
Structure Preserving Anonymization of Router
Configuration Data∗

David A. Maltz, Jibin Zhan, Geoffrey Xie, Hui Zhang

{dmaltz,jibin,geoffxie,hzhang}@cs.cmu.edu

Carnegie Mellon University

Ǵisli Hjálmtýsson†, Albert Greenberg, Jennifer Rexford

{gisli,albert,jrex}@research.att.com

AT&T Labs–Research

Abstract
A repository of router configuration files from production
networks would provide the research community with a trea-
sure trove of data about network topologies, routing designs,
and security policies. However, configuration files have been
largely unobtainable precisely because they provide detailed
information that could be exploited by competitors and at-
tackers. This paper describes a method for anonymizing
router configuration files by removing all information that
connects the data to the identity of the originating network,
while still preserving the structure of information that makes
the data valuable to networking researchers. Anonymizing
configuration files has unusual requirements, including pre-
serving relationships between elements of data, anonymizing
regular expressions, and robustly coping with more than 200
versions of the configuration language, that mean conven-
tional tools and techniques are poorly suited to the prob-
lem. Our anonymization method has been validated with
a major carrier, earning unprivileged researchers access to
the configuration files of more than 7600 routers in 31 net-
works. Through example analysis, we demonstrate that the
anonymized data retains the key properties of the network
design. We believe that applying our single-blind methodol-
ogy to a large number of production networks from different
sources would be of tremendous value to both the research
and operations communities.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]

∗This research was sponsored by the NSF under ITR awards
ANI-0085920, ANI-0331653, and ANI-0114014. Views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of AT&T, NSF, or
the U.S. government.
†Also at Reykjav́ik University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

General Terms
Measurement, Design, Management

Keywords
Data anonymization, router configuration, security

1. INTRODUCTION
By far the best source of design information available to-

day for an IP network is the running configuration files asso-
ciated with its routers.1 Each of these files, known as “con-
figs”, contains the complete set of commands used to define
the behavior of a single router. Access to the router con-
figuration files of production networks would bring tremen-
dous benefits to a wide group of networking researchers. For
example, an accurate network topology can typically be di-
rectly derived from the configs. The parameters governing
the intricate interactions among routing protocols and poli-
cies that could only be estimated otherwise are explicit in
the configuration files, making it possible to develop more
precise analysis techniques for evaluating essential network
properties such as the robustness of the routing design [1].

However, configs are held as closely-guarded secrets for
the exact same reasons that make them valuable for re-
search. They reveal internal details of the network design,
and expose business secrets such the owner’s organizational
structure and clientele. Further, they expose potentially em-
barrassing configuration mistakes and security vulnerabili-
ties that could be remotely exploited. Only if the link be-
tween the configuration files and the identity of the network
owner is severed can it be guaranteed that any information
learned from the configurations cannot be exploited against
the owner. Therefore, before public access to the configs of
production networks becomes feasible, a method must be in-
vented to anonymize the data. However, the anonymization
must preserve relationships within the information to retain
the data’s value for networking researchers.

In this paper, we present a detailed formulation of this
configuration anonymization problem. We qualify the two

1Ultimately, we believe that researchers should not need to
work at the level of the configs themselves, but with a higher-
level representation that abstracts away the idiosyncrasies
of particular configuration languages and exposes the crit-
ical information. However, developing such a data model
is an extremely difficult task, one that must be driven and
validated by examples of how configurations are used in real
networks. We see our work as the first logical stepping stone
to the creation of a high-level representation of configuration
data.

equally important but often competing requirements – owner-

identity anonymization and relationship preservation – and
outline a methodology to validate that they are met. We
identify key challenges in developing an acceptable anony-
mization method and consider potential attacks against it.
Guided by this formulation, we have crafted a first working
method for config anonymization2.

Anonymizing configs is challenging for several reasons:
First, there are numerous ways in which configs can leak in-
formation that would allow an attacker to break the anony-
mization. For example, public AS numbers and IP addresses
can be easily connected with the owner. Even the number
and location of peering points to other networks that can
be gleaned from configs might uniquely identify a network.
Second, there is no consistent grammar for the configuration
language, so conventional compiler tools and techniques are
poorly suited to the problem. Third, the anonymization
needs to support a diverse set of research goals. Fourth, the
anonymization process must be fully automated to avoid
human errors and gain the acceptance of network operators.

The anonymization method described in this paper makes
an important step towards overcoming these challenges. It
has been validated with a major carrier, earning unprivi-
leged researchers access to the configuration files of more
than 7655 routers in 31 backbone and enterprise networks.

