NPS-CS-16-003

\C

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

AN APPLICATION AWARE APPROACH TO
SCALABLE ONLINE PLACEMENT OF DATA
CENTER WORKLOADS

by

Alan Bairley
Geoffrey G. Xie

16 December 2016

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE onorm Approved o

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)|2. REPORT TYPE 3. DATES COVERED (From — To)
16-12-2016 Technical Report 2016-06-10 to 2016-12-16
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
AN APPLICATION AWARE APPROACH TO SCALABLE ONLINE PLACE-

MENT OF DATA CENTER WORKLOADS

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Alan Bairley, Geoffrey G. Xie

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Naval Postgraduate School

Monterey, CA 93943 NPS-CS-16-003

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Office of the Department of Defense
Chief Information Officer

11. SPONSOR/MONITOR’S REPORT

6000 Defense Pentagon NUMBER(S)

Washington, D.C. 20301-6000

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.IRB Protocol Number:N/A.

14. ABSTRACT

Data center operators strive for maximum resource utilization while satisfying tenant service level agreements; however, they face
major challenges as application workload types are diverse and tenants add, remove, and update their workloads sporadically to
meet changing user demands.Currently, operators allocate workload VMs primarily in an application agnostic fashion, focusing on
minimizing total resource usage.In this work, we first show that such allocations can be suboptimal and then present a new application
aware approach that explicitly models resource preferences of individual workloads.Further, we propose a new logical application
workload (LAW) abstraction to enable precomputation of the required relative positioning of an application’s VMs and allocation of
these VMs in a single atomic step, leading to online algorithms that are one order of magnitude faster than existing per VM placement
solutions. We then develop a statistical extension of LAW to add flexibility in characterizing application requirements and to support
prioritization of workloads. Using realistic workload traces and physical topologies, we evaluate our algorithms in a simulated large-
scale data center setting, and demonstrate their performance advantages and potential tradeoffs versus existing solutions.

15. SUBJECT TERMS

Software-Defined Networking; Network State; Datacenter Network; Genetic Algorithms

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
2. REPORT |b. ABSTRACT|c. THIS PAGE| ABSTRACT OF gs | Alan Bairley

19b. TELEPHONE NUMBER (include area code)

Unclassified | Unclassified | Unclassified uu 55 910-447-9707

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 739.18

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Ronald A. Route Steven R. Lerman
President Provost

The report entitled “An Application Aware Approach to Scalable Online Placement
of Data Center Workloads” was prepared for the general public and funded by the
Department of Defense Information Assurance Scholarship Program (DoD IASP).

Further distribution of all or part of this report is authorized.

This report was prepared by:

Alan Bairley Geoffrey G. Xie
Reviewed by: Released by:
Peter J. Denning, Chairman Jeffrey D. Paduan

Department of Computer Science Dean of Research

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Data center operators strive for maximum resource utilization while satisfying tenant
service level agreements; however, they face major challenges as application workload
types are diverse and tenants add, remove, and update their workloads sporadically to
meet changing user demands. Currently, operators allocate workload VMs primarily
in an application agnostic fashion, focusing on minimizing total resource usage. In this
work, we first show that such allocations can be suboptimal and then present a new
application aware approach that explicitly models resource preferences of individual
workloads. Further, we propose a new logical application workload (LAW) abstraction
to enable precomputation of the required relative positioning of an application’s VMs
and allocation of these VMs in a single atomic step, leading to online algorithms
that are one order of magnitude faster than existing per VM placement solutions.
We then develop a statistical extension of LAW to add flexibility in characterizing
application requirements and to support prioritization of workloads. Using realistic
workload traces and physical topologies, we evaluate our algorithms in a simulated
large-scale data center setting, and demonstrate their performance advantages and

potential tradeoffs versus existing solutions.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction
2 Application-Aware Placement

3 LAWs for Application Efficiency

3.1 Natures of LAW . .

3.2 Constructing Efficient LAWs .

3.3 Allocating LAWs
3.4 Applying LAWs to Different Topologies .

4 FEvaluation
4.1 Setup.
4.2 Results .

4.3 LAW for Architectures of Different Dimensions .

5 Statistical LAWs
5.1 Example
5.2 Construction and Allocation .

5.3 Statistical LAW Results .

6 LAWSs for Workload Prioritization
6.1 Early Statistical LAW Allocation .
6.2 Early Statistical LAW Results .

7 Related Work

8 Conclusion

References

vii

© 0o I N

15

17
17
18
22

25

25

26

27

31

31

32

35

37

39

Initial Distribution List

viii

43

Acknowledgements

The authors would like to thank the DoD Information Assurance Scholarship Program
(IASP) for providing general support towards this work.

X

THIS PAGE INTENTIONALLY LEFT BLANK

CHAPTER 1:

Introduction

The data center operators of large enterprises and public cloud providers face major
challenges in allocating virtual machines (VMs) to individual application workloads.
First, the workloads are diverse in sizes (measured by the number of VMs required,
the amount of link bandwidth required, running time, etc.), in resource consumption
characteristics (e.g., computation intensive vs. data intensive), and in performance re-
quirements such as bounds on response times and application availability [1]. Second,
the increased flexibility and agility provided by software-defined data center networks
allows enterprises and public cloud tenants to rapidly add, remove, update, and pri-
oritize their workloads to meet sporadically changing user demands. There is an
urgent need for online allocation algorithms that can deal with such dynamic behav-
iors without incurring too much latency [2,3]. Last, but not least, the operators must
strive for efficient uses of their physical resources (link bandwidth, electrical power,
etc.) in order to minimize cost while meeting the quality of service requirements of
applications.

Maximizing resource utilization within data centers is a problem that many prior
efforts have attempted to solve using various approaches, including integer linear pro-
gramming [4], greedy heuristics [5-8], and genetic algorithms [9,10]. However, we
observe that this body of work overwhelmingly strives to optimize cumulative re-
source usage among all hosted tenant applications while deferring the per application
performance concerns to relatively low level mechanisms such as CPU scheduling
and traffic engineering, despite recent studies demonstrating that different types of
workloads contend for different types of resources and consequently how VMs of an
application are relatively positioned can significantly impact the performance of an
application [11,12]. Specifically, it would be advisable not to co-locate VMs of com-
putation intensive workloads to avoid unnecessary CPU contention while at the same
time, position VMs of the same data intensive workload as close as possible to reduce
both bandwidth contention and communication latency [12].

In other words, while workload placement should concern about cumulative resource
usage, additional opportunities exist to intelligently place the VMs of individual work-
loads to improve per application performance of all hosted applications. In this paper,
we investigate a placement strategy, which we term “application-aware”, to leverage
such opportunities. More specifically, we explicitly model the resource preference
of each workload and develop a unified framework to characterize and minimize re-
source contentions introduced by a new workload, which can be between VMs of the

same workload as well as with respect to existing workloads. Further, we enhance
the application-aware approach by introducing a new logical application workload
(LAW) abstraction. The LAW represents the most desirable relative positioning of
the workload’s VM placement in a physical topology in terms of both meeting oper-
ator specific resource efficiency goals and minimizing resource contentions. We show
that a data center controller can precompute LAWs and subsequently assign VMs of
each workload in a single atomic step, leading to online algorithms that are one order
of magnitude faster than current per VM placement solutions.

Our contribution is multi-fold as follows.

1.

First, we show that application agnostic workload placement can introduce un-
necessary resource contentions, and demonstrate potential performance gains from
precisely modeling resource contentions that can be introduced by a workload.
(Chapter 2)

. Second, we formally define LAW and describe how to construct LAWSs that mini-

mize potential resource contentions. We then design a range of bin packing heuris-
tics to place workloads on a per LAW basis and at the same time optimize different
cumulative resource usage objectives. (Chapter 3)

Third, we observe that LAW based workload placement can be infeasible sooner
than per VM placement. Consequently, we propose a statistical extension of the
LAW abstraction to add flexibility in characterizing application requirements. We
show that the extension permits a data center operator to increase LAW placement
feasibility via graceful degradation of application performance. (Chapter 4)
Fourth, we show that the statistical LAW extension provides a natural mechanism
to support prioritization of workloads, conceptually similar to the Random Early
Detection (RED) queueing [13]. (Chapter 5)

Fifth, using a simulated scenario with realistic workload traces and a relatively
large data center topology, we evaluate the LAW based workload placement heuris-
tics and demonstrate their performance advantages and potential tradeoffs versus
existing solutions. (Chapters 4, 5, and 6)

CHAPTER 2:

Application-Aware Placement

We motivate and illustrate the advantages of application-aware placement with a
simplistic but telling scenario. We also describe how to model a workload’s resource
preference and present metrics to characterize resource contentions introduced by a
workload.

