and once the change has been made, any subsequent signaling packets for the
same update will be automatically discarded, since they are marked with the
previous signature. It is not necessary for a signaling packet to deliver the new
signature since the ingress router has pre-computed all the signatures. On the
other hand, if the new signature is always appended to the signaling packet
payload, then there is no need for the ingress router to pre-compute the
signatures.
 Another problem arises when the client becomes idle for a long time.
Without new client traffic to trigger a change, a signature may remain valid at
the ingress router for a very long time, opening a door for service theft. A
simple solution to this problem is having the ingress router time out a signature
if it has not received a new signaling packet for a predetermined amount of
time.
 It should be noted that these refinements for achieving better signature
synchronization between the client and the ingress router have very little impact
on the performance analysis presented in Section 4.

5.2. Detection of Service Theft
A service theft can be defined as a course of actions taken by a perpetrator to
use a portion of a valid client’s allocated bandwidth and obtain a premium
service without pay. Unlike a DoS attack, the intruder is typically much more
restrained to cover his tracks. Therefore, a service theft usually does not cause
as much direct harm to the client as a DoS attack. For example, the intruder

5 For example, the new signature and related signaling packet payload may be
extracted from one 128-bit keyed-MD5 hash value.

may study the client’s traffic pattern and adjust his own traffic volume over
time so that the ingress router will never mark an excessive number of packets
out of profile for that client. This service theft results in lost revenue and
network availability for the DiffServ provider. Therefore, the service provider
will treat them as serious offenses that must be dealt with, in the same way
cable companies handle illegal cable installations.

The proposed feedback mechanism and the resulting cooperation
between the client and the ingress router may help the service provider detect
service theft. For example the ingress router may activate the feedback
mechanism randomly, regardless of whether or not it has just marked a large
number of packets out of profile for the client. It is important for the system to
use a random signature time window (W) so that the intruder is unable to predict
how much longer a spoofed signature may be valid and adjust its traffic pattern
accordingly. If a service theft is under way, the ingress router should notice two
or more signatures being frequently used at the same time. When this occurs,
the ingress router may log the event as a possible occurrence of service theft or
immediately alert the network operator to perform further investigations.

If the intruder can monitor feedback messages from the ingress router,
he can defeat the ingress router’s service theft detection by suspending his
flooding traffic upon seeing a feedback message. In other words, the proposed
theft detection mechanism may not catch service theft launched by a more
resourceful intruder. However, it will be sufficient to stop the service theft from
continuing, and more importantly, it will deter future service theft by forcing the
intruder to expend more resources and effort to avoid detection.

A general conclusion can be drawn from the above discussion. That is,
the proposed DoS countermeasure may be extended into an auditing function
that is orthogonal to access control. For example, it may be used in conjunction
with an IP AH based packet authentication scheme to mitigate DoS attacks and
detect service theft in cases where the authentication process has been
compromised.

6. Concluding Remarks

We have demonstrated that it is possible to mitigate DoS attacks against
DiffServ clients and detect service theft without per-packet cryptographic
processing. The tradeoff for the efficiency gain is the lack of guarantee on
100% rejection of malicious packets at the ingress. Our view is that DoS attacks
and service theft are more of a QoS guarantee problem than one about security
assurance. The proposed countermeasure should be combined with other
security protocols if both QoS guarantee and security assurance are required.

Its low cost makes it an excellent choice as an independent monitor for possible
breaches of the security protocols.

We predict that some form of feedback mechanism is going to be
installed for DiffServ clients in the future to take advantage of the explicit bond
(SLA) between the client and provider. If that happens, it will take very little
effort to deploy the proposed DoS countermeasure.

Finally, we would like to point out that the proposed scheme might
also be used to mitigate DoS attacks against a client that are launched inside the
DoS domain. In this case, the egress router will have to be the one who sends a
feedback message to the client and filters out malicious packets based on
dynamic packet signature.

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss. An

Architecture for Differentiated Services, RFC 2475, IETF, December
1998.

[2] K. Fall and K. Varadhan, eds. The ns Manual. February 2002.
Available at http://www.isi.edu/nsnam/ns/ns-documentation.html.

[3] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial
of Service Attacks which Employ IP Source Address Spoofing. RFC
2827, May 2000.

[4] S. Kent and R. Atkinson. IP Authentication Header. RFC 2402, IETF,
November 1998.

[5] H. Lee and K. Park. On The Effectiveness of Probabilistic Packet
Marking for IP Traceback Under Denial of Service Attack. Proceedings
of IEEE INFOCOM 2001, Anchorage, Alaska. April 2001.

[6] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S.
Shenker. Controlling High Bandwidth Aggregates in the Network.
Technical Report (Extended Version), ACIRI and AT&T Labs Research,
July 2001.

[7] The Network Simulator – ns2. http://www.isi.edu/nsnam/ns/

[8] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
RFC 2474, IETF, December 1998.

[9] K. Park and H. Lee. On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law Internets.
Proceedings of ACM SIGCOMM 2001 Conference, pp. 15-26, Zurich,
Switzerland, September 2001.

[10] J. Postel, Editor, Internet Protocol. RFC 791, IETF, September 1981.

[11] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network
Support for IP Traceback. Proceedings of ACM SIGCOMM 2000
Conference, pp. 295-306, Stockholm, Sweden, August 2000.

[12] J Stephen. The Changing Face of Distributed Denial of Service
Mitigation. White Paper, August 2001. Available at
http://www.sans.org/infosecFAQ/threats/face.htm.

[13] G.G. Xie, T. Levin, and C Irvine. Quantify the Effect of Clock Drift and
Network Latency on Time-driven Key Sequencing. Proceedings of 22nd
International Conference on Distributed Computing Systems – Workshop
on Assurance in Distributed Systems and Networks, Vienna, Austria, July
2002.

[14] D. Yau, F. Liang, and J. Lui. On Defending against Distributed Denial-
of-service Attacks with Server-centric router throttles. Technical Report,
CERIAS and Department of Computer Science, Purdue University. May
2001.

[15] F. Zhi, S. F. Wu, T.S. Wu, He Huang, F. Gong. Security Issues for
Differentiated Service Framework. Internet Draft (expired) draft-fu-
diffserv-security-00.txt, IETF, October 1999.

Matthew Braun is an officer in the United States Navy. He holds a BS in Engineering Mechanics
from the University of Illinois. At the time of writing, he was completing his MS in Computer
Science at the Naval Postgraduate School in Monterey, CA. His research interests include network
security and network Quality of Service.

Geoffrey G. Xie received the B.S. degree in Computer Science from Fudan University, Shanghai,
China in 1986. He received the M.S. degree in Computer Science and the M.A. degree in
Mathematics from Bowling Green State University, Ohio in 1988, and the Ph.D. degree in
Computer Science from the University of Texas at Austin, Texas. From 1991 to 1993, He worked
full-time as a project engineer in Schlumberger Systems Center in Austin, Texas. He joined the
Department of Computer Science of the Naval Postgraduate School in 1996 and is currently an
Associate Professor in that department. He serves on the editorial board of the Computer Networks
Journal. His research interests are network management, traffic engineering, network security, and
mobile ad hoc networks. He is a member of IEEE.