2. THE NATURE OF CONFIGURATION
FILES

Figure 1 shows command lines like those found in a pre-
anonymized configuration file. Typical configs in production
networks vary from 50 to 10,000 lines — in our dataset of
7655 routers, the 25th percentile was 183 lines and 90th
percentile was 1123 lines.

Lines 8–14 define two interfaces and assign them IP ad-
dresses, with free text comments used to indicate where
these interfaces connect. Line 16 defines a BGP process
and configures it as a speaker for the public Autonomous
System Number (ASN) 1111. Lines 18–20 declare an EBGP
session with a router at 66.253.160.68, presumably inside
the UUNET network as the remote AS has UUNET’s ASN
(701). Lines 22–28 define the route-maps used by BGP in
terms of the access-lists defined in lines 30–32. Line 30 se-
lects IP addresses matching 1.1.1/24. Line 31 uses a regular
expression to match any BGP community attribute value
coming from UUNET (701) between 7100 and 7599, and
line 32 uses another regular expression to match any AS
path that contains AS 1239, or one of UUNET’s non-US
ASs (702-705).

The config illustrates several common relationships be-
tween information elements. The uses relationship between
the BGP process in line 19 and the routing policy definition
in lines 22–25 is established by the name “UUNET-import”.
The RIP routing protocol in line 35 is configured to run over
the interface in line 8 by the subnet contains relationship
between the prefix 1.0.0.0/8 and the address 1.1.1.1.

Anonymizing this configuration requires removing or trans-
forming: (1) the comments; (2) the owner’s public AS num-
ber (here 1111) (3) the publicly routable IP addresses (e.g.,
1.1.1/24), all of which directly identify Foo Corp; and (4) all

2We have implemented our approach for Cisco IOS, but the
techniques are directly applicable to JunOS and other router
configuration languages as well.

1 hostname cr1.lax.foo.com
2 !
3 banner motd ^C
4 FooNet contact xxx@foo.com
5 Access strictly prohibited!
6 ^C
7 !
8 interface Ethernet0
9 description Foo Corp’s LAX Main St offices
10 ip address 1.1.1.1 255.255.255.0
11 !
12 interface Serial1/0.5 point-to-point
13 description cr1.sfo-Serial3/0.2
14 ip address 66.253.32.85 255.255.255.252
15 !
16 router bgp 1111
17 redistribute rip
18 neighbor 66.253.160.68 remote-as 701
19 neighbor 66.253.160.68 route-map UUNET-import in
20 neighbor 66.253.160.68 route-map UUNET-export out
21 !
22 route-map UUNET-import deny 10
23 match as-path 50
24 match community 100
25 route-map UUNET-import permit 20
26 route-map UUNET-export permit 10
27 match ip address 143
28 set community 701:1234
29 !
30 access-list 143 permit 1.1.1.0 0.0.0.255
31 ip community-list 100 permit 701:7[1-5]..
32 ip as-path access-list 50 permit (_1239_|_70[2-5]_)
33 !
34 router rip
35 network 1.0.0.0

Figure 1: Excerpts of a router configuration file.

data about external peers (e.g., neighbor IP addresses, AS
numbers, route-map names, community attributes), which
while (probably) innocuous individually could build a pic-
ture identifying Foo Corp.

3. CHALLENGES
In this section, we provide more detail about the spe-

cific challenges that we had to address while developing a
working method of config anonymization. The difficulties of
anonymizing configs can be broken into two broad classes of
challenges. First is finding all the elements of a configuration
that can leak identity information. Second is anonymizing
each component so that the relationships between informa-
tion in the configs are preserved.

3.1 Finding Elements to Anonymize
At first impression, it might seem that parsing the config-

uration is the simplest way to find the elements of a config
that must be anonymized. However, attributes of the un-
derlying grammar make existing compiler tools poorly suited
for the task.
No explicit grammar available: While somewhat sur-
prising an explicit and complete grammar does not appear
to be publicly available. Moreover, small, but syntactically
significant changes occur between Cisco Internet Operat-
ing System (IOS) versions and each type of device supports
slightly different commands. All but the most trivial net-
works have routers running different versions of IOS (the
routers in our dataset run over 200 different IOS versions).
Consequently, even a complete grammar for a particular ver-
sion would typically not be applicable for all routers in a
study — not even within a single network.