First, from prior work we observe that there are two basic types of application work-
loads: 1) CPU or memory intensive workloads (e.g., meteorological, geological, and
particle physics simulations, or other high performance computing tasks), commonly
referred to as compute-intensive (CI) workloads, and 2) network or storage inten-
sive workloads (e.g., client-server or Hadoop and other big data applications), com-
monly referred to as data-intensive (DI) applications. Generally, state-of-the-art re-
search [11,12] concludes that CI workloads perform better when the processes and
VMs are spread across separate CPU cores and hosts, respectively, while DI work-
loads perform better when the VMs (or processes) are placed on the same host (or
CPU core). For example, by placing all VMs of a client-server (DI) application on the
same physical host, tenfold increases in throughput have been observed [11]. In con-
trast, over-contention of CPU resources by VMs of CI applications have been shown
to increase job completion time by as much as 260% [11].

Therefore, we propose to extend the current workload representations, which primar-
ily specify the number of VMs and intra-VM bandwidth [5, 6, 14], to also include
a designation of application type (CI or DI). Such a classification may be specified
a priori by tenants, or determined post-allocation by the operator upon monitoring
workload resource usage in practice. In addition, we believe it is advantageous for
a data center to model the survivability requirement (i.e., resiliency against single
top-of-rack (ToR) switch failures) on a per application basis because typically, differ-
ent applications have different levels of importance to the tenants. Commonly, the
survivability requirement is represented by a metric called worst-case survivability
(WCS), which is the maximal possible fraction of VMs taken offline due to a single
ToR failure [15].

Now consider the following simplistic scenario. Suppose four independent tenant ap-
plication workloads R1, R2, R3, R4, arrive in sequential order and have requirements
of <CI, 5, 10 Mbps, 0.5>, <DI, 5, 50 Mbps, 0.5>, <CI, 5, 10 Mbps, 0.5>, and <DI,
8, 50 Mbps, 0.5> respectively. The first value in the tuple represents the application
type (appType), the second value represents the number of VMs (numVMs) required,

Mean Link BW
Allocated: 75 Mbps
-
\a a/\g Max Link BW
Allocated: 270 Mbps

(H1 | H2 § H3 | H4 |

cl I:E mm EEE-!EEEE CPU Contention

BE BEE B BEB" BH < -
(a) Application Agnostic Allocation

Mean Link BW
Allocated: 75 Mbps

\g g/ \E Max Link BW
Allocated: 260 Mbps
nn ma‘nra‘m mm mmmm

CPU Contention
lluH El IE EE (CRC): 0.111

(b) Application Aware Allocation

Figure 2.1: An example contrasting application-aware vs. application agnostic VM
allocations. Green slots are for VMs of R1, red R2, brown R3, and purple R4. “C”
and “D” denote a CI and DI workload, respectively. The allocation on the right
considers application type (CI or DI) of each workload, and thus attempts to spread
VMs of R1 and R3 (CI) to minimize CPU contention, while consolidating VMs of R2
and R4 (DI) to minimize communication overhead.

the third value represents the inter-VM bandwidth (BW) reservation requirement’,
and the fourth value represents the minimum required WCS?. Suppose the under-
lying physical infrastructure has a hierarchical tree topology, consisting of one core
switch as root, two aggregation switches, four ToR switches, four host servers per
ToR switch, and two VM slots per host server, where a “VM slot” is defined as a
standard physical resource unit (e.g., CPU, Memory) provisioned to a VM. Therefore,
the VMs are to be allocated against 4 x 4 x 2 = 32 possible slots.

Current solutions, such as [5,7,8,10], overwhelmingly attempt to maximize resource

nter-VM bandwidth is reserved according to the “hose” model, as done in [14].
2Prior work in datacenter network orchestration [5,6] asserts that a WCS of 0.5 should be the
bare minimum acceptable to the network operator.

utilization by finding a “best fitted” allocation of tenant application workloads that
minimizes some weighted global cost function associated with data center resource
usage, and more specifically, bandwidth usage. In theory, such approaches seem effec-
tive in maximizing global resource utilization. However, because global cost functions
are not capable of representing fine-grained contention points of independent tenant
application workloads (e.g., CI or DI), the “globally optimal” network allocations
produced by current solutions are unlikely to be optimal for each tenant application
comprising it. This situation is illustrated in Figure 2.1. The left part (2.1a) depicts
a best-fitted allocation representative of current solutions, which minimizes network-
wide bandwidth usage while satisfying application requirements R1, R2, and R3.
However, note that CI applications R1 and R3 are in contention with themselves for
CPU and memory on hosts H2, H5, and H6, and DI applications R2 and R4 do not
achieve optimal network/storage sharing benefit via host colocation: R2 misses an
opportunity for colocation under rack T1 and R4 misses a colocation opportunity
under rack T3. Figure 2.1b, in contrast, depicts an application-aware best-fitted al-
location, which not only minimizes network-wide bandwidth usage, but also provides
optimal conditions for each tenant application. Although CI applications R1 and R3
compete with each other on H12, they do not compete with themselves on any host,
and DI applications R2 and R4 achieve maximum intra-host colocation.

The example in Figure 2.1 also shows that application-aware allocation does not
always degrade each global utility metric. Here, the application-aware allocation
method achieves less link congestion (i.e., smaller max BW) by using more physical
servers to host the VMs, a tradeoff that typically results in more power usage.

The insight that different types of tenant workloads have different host assignment
preferences motivates the need for a metric to capture such preferences. To this end
we propose a new Resource Contention Index (RCI) to evaluate the placement of
individual tenant applications (Def. 1).

Def. 1. (RCI for placement of workload w)

0 workload requires 1 VM
RCI(w) = Host_ Af finity(w) workload is CI
1— Host__Af finity(w) workload is DI

where:

(# of hosts hosting VMs of w) —1
(total VMs allocated for w)—1 '

Host__Af finity(w) =1—

and Host__Af finity() is defined only when the total number of VMs allocated for w
is greater than 1.

The host affinity for some tenant application represents the degree by which its VMs
are intra-host colocated. A value of ‘0’ indicates that no application VMs share
the same host, and thus minimizes intra-application computational contention for
a CI workload, whereas a value of ‘1’ indicates that all application VMs share the
same host, hence maximizing intra-application data throughput for a DI workload.
RCI captures this fundamental difference in application preference between CI and
DI workloads in a single application-specific metric. Furthermore, we can take the
average (mean) RCI across all allocated workloads to provide a measure of global
application efficiency. Note that achieving an RCI of zero for all workloads is not
realistic because tenants may have competing objectives or constraints. Survivability
for instance, is directly at odds with RCI for DI workloads, as a host affinity of ‘1’
implies WCS = 0. But having zero survivability is not acceptable for most tenants.
As another example, consider tenant budget constraints for a CI workload. It may
be cost prohibitive for a tenant to place each workload VM on a separate physical
host or CPU core. In such cases, a tenant may choose to settle a higher intra-VM
contention ratio (i.e., RCI > 0) in the interest of lower SLA costs.

A useful adaptation of RCI, termed computational resource contention (CRC), is
presented in Def. 2.

Def. 2. (Computational Resource Contention (CRC))

(# of hosts hosting CI VMs) — 1
(total CI VMs allocated) — 1

CRC=1- , (2.1)

and CRC' is defined only when the total CI VMs allocated is greater than 1.

This metric, by treating all CI applications as one group, represents the degree of
contention for computational (CPU/Memory) resources throughout the network. We
argue that CRC should be added to the collection of global cost functions used for
workload placement, as this metric is particularly relevant as an indicator of through-
put bottlenecking for CI applications, similar in nature and importance to the com-
monly used link congestion metrics of mean and maximum bandwidth usage for DI
applications. For the example depicted in Fig. 2.1, the application-aware allocation
on the right achieves a much lower CRC than its counterpart.

CHAPTER 3:
LAWSs for Application Efficiency

To overcome the shortcomings of current, non-application-aware workload placement
approaches, we propose a new logical application workload (LAW) abstraction, which
serves as the fundamental unit of allocation for an application workload, as opposed
to individual VMs, in order to speed up the allocation and explicitly preserve the
relative positioning of intra-application VMs with respect to the best allocation the
operator would desire to obtain for the application on a simulated empty physical
infrastructure.

3.1 Natures of LAW

Essentially, a LAW represents the best possible allocation for an application workload
from the perspective of the operator with respect to a given physical infrastructure.
It is specific to the allocation method used by the operator to meet the application’s
resource and performance requirements, and as such it unambiguously captures the
design intent of the operator.

Formally, we define a LAW as follows.

Def. 3. (Logical Application Workload (LAW)) Given an requirement speci-
fication R for workload w, a data center infrastructure P to host VMs of w, and a
VM allocation method M wused by the operator, a LAW L(w, P, M, R) is a hypothetical

allocation for w by applying M on an empty P subject to requirements R.

When the physical infrastructure has a tree topology, a LAW can be simply modeled
as the subtree that contains the hypothetically allocated VMs, with additional an-
notations of required resources. For the application requirement tuple considered in
this paper, i.e., the four-tuple of (appType, numVMs, BW, WCS), each switch of the
subtree should be annotated with two parameters: r slots for the total number of
VMs supported underneath, and r_ bw for the total amount of bandwidth reservation
required on its upstream link. The two parameters are driven by the number of VMs
and number of computational resource units (i.e., slots) required by each VM, and
the BW requirements, while the relative positions of the VMs should minimize RCI
while meeting the WCS bound.

When the physical resource capacity is much larger than what the workload requires,
many subtrees can accommodate the LAW, i.e., support the relative positioning of

the VMs. In such a case, we model the LAW using the leftmost subtree. Similarly,
before the physically infrastructure is heavily utilized, allocation of a LAW should be
straightforward, involving a small number of checks of feasibility against the r_ slots
and r__bw parameters. In other words, heuristics that allocate a workload on the
basis of its LAW should run faster than their per-VM counterparts in most scenarios
and therefore should be more suitable as an online solution.

Intuitively, compared to a finer-grain per-VM allocation, a LAW based allocation
method may trade off some network-wide performance such as power efficiency and
bandwidth utilization in order to maximize the quality of service of individual appli-
cations. However, the former has its own problem as it allocates VMs sequentially
and as such VMs allocated earlier in the sequence may prevent the overall alloca-
tion from maximizing global utility. An investigation of this interesting tradeoff will
be presented in Chapter 4. In the rest of this section, we focus on how to leverage
the concept of LAW to create an online VM allocation solution that can respond to
dynamic workload input.

3.2 Constructing Efficient LAWs

While the existing application agnostic solutions [5,5-10] can be directly used to create
LAWs, we propose to extend these solutions to consider application characteristics
(e.g., CI vs. DI) by applying Algorithm 3.1 post-allocation in order to obtain LAWSs
with the smallest RCI possible while meeting other application requirements. This
is accomplished by both a) spreading the CI VMs of each rack over the maximum
number of available hosts, and b) concentrating the DI VMs of each rack onto the
smallest possible number of physical hosts. Specifically, as presented in Algorithm 3.2,
the procedure CONSTRUCT-LAW (P, N) first runs an existing per VM allocation
scheme on an empty physical topology (simulated), and then calls Algorithm 3.1 on
the same input, which, depending on the application type, rearranges some of the
VMs to minimize RCI while satisfying other requirements. The selected allocation is
then converted into a LAW by (i) removing all elements of the physical infrastructure
tree not used by the application, and (ii) tallying up the number of descendant VMs
(r__slots) and the reserved upstream bandwidth (r_bw) parameters for each of the
remaining nodes.

It is important to note that a data center controller can pre-construct LAWSs for
expected workloads® against available infrastructures and store the results (LAW
subtrees) in a hash table. This way, the online allocation algorithm (presented next)
will need minimum time to obtain the LAW for a new workload request.

3For the scope of this paper, store all combinations of elements of each of the discrete ranges of
numVMs, intra-VM BW, and WCS for both CI and DI app types.

Algorithm 3.1 “App-Aware Allocation Adjustment”

1: procedure APP-AWARE-ADJUST(w, R, P)

2 > input w: workload id

3 > input R: requirement spec. for w

4: > input P: physical topology; allocated
5: if R.type=C1 then > Minimize host affinity
6: for each ToR t € P do

7 Spread VMs of w across hosts in ¢

8 while meeting BW and WCS requirements

9

: end for
10: else if R.type = DI then > Maximize host affinity
11: for each ToR t € P do
12: Concentrate VMs of w onto hosts in ¢
13: while meeting BW and WCS requirements
14: end for
15: end if

16: end procedure

Algorithm 3.2 “LAW Construction”

1: procedure CONSTRUCT-LAW (w, R, P)
2: > input w: workload id

3: > input R: requirement spec. for w
4: > input Py: physical topology; empty
5 PER-VM-ALLOCATION(w, R, P)

6 ApPpP-AWARE-ADJUST(w, R, Py)

7: end procedure

3.3 Allocating LAWs

Allocating a LAW to a physical infrastructure (which may or may not be empty)
needs to meet a set of global objectives defined by the network operator. These
global objectives have traditionally included minimizing power usage [16] and link
congestion [10], but we argue that the CRC objective (Def. 2) defined in Section 2
should also be considered.

Conceivably, an algorithm to explore the efficient frontier of LAW allocations with
respect to the global objective space could be developed, for instance an algorithm
similar to EASO [9] that takes a set of LAWs as input and produces a set of efficient
proposed allocations as output, where each satisfies all LAWs. However, we defer this

challenge to future work, and instead focus efforts on the more fundamental, low-
level problem of allocating each individual LAW in a manner that is both fast and
resource efficient, with the goal of minimizing some global cost function. Specifically,
we consider the single-objective cost functions of 1) power usage, 2) link congestion
(i.e., mean and max BW usage), and 3) CRC.

In the remainder of this section, we describe a general algorithm for allocating a
LAW to the physical infrastructure, and then discuss the use of different heuristics for
minimizing the global cost functions described previously. Because we are allocating
LAWs, i.e., sets of VMs that are placed with strict relative positioning requirements,
we cannot directly apply heuristics for individual VM placement, as done in [17,18].

Thus, we propose Algorithm 3.3, which takes the precomputed LAW L for an appli-
cation workload (assumed to satisfy all requirements R of workload w), a physical
network state P (i.e., physical infrastructure with current allocation), and a cost-
minimizing heuristic h as input, and attempts to find a feasible allocation for the
workload. Specially, we consider three heuristics in this paper: (1) “Min Power”:
referred to as best-fit or tightest-fit in the classic bin packing problem literature [17],
it seeks to map VMs of L onto hosts with the smallest number of free slots, effectively
minimizing the number of active hosts; (2) “Min BW”: similar to the maz-rest bin
packing heuristic [17], it seeks to map VMs of L onto hosts with the largest number of
free slots, effectively balancing bandwidth allocation and minimizing BW congestion
(i.e., maximum link BW); (3) “Min CRC”: designed to spread CI workloads as evenly
among hosts as possible while attempting to place DI workloads within the same
subtree as previously allocated CI workloads (to allow maximum CI workload distri-
bution). While the underlying approach of Algorithm 3.3 is generally applicable to
tree-based data center topologies including Fat-Tree and VL2, for ease of exposition,
we assume that P has a simple tree structure.

At the heart of LAW based allocation is to map each LAW node (In) to a unique
physical node (denoted by In.pn) at the same tree level that has sufficient resources
to support the requirements of In.r_slots and In.r_bw. After considering several
different tree search algorithms to explore the feasible in — In.pn search space, in-
cluding depth-first search, breadth-first search, best-first (A*) search, and backtrack-
ing approaches, in the interests of scalability, we ultimately decided to model the
problem of finding the “best” set of feasible In — In.pn mappings as a minimization
variant of the classical assignment problem, also known as the minimum weighted
bipartite matching problem [19]. To this end, Algorithm 3.3 uses the Hungarian
or Kuhn-Munkres algorithm, originally proposed by Kuhn [20] and later refined by
Munkres [21], as a subroutine in the ASSIGN-MIN-COST sub-procedure. The details
are given below.

10

Algorithm 3.3 “Online LAW Allocation”
procedure ALLOCATE-LAW(L, P,h)

1:
2 > input L: LAW, P: physical topology
3 > input A: cost-minimizing heuristic method
4 for each level [from “ToR” to “core” do
5: for each LAW node In € L at level [do
6 for each physical ToR pn € P at level [do
7 if AsSIGN-MIN-CosT(In,pn) < oo then
8 Save best matching of In.children,
pn.children for (In,pn)

9: end if
10: end for
11: if no saved matchings for In then
return false
12: end if
13: end for
14: end for
15: Assign mapping L.root.pn = P.root > core nodes

16: ME = edge set for saved best matching of
L.root.children, P.root.children

17: while M E # () do

18: Extract next edge (In,pn) from ME
19: Assign mapping In.pn = pn
20: Add edge set for saved best matching of

In.children,pn.children to M E
21: end while
22: Allocate VMs according to In — In.pn mappings
and update f_slots and f_bw of each pn accordingly.
23: Call Alg. 3.1 for application-aware adjustment.
24: return true
25: end procedure

3.3.1 Checking Feasibility

Algorithm 3.3 determines LAW allocation feasibility by first checking at ToR level as
follows. For each LAW ToR T; and each physical ToR T}, it constructs a bipartite
graph consisting of hosts of 7; on one end and hosts of 7}, on the other. An edge
is added between a pair of nodes on the opposite ends if and only if the physical
host has sufficient VM slots to support the LAW host. The edge weight assigned is
equal to the number of slots required by the LAW host (i.e., the r_ slots parameter)
multiplied by a heuristic value associated with the the physical host’s current state:
The heuristic value equals the number of free VM slots (f slots) for “Min Power”

11

Algorithm 3.3 “Online LAW Allocation” (Cont.)

19: procedure ASSIGN-MIN-CoOST(In,pn)
20: Initialize a bipartite graph G =<V}, V,,, E =0 >

21: where V; = In.children and V), = pn.children

22: for each pair of nodes (v € Vj,v e V,) do

23: add new edge < u,v > to E

24: if v.f_ slots > u.r_slotsApn.f_bw > u.r_bw
then

25: h_wval = GET-HEURISTIC(pn, h, L)

26: set edge weight = u.r__slots x h_val

27: else set edge weight = oo

28: end if

29: end for
30: Add dummy nodes to V; and associated oo edges

31: until [[Vi[| = || V3|
32: ME = KUHN-MUNKRES(G)
33: > ME stores the minimum weighted edge set

34: Remove edges with dummy nodes from ME
35: return sum of edge weights of ME
36: end procedure

37: procedure GET-HEURISTIC(pn, h, L)
38: if h = “Min Power” then return pn.f_slots

39: end if

40: if h = “Min BW” then return pn.r_ slots

41: end if

42: if h= “Min CRC” then

43: if L.type =“CI" then return pn.ci_slots
44: else return pn.slot_ capacity —pn.ci__slots
45: end if

46: end if

47: end procedure

and the number of reserved slots (r_slots) for “Min BW”. There are two cases for
“Min CRC”. If the LAW represents a CI workload, the heuristic value equals the
number of reserved CI slots (ci__slots); otherwise, it equals the slot capacity less the
number of reserved CI slots. The scaling of r__slots ensures that when a set of LAW
hosts can be supported by multiple physical hosts, the LAW host with the largest
VM requirement will be matched with the physical host with the smallest heuristic
value, and so on.

Because typically 7} has a smaller number of hosts than T}, but the Hungarian algo-

12

rithm requires a complete bipartite graph of equal size partitions as input, we modify
the bipartite graph as done in [22], by 1) adding special edges of infinite weight (rep-
resenting “infeasibility”) for all pairs of LAW and physical hosts that are not yet
connected, and 2) adding dummy nodes to 7; with infeasible (infinite weight) edges
from each dummy node to all nodes in 7). As such, the Hungarian algorithm al-
ways returns a complete minimum weight matching, but this matching may include
some infinite weight edges, representing “no feasible assignment” [22]. After running
the Hungarian algorithm on the modified bipartite graph, we remove the dummy
nodes (and associated edges) from the returned matching. If the remaining mapping
still contains edge(s) with infinite weight, then it is safe to to say that 7, cannot
support 71j.

Once the feasibility between each pair of LAW and physical ToR’s is determined,
the same process repeats for nodes upward the LAW hierarchy (e.g., first the two
aggregation switches, and then the core switch for the example scenario in Figure 2.1),
until (i) the LAW root (core) is reached, at which point the LAW is determined to
be feasible, or (ii) if, for some intermediate node of L, no feasible mappings exist
between it and a physical counterpart, then ALLOCATE-LAW returns false and LAW
L is determined to be infeasible for P.

ALLOCATE-LAW(L, P, h) returns true if and only if the Kuhn-Munkres algorithm
returns a finite sum of edge weights. At each level of feasibility checking, a finite edge
weight is assigned to a prospective In — In.pn mapping if and only if the mapping
is feasible, i.e., the physical node In.pn has sufficient VM slots and available uplink
bandwidth to meet the requirements of the LAW node In. And because the Kuhn-
Munkres algorithm returns the set of edges comprising a minimum-weight matching,
the sum of the edge weights returned by the Kuhn-Munkres algorithm is finite if
and only if there exists a feasible [n — In.pn mapping for each LAW node. Thus,
ALLOCATE-LAW(L, P,h) returns true if and only if there exists a feasible mapping
for each LAW node.

3.3.2 General LAW Allocation

Once a LAW L is determined to be feasible as described previously (lines 4 to 11),
Algorithm 3.3 proceeds to determine the best In — In.pn mappings using a top-down
approach, from the LAW root (core) down to the LAW leaf nodes (hosts), selecting
the best LAW-to-physical mappings at each level of the hierarchy based upon the
values of the saved matchings that minimize the chosen heuristic (lines 15 to 20).
Next, after the ToR mappings have been determined, the LAW VMs are allocated
according to their respective In — In.pn mappings (line 22). Finally, VM placements
are adjusted to ideal placement for application objectives by calling Algorithm 3.1.

13

3.3.3 Complexity Analysis

Space Complexity = O(|L|-C?), where C' represents the maximum number of chil-
dren of any node pn € P. Space complexity is dominated by one of two factors: 1)
the number of edges in the largest bipartite graph G, which may contain up to C?
edges, and 2) the total number of edges maintained in the saved matchings. Because
each of the O(|L|) internal LAW nodes may contain up to C' matchings of size C, the
total number of edges maintained in the saved matchings is O(|L|-C?). Thus, the
resultant space complexity is O(C?+|L|-C?) = O(|L|-C?).

Time Complexity = O(|L|-C*). Time complexity is dominated by the execution time

of the Kuhn-Munkres algorithm, which runs in O(C?) and executes up to C times
for each of the O(|L|) internal LAW nodes, thus yielding a resultant time complexity
of O(|L|-C*%).

3.3.4 LAW Allocation Example

We conclude this section by illustrating the execution of Algorithm 3.3 for each heuris-
tic method to allocate workloads in the example scenario presented in Section 2. First,
ideal LAWSs are constructed for each workload, depicted in Figure 3.1, using Algo-
rithm 3.2. Next, Algorithm 3.3 allocates the workloads in the order they arrive (R1,
R2, R3, R4), resulting in the allocations shown in Figure 3.2, depending on the chosen
allocation heuristic.

Note that LAW R4 is not feasible using the “Min CRC” heuristic method, since the
resultant network state after allocating LAWs R1-R3 does not permit any feasible
allocation of LAW R4. Therefore, mapping an entire LAW subtree to the physical
infrastructure in a single atomic step appears to incur a tradeoff between performance
gain and an increased likelihood of infeasibility.

3.3.5 Observation on Infeasibility

Although not necessarily intuitive, the reason why “Min CRC” encounters infeasibility
sooner than the other heuristic methods is relatively straightforward. Because “Min
CRC” explicitly seeks the maximum spread of CI workload VMs across ToRs and
hosts within ToRs, as more CI LAWs are allocated, it becomes increasingly difficult
to allocate DI LAWSs, which require the use of a large number VM slots on a single
host in order to achieve minimum RCI. In the case of the example scenario, LAW R4
could not be feasibly allocated given the allocations of LAWs R1-R3 using “Min CRC”
(Figure 3.2c). Thus, in order to allocate workload R4, either the use of a per VM
allocation method, such as GASO, or some method for deallocating and reallocating

14

(a) LAW R1, R3

(b) LAW R2 (c) LAW R4

Figure 3.1: LAWs for workloads R1-R4 used in the example scenario of Fig. 2.1. The
r_slots and r__bw annotations are omitted for simplicity.

previous LAWs to make room for the next one, e.g., a backtracking approach, is
required. In the next section, we will investigate this performance vs. infeasibility
tradeoff further using a large-scale data center scenario, and subsequently propose
our Statistical LAW solution to this infeasibility challenge in Section 5.

3.4 Applying LAWs to Different Topologies

In this section we describe how to apply LAWs to different types of physical network
topologies like fat-tree [23], VL2 [24], and BCube [25]. Because LAWSs are topology-
dependent, by definition, it is important to understand how LAW construction and
allocation may be performed for different types of physical topologies. Fat-tree and
VL2 are both multi-rooted hierarchical trees with redundant links connecting devices
between levels of the tree hierarchy. BCube is a non-hierarchical topology that uses a
number of vertically arranged switches in addition to the ToR switches, which provide
end-to-end server communication via server-to-switch network links exclusively, i.e.
there are no physical connections between switches.

Although the algorithms presented in this chapter assume a single-rooted, simple hi-
erarchical tree topology about which to construct and allocate LAWSs, applying the
LAW Construction (Alg. 3.2)) and LAW Allocation (Alg. 3.3) algorithms to han-
dle different types of topologies is relatively straightforward. First, Algorithm 3.2 is
topology agnostic, and hence applicable “as-is” for constructing LAWs for any arbi-
trary data center topology, since it takes the physical topology as an input parameter,

15

&

G A a A & a & a

NN B Mivoe MM (L H2 N H3 WA RS | e [7 | His B 1o fiofhiafHi2 -l!EEEEIE

AEEE AEEE BOHE BEEE BRCE = RE PR S
(b) “Min BW” (¢) “Min CRC”

Figure 3.2: LAW allocations using “Min Power,” “Min BW,” and “Min CRC” heuris-
tics for example scenario.

and subsequently uses an operator-specified per VM allocation method assumed to
place the VMs onto the topology in a desirable fashion.

Second, although Algorithm 3.3 is topology dependent, it can be extended to han-
dle multi-rooted, redundant link topologies with the addition of a single “dummy”
root node of which each of the core switches comprising the multi-rooted topology
are made children of the dummy root using dummy network links of capacity = 0.
Redundant links are accounted for by way of setting multiple “uplink BW” variables
for devices with multiple available upstream connections. When placing a workload
across devices with several available uplinks of sufficient capacity, a method of select-
ing one must be chosen. Link selection heuristics such as “Min Congestion” or “Min
Available BW” may be appropriate. By way of these implementation adjustments,
we can soundly perform LAW allocation for multi-rooted and redundant hierarchical
network topologies using Algorithm 3.3.

For non-hierarchical data center topologies such as BCube, Algorithm 3.3 can be
extended by first using the dummy root strategy described above, and then by making
all non-hierarchical component switches children of the root using dummy network
links of capacity = 0. However, although this approach remains sound, it may not
be very well suited for large non-hierarchical data center networks, as the value of
C' (maximum number of children of any node), will likely be large due to the high
number of dummy root children created when attempting to adapt this approach to
handle a non-hierarchical network.

16

CHAPTER 4:

Evaluation

In this section, we evaluate the performance of proposed LAW based placement heuris-
tics against existing solutions in a simulated (relatively) large-scale data center en-
vironment comparable to ones used in related work [8]. The topology consists of 40
aggregation switches, 160 ToR switches (4 x ToRs per aggregate), 2560 hosts (16 x
hosts per ToR), and 40960 VM slots (16 x VM slots per host).

4.1 Setup

4.1.1 Representation of Existing Solutions

We choose to adapt the GASO allocation algorithm presented in [9] to represent
existing solutions. GASO is chosen because it is extensible to an arbitrary number
of disparate objectives and customizable by the operator via weightings for each
objective, similar to [5,6]. For our purpose, the global cost function is a weighted
sum of power consumption and mean link bandwidth usage. By default, GASO
uses a greedy search for solutions that will minimize the global cost, and as such
may converge prematurely to local minima [9]. Therefore, we enhance GASO by
implementing a genetic algorithm to diversify candidate solutions as done in related
work [9,10]. We set the candidate solution population size to 10, and perform up to
25 evolutions for each workload request; these parameters are shown to be required
for the size of our topology [9, 10].

4.1.2 Per VM Application-Aware Solutions

To make our evaluation more complete, we seek to understand how the performance
of LAW based heuristics compare to that of solution that is application-aware but
places workloads one VM at a time. We call the latter a per VM application-aware
solution. We have developed such a solution by further enhancing GASO. Therefore,
we evaluate two distinct implementations of GASO: 1) The “default” version, which
weighs power and BW usage highest, and 2) an “application-aware” version, which
weighs RCI and CRC highest. Both versions of GASO we use the power and BW
usage reduction heuristics from [9]. The application-aware version additionally uses an
RCI and CRC reduction heuristic that executes Algorithm 3.1 to move (if necessary)
application VMs between hosts in each rack to reduce RCI and CRC. Since the
purpose of the default version of GASO is to model non-application-aware solutions,
it does not use this application-aware heuristic.

17

In addition, we refine the LAW based heuristics so that when it is infeasible to allocate
a LAW in one atomic step, they resort to per VM allocation for that workload.

4.1.3 Workload Traces

The workloads are randomly generated and their size distributions are comparable to
what used in related work [8]. Specifically, four types of workloads are used to model
heterogeneous [8] compute-intensive and network-intensive resource requirements:

Type 1: <CI, numV Ms x 4 slots, 5 Mbps, 0.5 WCS>
Type 2: <CI, numV Ms x 2 slots, 10 Mbps, 0.7 WCS>
Type 3: <DI, numV Ms x 1 slot, 60 Mbps, 0.5 WCS>
Type 4: <DI, numV Ms x 2 slots, 30 Mbps, 0.7 WCS>

where numV Ms ranges between 40 and 200, and also includes the number of slots
per VM to represent heterogeneous workload requirements, as done in [8].

In each run, the workload trace is produced by selecting one of the workload types
(1-4) and a value for numV Ms (40-200) uniformly at random, and deducting the
number of slots required of the workload from the total number of slots available in
the physical infrastructure. Each randomly generated workload is added to the trace
until the next generated workload exceeds the infrastructure slot capacity. After
the workload trace is generated, each heuristic under evaluation attempts to place
workloads of the trace in the order that they were generated, i.e., online, to the
simulated infrastructure.

4.1.4 Performance Metrics

Our evaluation focuses on the following metrics: (1) power usage, 2) BW usage (mean
link BW), 3) link congestion (maximum link BW), 4) mean RCI, 5) CRC, and 6)
execution time. We also seek to understand the extent of LAW allocation infeasibility
tradeoff. Specifically, for each run we identify the fraction of VM capacity allocated
when the first infeasible LAW occurs.

4.2 Results

Here, we present the results of LAW and GASO allocation methods over an average of
ten workload traces by depicting their performance in power consumption (Fig. 4.1),

18

BW usage (Fig. 4.2), link congestion (Fig. 4.3), CRC (Fig. 4.4), RCI (Fig. 4.5), and
execution time* (Fig. 4.6). Plotted points in each figure represent the average objec-
tive metric values of a feasible state for a given fraction of VM capacity allocated (i.e.,
physical infrastructure utilization) over a series of ten runs using different allocation
methods. The vertical lines are color coordinated to match the allocation methods
and each represents the average capacity allocated when the first infeasibility occurred
for the corresponding allocation method.

6k
-
.g 5k
o
€ 4k
>
€ 3k -+ GASO (Default)
8 -+ GASO (App Aware)
- 2k LAW (Min Power)
2 11 + LAW (Min BW)
& : = LAW (Min CRC)

0
0 0.2 0.4 0.6 0.8 1

Fraction of VM Capacity Allocated

Figure 4.1: Power usage vs. capacity allocated.

Based on these results, we make several observations. First, observe that the “Min
Power” LAW allocation heuristic dominates the default GASO per VM allocation
method. The “Min Power” LAW allocation heuristic offers similar power conserva-
tion, BW usage, and CRC as default GASO, but additionally provides much lower
RCI, with an execution time that is an order of magnitude faster. Thus, based on
this comparison it is clear that application-aware allocation for this scenario may
be strictly superior to non-application-aware allocation, i.e., tenant application ob-
jectives may be achieved nearly “for free,” with little to no degradation of operator
objectives. Next, observe the straightforward tradeoff between power usage and CRC.

Default GASO and “Min Power” maintain relatively high CRC in order to minimize
power usage, whereas App-Aware GASO, “Min BW,” and “Min CRC” tradeoff higher
power consumption for reduced CRC. Furthermore, although App-Aware GASO is
designed to jointly minimize RCI and CRC, because it is bounded by the parameters

4The simulation consists of approximately 3000 lines of Java code, and was run (serially) using
64-bit JVM. The host PC was running 64-bit Windows on an Intel 2.4 GHz quad-core processor
with 24 GB of RAM.

19

400
m
8
s 300
=
i’ 200 -+ GASO (Default)
= -+ GASO (App Aware
o = LAW (Min Power)
5 100 + LAW (Min BW)
= + LAW (Min CRO)

0
0 0.2 0.4 0.6 0.8 1
Fraction of VM Capacity Allocated
Figure 4.2: Mean BW usage vs. capacity allocated.

12k
m
Q
¥e)
3
=
[a) -+ GASO (Default)
AC‘ -+ GASO (App Aware)
3 = LAW (Min Power)
é -+ LAW (Min BW)
= -+ LAW (Min CRC)

0 0.2 0.4 0.6 0.8 1
Fraction of VM Capacity Allocated

Figure 4.3: Max. link BW usage vs. capacity allocated.

and limitations of a genetic algorithm to perform its search (e.g., population size,
number of evolutions, etc), it does not achieve ideal Mean RCI as the physical infras-
tructure becomes utilized when compared to the LAW allocation heuristics, which
each explicitly preserve the RCI for each constructed LAW when making allocations.
This RCI gap between GASO App-Aware and LAW becomes more pronounced as the
infrastructure becomes more utilized. At 30% utilization, RCI for GASO App-Aware
is only slighty higher than LAW, but at 60% utilization, RCI for GASO App-Aware
is more than double that of LAW.

20

0.2

0.4 0.

6 0.8

-+ GASO (Default)

-+ GASO (App Aware
= LAW (Min Power)
-+ LAW (Min BW)

=+ LAW (Min CRC)

1

Fraction of VM Capacity Allocated

Figure 4.4: CRC vs. capacity allocated.

©
Ul

Y

o
N

©
w

©

Mean RCI
N

o
[

(@)

0 0.2

/

0.4 0.

6 0.8

MM

s B b

-+ GASO (Default)
-+ GASO (App Aware)
= LAW (Min Power)
-+ LAW (Min BW)

=+ LAW (Min CRC)

1

Fraction of VM Capacity Allocated

Figure 4.5: Mean RCI vs. capacity allocated.

21

Tradeoffs involving bandwidth are less straightforward. LAW allocation preserves the
provisioned BW for each constructed LAW, and both GASO variants include mean
link BW as an optimization criterion, so differences in BW usage (Fig. 4.2) are rel-
atively insignificant. The maximum link BW plot (Fig. 4.3) provides an indicator
of link congestion. Observe that the “Min BW” allocation heuristic provides signifi-
cantly lower link congestion than the other allocation methods until the infrastructure
becomes about 50% utilized.

-
N
Ul

7.5

-»- GASO (Default)

5 - GASO (App Aware)
LAW (Min Power)

-+ LAW (Min BW)

+ LAW (Min CRC)
B Sl VLV
0 0.2 0.4 0.6 0.8 1
Fraction of VM Capacity Allocated

N
(92

Execution Time (seconds)

Figure 4.6: Execution time vs. capacity allocated.

Regarding feasibility, observe that each LAW allocation heuristic encounters infeasi-
bility at widely different levels of physical infrastructure utilization. The reason for
this is complex, as several factors, including workload size, workload trace composi-
tion (CI : DI ratio), physical topology tree structure, physical topology utilization,
and heuristic allocation method, determine the likelihood of encountering LAW in-
feasibility. Moreover, in this scenario there is clear trend indicating that allocation
methods that more aggressively attempt to spread CI workloads, i.e., reduce CRC,
are more likely to encounter infeasibility sooner. “Min Power” prefers maximum con-
centration of all workloads and has the highest feasibility rating (83.6%). “Min BW”
prefers maximum distribution of all workloads and has moderate feasibility (60.7%).
“Min CRC” explicitly spreads CI workloads and has the least feasibility (30.1%).

Finally, observe that “Min CRC,” while having relatively low feasibility, appears to
dominate GASO App-Aware in this scenario, by achieving lower BW usage, link
congestion, CRC, and RCI while using generally the same amount of power. Fur-
thermore, regarding algorithm execution time (Fig. 4.6), LAW allocation (hundreds
of milliseconds) is an order of magnitude faster than the GASO variants (tens of
seconds).

4.3 LAW for Architectures of Different Dimen-
sions

In this section, we look at how varying the physical dimensions of hierarchical net-
work architectures affect allocation feasibility of different LAW placement heuristics.

22

Here, physical dimensions are defined in terms the four-tuple (A,T, H,S), where A
represents the number of aggregate switches under each core switch, T" represents the
number of ToR switches under each aggregate switch, H represents the number of
host servers under each ToR switch, and S represents the number of VM slots per host
server. Regarding different values for these dimensions, we are particularly concerned
with how LAW feasibility is affected as the network architecture is “scaled-out,” or
made more horizontal by increasing the number of physical devices (i.e., increasing
the values of A, T, and H), as well as “scaled-up,” or made more vertical by increasing
the capacity of each physical host server (i.e., increasing the value of .S).

In order to provide a fair LAW feasibility comparison across architectures of varying
physical proportions, the total VM slot capacity for each architecture is held constant
at 10240 slots. Thus, although each architecture evaluated in this section has different
values for (A, T, H,S), they all have the same slot capacity, i.e., for each architecture,
A-T-H-S=10240. The workload traces used are the same as before (Section 4.1).

Table 4.1 illustrates the feasibility results for each of the “Min Power,” “Min BW,”
and “Min CRC” LAW placement heuristics across a range of hierarchical network
architectures with different dimensions and a 10240 VM slot capacity. The range of
dimensions in this table represents a spectrum of hierarchical network architectures
that are scaled-up and/or scaled-out to varying degrees. The rows closer to the top
of the table represent network architectures that are proportionally scaled-up, while
those closer to the bottom represent more scaled-out architectures.

From these results, we observe two clear trends, using the (10,4,16,16) dimension ar-
chitecture as a reference point. First, as an architecture is scaled “out” and “down”
from (10,4,16,16) to (20,8,16,4) i.e., approaches dimensions closer to the bottom of
Table 4.1, LAW feasibility more than doubles for “Min CRC” (120% increase), and
increases significantly for “Min Power” (17% increase), but only increases marginally
for “Min BW” (4% increase). Intuitively, these results should be expected: by increas-
ing the number of switches and servers, there is more room to spread CI workloads
throughout the infrastructure, resulting in much higher feasibility for “Min CRC,”
but less so for the other heuristics, as their allocation feasibilities are not as dependent
as “Min CRC” on the ability of the infrastructure to handle distributed CI workloads.

Second, as an architecture is scaled “up” and “in” from (10,4,16,16) to (5,4,16,32),
i.e., approaches dimensions closer to the top of Table 4.1, LAW feasibility drastically
decreases for all heuristics due to the inability to spread CI workloads throughout the
infrastructure. Although allocation feasibilities for “Min Power” and “Min BW” are
generally not as infrastructure-sensitive as “Min CRC,” as the network architecture
approaches more vertical physical topologies like (5,4,16,32), the resultant inability

23

i’/q‘;ﬁf{;‘/’gf’nfg’; ’SSIZZS/ Min Power Min BW Min CRC
(5, 4, 16, 32) 0.44 0.18 0.27
(5, 4, 32, 16) 0.58 0.38 0.28
(5, 8, 16, 16) 0.72 0.33 0.33
(10, 4, 16, 16)* 0.70 0.48 0.30
(10, 8, 8, 16) 0.72 0.48 0.38
(10, 8, 16, 8) 0.77 0.50 0.56
(10, 16, 16, 4) 0.81 0.50 0.63
(20, 8, 16, 4) 0.82 0.50 0.66

Table 4.1: LAW feasibility results for “Min Power,” “Min BW,” and “Min CRC” for
different 10240 VM slot infrastructures of varying dimensions. The values denote the
average physical infrastructure utilization (fraction of VM capacity allocated) when
the corresponding allocation heuristic and LAW type first encounter infeasibility.
Poor results (less than 50%) are shaded red, moderate (at least 50% but less than
80%) yellow, and good (at least 80%) green. * reference dimensions

to spread CI workloads begins to hinder allocation feasibility regardless of heuristic
type (less than 50% feasibility across all heuristic types in this example, as illustrated
by the first row of Table 4.1).

Therefore, based on these results, we conclude that scaled-out architectures are gener-
ally better for achieving higher LAW feasibility versus scaled-up architectures. How-
ever, this problem of finding the physical network architecture that yields the highest
LAW feasibility for a given workload forecast (e.g., trace) and LAW allocation heuris-
tic seems like a fertile ground for future work.

24

CHAPTER 5:
Statistical LAWs

As seen from the the execution time plot (Figure 4.6), the GASO per VM workload
placement algorithm runs an order of magnitude slower than LAW allocation, and
as such, is less suitable for online workload placement tasks, particularly for large
data center networks. The GASO execution time is comparable to other workload
placement solutions that use genetic algorithms®, such as [9,10]. Therefore, although
per VM allocation may be used to address the problem of allocating a workload
when LAW infeasibility is encountered, we argue that an online solution that grace-
fully relaxes the ideal application allocation, as represented by the LAW structure, is
preferable in the interests of both reduced RCI and reduced execution time. We also
considered an alternative LAW backtracking approach to address the issue of LAW
infeasibility, but such an approach disrupts current allocations and initial evaluations
significantly degraded execution time, so we defer the exploration of such alternative
options to future work.

Therefore, we propose a Statistical LAW allocation strategy to explore the LAW fea-
sibility vs. performance tradeoff. A Statistical LAW is natural LAW relaxation which
offers a compromise between complete LAW and per VM placement approaches, by
representing a percentage of the workload VMs as a “relaxed” LAW, and considering
the remainder of the workload VMs as individual units of allocation for some per VM
allocation method.

5.1 Example

The 70% Statistical LAW model of workload R4 from the Chapter 2 example scenario
is illustrated in Figure 5.1, and represents the preservation of at least 70% of the
original LAW VMs (6 VMs) while using per VM allocation for the remainder (2
VMs). Figure 5.2 depicts the resultant network state after using the “Min CRC”
LAW heuristic to allocate the 70% LAW for R4 (Figure 5.1) to the physical network
state depicted in Figure 3.2c.

By using a statistical measure to relax LAW VM positioning requirements, a compro-
mise between ideal workload allocation and feasibility is achieved, while still main-
taining the fast LAW allocation times compared to traditional per VM approaches.

5Greedy heuristics, like those used in [7,8] run faster (order of seconds) for placing large work-
loads, but they are prone to suboptimal convergence to local minima when multiple objectives are
considered.

25

Figure 5.1: Statistical LAW (70%) for workload R4 in example scenario.

g/-
& a

(H1} H2§ H3 | H4 EEEE EBEEE-E -!EEE
C C C cicjc
D|D}|D

Figure 5.2: “Min CRC” LAW allocation using a 70% Statistical LAW to allocate
previously infeasible workload R4 for the example scenario.

5.2 Construction and Allocation

An 2% Statistical LAW for some original LAW L is constructed by removing
(100 —)% of L’s VMs (floor) from L by removing the VMs sequentially, where each
VM is removed from the LAW host containing the most VMs (or from a host under
the most populated ToR in the case of a tie). The removed VMs are maintained
with the LAW, and are allocated in a per VM fashion after the Statistical LAW is
allocated. For Statistical LAW, the goal of the per VM allocation heuristic for the
“remainder” VMs is to minimize RCI subject to WCS constraints. Hence, for CI
workloads, the per VM allocations strive to minimize host affinity by allocating the
VMs to hosts with the fewest number of CI slots allocated. For DI workloads, these
allocations seek to maximize host affinity by concentrating the VMs as closely as
possible to the rest of the LAW VMs without violating the WCS bound.

26

5.3 Statistical LAW Results

Here, we present the results of Statistical LAW allocation using the same workload
traces and simulated physical infrastructure as the Chapter 4 evaluation. Statistical
LAW allocation methods use a progressive backoff approach. For each workload in the
trace, first complete LAW allocation is attempted, then progressively 90%, 70%, 50%,
and finally 30% Statistical LAW allocations are attempted if the previous Statistical
LAW allocation attempt failed to feasibly allocate the workload. For Statistical LAW,
the workload is considered infeasible only if all allocation attempts (complete, 90%,
70%, 50%, 30%) fail. Of course, an even lower Statistical LAW, such as 10% LAW
may be attempted if 30% LAW allocation fails, but at that point we observe the
resultant LAW structure would be too degraded to provide much benefit.

1 - ,vé ______ >
1st Comple:t;iz;\;/]Enfeasibility
0.8 : E———| L
f’““"‘“‘?".' "“.'"W W"
L 0.6 s
(a4 -+ GASO (Default)
Y 0.4 -+ GASO (App Aware)
Stat LAW (Min Power)
0.2 -+ Stat LAW (Min BW)
-+ Stat LAW (Min CRCQ)
() Erzrzzzrn

0 0.2 0.4 0.6 0.8 1
Fraction of VM Capacity Allocated

Figure 5.3: Effect of Statistical LAW on CRC.

The Statistical LAW results as shown in Table 5.1 clearly demonstrate the advan-
tage of using a Statistical LAW approach vs. per VM allocation when complete LAW
allocation is not feasible. Notably, in this scenario, the Statistical LAW allocation
performs similarly to complete LAW allocation, with both RCI and execution time
increased by only a small constant factor as workloads become overwhelmingly infea-
sible for Statistical LAW, which begins to occur around 85% infrastructure utilization,
as seen in Figures 5.4 and 5.5, respectively. In other words, for each resource usage
metric, there is very little performance degradation for using Statistical LAW com-
pared to complete LAW allocation, as can be seen by observation of plotted points
for Statistical LAW allocation methods beyond the amount of physical infrastructure
utilization at which complete LAW allocation fails (values in the first row of Table
5.1, denoted by dotted vertical lines in each figure).

27

0.4 ¥ T :
2 0.3
c -+ GASO (Default)

8 0.2 -+ GASO (App Aware)
= Stat LAW (Min Power)
0.1 -+ Stat LAW (Max BW)

-+ Stat LAW (Min CRCQ)
0

0 0.2 0.4 0.6 0.8 1
Fraction of VM Capacity Allocated

Figure 5.4: Effect of Statistical LAW on Mean RCI.

A”"C"LZ‘T/"; ’;;:; istic/ | Min Power Min BW Min CRC
Complete LAW 0.84 0.61 0.30
90% Stat. LAW 0.84 0.63 0.35
70% Stat. LAW 0.86 0.67 0.62
50% Stat. LAW 0.87 0.80 0.86
30% Stat. LAW 0.91 0.89 0.90

Table 5.1: Statistical LAW feasibility results for “Min Power,” “Min BW,” and “Min
CRC” for the large-scale evaluation. The values denote the average physical in-
frastructure utilization (fraction of VM capacity allocated) when the corresponding
allocation heuristic and LAW type first encounter infeasibility.

For instance, in Figure 5.3, although the “Min CRC” LAW placement heuristic begins
to incur slightly higher CRC than App-Aware GASO at approximately 40% infras-
tructure utilization, remains very similar (within a few percentage points) throughout
the entire trace.

28

Execution Time (seconds)

(-
N
(%

[
o

N
Ul

0 0.2 0.4 0.6

0.8

-+ GASO (Default)

-+ GASO (App Aware)
= Stat LAW (Min Power
-+ Stat LAW (Min BW)
-+ Stat LAW (Min CRC)

1

Fraction of VM Capacity Allocated

Figure 5.5: Effect of Statistical LAW on execution time.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 6:
LAWSs for Workload Prioritization

As demonstrated in the previous section, using Statistical LAW allocation may greatly
improve LAW allocation feasibility versus complete LAW allocation, while still pro-
ducing resource and application efficient allocations with fast workload placement
times. However, because Statistical LAW may result in increased application RCI
for statistically allocated workloads, the operator may prefer to take a proactive ap-
proach in applying Statistical LAW allocations to low priority workloads in order to
increase the LAW feasibility of high priority workloads to ensure minimum RCI for
them. In this section, we propose the Early Statistical LAW allocation strategy, a
proactive approach that trades off suboptimal placement of low priority workloads to
increase LAW feasibility for high priority workloads.

6.1 Early Statistical LAW Allocation

In this work, we explore a simple binary priority scheme and leave more elaborate
prioritization to future work. We seek to increase the feasibility of high priority
workloads by allocating low priority workloads using Early Statistical LAW, which
differs from default Statistical LAW allocation only in the per VM allocation heuristic
used to allocate the non-LAW “remainder” VMs. While per VM allocations using
default Statistical LAW strive to minimize RCI, Early Statistical LAW uses these per
VM allocations as a “compromise” to increase the feasibility for future high priority
LAWsS.

We achieve these compromise allocations by placing the remainder CI VMs in the
infrastructure subtree with the fewest available slots using the classical “tightest fit”
bin packing heuristic, with a preference for placement on hosts with more DI VMs.
Intuitively, using such a heuristic should provide more “contiguous” VM slot space in
other infrastructure subtrees, thus providing a higher likelihood of LAW feasibility for
future high priority workloads. Because this additional contiguous slot space comes at
the cost of bandwidth efficiency, we do not compromise the placement of DI VMs, but
instead allocate them in the same fashion as default Statistical LAW: with maximum
intra-application host affinity while satisfying WCS constraints.

31

6.2 Early Statistical LAW Results

We evaluate Early Statistical LAW using the same scenario as before except this
time we randomly assign each workload a binary priority value (“high” or “low”).
We compare the performance of Early Statistical LAW to default Statistical LAW,
specifically with regard to the feasibility of high priority workloads. Each low priority
workload is allocated as a 50% Statistical LAW, using the compromise placement
heuristic described in the preceding paragraph, while high priority workloads are
allocated identically to Statistical LAW, using the same progressive backoff schedule.

Héggﬁg’;’; fznmft}% | WinPower Min BW Min CRC
Complete LAW 0.95(14.5%) | 0.63 (5.0%) | 0.43 (43.3%)
90% Stat. LAW 0.96 (14.3%) | 0.67 (8.1%) | 0.51 (45.7%)
70% Stat. LAW 0.97 (12.8%) | 0.85(28.8%) | 0.80 (29.0%)
50% Stat. LAW 0.98 (12.6%) | 0.89 (11.3%) | 0.97 (12.8%)
30% Stat. LAW 099 (8.8%) | 0.96 (7.9%) | 0.99 (11.2%)

Table 6.1: Early Statistical LAW feasibility results for high priority workloads in
the large-scale evaluation. The raw values denote the average physical infrastructure
utilization when the corresponding allocation heuristic and LAW type first encounter
high priority workload infeasibility. The values in parentheses denote the percentage
of feasibility increase over default Statistical LAW allocation.

Table 6.1 illustrates the merits of using Early Statistical LAW to improve feasibility for
high priority workloads. By proactively allocating low priority workloads using Early
Statistical LAW, high priority feasibility is increased for each LAW type versus default
Statistical LAW allocation. Consider “Min CRC,” the LAW allocation heuristic that
is generally the least feasible. By using the Early Statistical LAW allocation strategy,
complete LAW feasibility is increased by 43.3% for high priority workloads. However,
while Early Statistical LAW allocation leads to better placements for high priority
workloads (i.e., closer to desired, more likely to meet SLA), this increased feasibility
comes at the cost of increased RCI, depicted in Figure 6.1.

Regarding this feasibility vs. RCI tradeoff, it is clear that the increase in RCI with
Early Statistical LAW is a result of suboptimal allocations for low priority workloads,
since complete LAW allocations preserve RCI and high priority LAW feasibility is
increased using this strategy. This feasibility vs. RCI tradeoff should be considered

32

©
Ul

-e Stat LAW (Min CRC)

0.4 - Early Stat LAW (Min CRC
2 0.3
c
D 0.2
E . /_‘_‘__.__*/H——O—Q—"—"'—';ﬁ‘ +—— +——¢

0.1

o—C—0—0—0—0—0 0o o—0—0—0—0—0—20

0
0O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ..
Fraction of VM Capacity Allocated

Figure 6.1: RCI vs. feasibility tradeoff introduced by Early Statistical LAW (using
Min CRC heuristic).

by the operator when making a determination to use Early Statistical LAW. For
example, suppose an operator decides to use the “Min CRC” LAW placement heuristic
based on forecasting evidence that more CI workloads than DI workloads are likely
to arrive. Since LAW placement using “Min CRC” has been shown to have relatively
low LAW feasibility, he/she may want to invoke Early Statistical LAW allocation for
low priority workloads, especially if there are high priority tasks or tenants active,
and accept higher RCI for low priority workloads as a tradeoff. On the other hand,
if there are relatively few high priority tasks or tenants active, or if the operator is
unsure of the types of workloads likely to arrive, then he/she may decide to use the
“Min Power” LAW placement heuristic with no Early Statistical LAW allocations,
since “Min Power” has been shown to have relatively high complete LAW feasibility
as is, and the relatively benign workload forecast may allow electrical cost savings
while still providing good RCI for active tasks and tenants.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

CHAPTER 7:
Related Work

Prior work on application-aware workload placement mostly focuses on maximizing
the performance of certain applications (e.g., data intensive [26], high-performance
computing applications [27], etc.) or optimizing specific aspects of application per-
formance (e.g., network throughput [4,28], fairness [2]). Other related solutions such
as CloudMirror [7] and Ostro [8] provide bandwidth guarantees and ensure high ap-
plication availability. To the best of our knowledge, this work is the first to propose
precomputing desired workload placements for individual applications (i.e., LAWS)
and subsequently using them to speed up and prioritize workload placement while
meeting per application performance requirements.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

CHAPTER 8&:

Conclusion

We have demonstrated that an application-aware approach, by optimizing the relative
positioning of VMs of individual workloads, can meet both per application require-
ments and cumulative resource usage goals. Furthermore, we have proposed a new
abstraction (i.e., LAW) to enable online workload placement that is one order of
magnitude faster than existing solutions, and scalable to large data center scenarios.

In the big picture, we view this work as a first step towards understanding the tradeoff
between maximizing application performance and optimizing network-wide resource
usage. We believe there is a wide design space for new formulations and heuristics to
meet specific combinations of application-level requirements and operational goals.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

References

[1]

2]

“Practical guide to cloud service agreements, version 2.0,” Cloud Standards
Customer Council, Tech. Rep., Apr. 2015.

J. Li, D. Li, Y. Ye, and X. Lu, “Efficient multi-tenant virtual machine
allocation in cloud data centers,” Tsinghua Science and Technology, vol. 20,
no. 1, pp. 81-89, Feb 2015.

F. Hao, M. Kodialam, T. V. Lakshman, and S. Mukherjee, “Online allocation
of virtual machines in a distributed cloud,” in IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications, April 2014, pp. 10-18.

X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center
networks with traffic-aware virtual machine placement,” in INFOCOM, 2010
Proceedings IEEE, March 2010, pp. 1-9.

J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee, J. Mudigonda,

P. Sharma, and Y. Turner, “Corybantic: Towards the modular composition of
sdn control programs,” in Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks, ser. HotNets-XII. New York, NY, USA: ACM, 2013, pp.
1:1-1:7. [Online|. Available: http://doi.acm.org/10.1145/2535771.2535795

A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner, C. Liang, and
J. C. Mogul, “Democratic resolution of resource conflicts between sdn control
programs,” in Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, ser. CONEXT ’14. New
York, NY, USA: ACM, 2014, pp. 391-402. [Online]. Available:
http://doi.acm.org/10.1145/2674005.2674992

J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma,
“Application-driven bandwidth guarantees in datacenters,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 467478, Aug. 2014. [Online].
Available: http://doi.acm.org/10.1145/2740070.2626326

G. Jung, M. A. Hiltunen, K. R. Joshi, R. K. Panta, and R. D. Schlichting,
“Ostro: Scalable placement optimization of complex application topologies in
large-scale data centers.” in ICDCS. IEEE, 2015, pp. 143-152. [Online].
Available:

http://dblp.uni-trier.de/db/conf/icdes/icdes2015. html#JungHIJPS15

39

[9]

[10]

[11]

[12]

[16]

A. Bairley and G. G. Xie, “Orchestrating network control functions via
comprehensive trade-off exploration,” in IEEE NFV-SDN ’16. Palo Alto, CA:
IEEE, Nov 2016.

W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making network
function virtualization a cloud computing service,” in IFIP/IEEE International
Symposium on Integrated Network Management, IM 2015, Ottawa, ON,
Canada, 11-15 May, 2015, 2015, pp. 89-97. [Online]. Available:
http://dx.doi.org/10.1109/INM.2015.7140280

A. Gulati, N. Kodirov, and G. Kulkarni, “Quantifying the noisy neighbor
problem in openstack,” in 2016 OpenStack Summit, Austin, TX, Apr. 2016.
[Online]. Available: https://www.openstack.org/assets/presentation-media/
ZeroStack- Austin-Presentation.pdf

S. Srikanthan, S. Dwarkadas, and K. Shen, “Data sharing or resource
contention: Toward performance transparency on multicore systems,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15). Santa Clara, CA:
USENIX Association, Jul. 2015, pp. 529-540. [Online|. Available: https:
//www.usenix.org/conference/atc15/technical-session/presentation /srikanthan

S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” IEEFE/ACM TRANSACTIONS ON NETWORKING, vol. 1, 1993.

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable
datacenter networks,” in Proceedings of the ACM SIGCOMM 2011 Conference,
ser. SIGCOMM ’'11. New York, NY, USA: ACM, 2011, pp. 242-253. [Online].
Available: http://doi.acm.org/10.1145/2018436.2018465

P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and I. Stoica,
“Surviving failures in bandwidth-constrained datacenters,” in Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, ser. SIGCOMM ’12. New York,
NY, USA: ACM, 2012, pp. 431-442. [Online|. Available:
http://doi.acm.org/10.1145/2342356.2342439

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks,” in Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI'10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 17-17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855711.1855728

40

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning for
the cloud using online bin packing,” IEEFE Transactions on Computers, vol. 99,
no. PrePrints, p. 1, 2013.

C. C. Lin, P. Liu, and J. J. Wu, “Energy-efficient virtual machine provision
algorithms for cloud systems,” in Utility and Cloud Computing (UCC), 2011
Fourth IEEFE International Conference on, Dec 2011, pp. 81-88.

R. E. Burkard and E. Cela, “Linear assignment problems and extensions,”
Boston, MA, pp. 75-149, 1999. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4757-3023-4_ 2

H. W. Kuhn and B. Yaw, “The hungarian method for the assignment
problem,” Naval Res. Logist. Quart, pp. 83-97, 1955.

J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the Society of Industrial and Applied Mathematics, vol. 5, no. 1, pp.
32-38, March 1957.

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1982.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center
network architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication, ser. SIGCOMM ’08. New York, NY, USA: ACM,
2008, pp. 63-74. [Online]. Available:
http://doi.acm.org/10.1145/1402958.1402967

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, “VI12: A scalable and flexible data center
network,” in Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication, ser. SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp.
51-62. [Online]. Available: http://doi.acm.org/10.1145/1592568.1592576

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,
“Bceube: A high performance, server-centric network architecture for modular
data centers,” in Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication, ser. SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp.
63-74. [Online|. Available: http://doi.acm.org/10.1145/1592568.1592577

J. T. Piao and J. Yan, “A network-aware virtual machine placement and
migration approach in cloud computing,” in Proceedings of the 2010 Ninth
International Conference on Grid and Cloud Computing, ser. GCC "10.

41

[27]

28]

Washington, DC, USA: IEEE Computer Society, 2010, pp. 87-92. [Online].
Available: http://dx.doi.org/10.1109/GCC.2010.29

A. Gupta, L. V. Kale, D. Milojicic, P. Faraboschi, and S. M. Balle, “Hpc-aware
v placement in infrastructure clouds,” in Proceedings of the 2013 IEEE
International Conference on Cloud Engineering, ser. IC2E ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 11-20. [Online|. Available:
http://dx.doi.org/10.1109/IC2E.2013.38

D. S. Dias and L. H. M. Costa, “Online traffic-aware virtual machine placement
in data center networks,” in 2012 Global Information Infrastructure and
Networking Symposium (GIIS). IEEE, 2012, pp. 1-8.

42

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

43