Grammar is poorly suited for standard compiler tools:

The language interpreted by the Cisco Command Line In-
terface (CLI) is described in manuals by a regular expression
grammar, and thus in principle is of relatively low complex-
ity. However, in contrast to the grammar of programming
languages, IOS supports a huge set of commands,3 each
specified as a separate grammar rule, and it recognizes a
very large set of keywords that appear in different orders de-
pending on the command. Inconsistencies and ambiguities
abound. For example, sometimes parameters are positional
and sometimes attribute-value pairs; other commands allow
multiple values for some parameters. Even space is not con-
sistently a separator. These specifics furthermore depend
on the particular IOS version, resulting in all combinations
and variations potentially appearing in a single network.
Ensuring completeness is difficult: The huge number
of distinct commands not only make the CLI language prob-
lematic for traditional compiler tools, but would also make
it very challenging to ensure correct anonymization through
annotation of the complete grammar. Even if the complete
grammar were successfully annotated, the effort would bring
questionable value, as only a small fraction of the commands
are of interest for the study of IP networks. This fact high-
lights a key advantage of our approach, as our anonymiza-
tion operates across commands mostly without grammatical
or semantic discrimination, as explained in Section 4.

3.2 Relationship Preserving Anonymization
Each element of a configuration that is altered to hide the

identity of the owner must be anonymized in a way that
preserves the relationship between elements, even when not
all relationships are known at anonymization time. Even
several known relationships are particularly challenging to
maintain.

Preserving the structure of addresses: Configura-
tion files make extensive use of the subnet contains rela-
tionship to associate elements of the configuration (e.g., the
RIP routing protocol in line 35 and the interface in line 10),
so the relationship must be preserved by anonymization.

There are also restrictions on how addresses are anony-
mized. Some addresses used in configuration files have spe-
cial meanings and must not be modified at all, e.g., net-
masks in lines 14 and 30 (255.255.255.252 and 0.0.0.255).
Also, older commands, such as those for configuring RIP
and EIGRP, implicitly assume classful IP addresses, so the
mapping must also be class preserving: mapping addresses
with class A prefixes to addresses with another class A pre-
fix. Additionally, it improves human readability in the post-
anonymization configs if subnet addresses (i.e., addresses
with a host part of all zeros such as 128.2.0.0) are mapped
to other subnet addresses (e.g., 135.9.0.0).

Public AS Numbers must be hashed: Although most
integers found in configuration files do not leak information,
AS numbers can. Anonymizing individual AS numbers with
a random permutation is trivial, but they can also be ref-
erenced by regular expressions, as shown in lines 31–32 of
Figure 1, which then must be rewritten to reflect the per-
muted values.

Maintaining referential integrity: All identifiers must
be anonymized in a consistent manner so that, for example,
the uses relationship between the routing policy statement

3Over 3000 commands for Authorization, Authentication
and Accounting (aaa) alone.

at line 19 and the policy definition at lines 22–25 created by
the shared identifier “UUNET-import” is maintained.

4. ANONYMIZATION METHOD
We first describe our general approach, which anonymizes

most parts of the configuration files, and then explain in
detail how particularly troublesome or important aspects of
the configurations are handled.

4.1 Basic Method
Being unable to know a priori which strings can leak in-

formation about the identity of the network owner, the most
conservative approach is to cryptographically hash every

string that is not known to be innocuous. A pass-list of “un-
privileged” tokens was created by building a web-walker that
string scraped the Cisco IOS command reference guides. In
theory, most Cisco keywords will appear somewhere in the
guides, and non-keywords used in the guides are so common
they cannot leak information. All non-numeric tokens found
in the configurations are checked against this pass-list, and
any tokens not found are hashed using SHA1 digests [2]: this
anonymizes the names of class-maps, route-maps, and any
other strings that could hold privileged information. Simple
integers are generally not anonymized.

4.2 Handling Expressions Requiring Context
While our goal is to avoid creating anonymization rules

that depend on context so that the anonymizer is robust
against different versions of IOS, there are situations which
require context to handle properly. In these situations, we
add rules to the anonymizer written using regular expres-
sions that establish context. In practice, we have discovered
a set of 28 rules4 that is sufficient for anonymizing the 200-
plus IOS versions we have tested them on.

We use two rules to segment all words in the configs
into tokens before consulting the pass-list, so identifiers like
ethernet0/0 become a string “ethernet” that matches against
the pass-list and a non-alphabetic remainder “0/0” that
doesn’t need anonymization. Without this step, the string
“Ethernet0/0” would not have been found in the pass-list
and would have been hashed, destroying valuable informa-
tion about the interface type.

Although all “unsafe” words in comments would be hashed
by our basic method, the arrangement of pass-list words in
comments can still leak information. For example, “global”
and “crossing” are both in the pass-list, but the string “global
crossing” in a comment must be anonymized, as it is the
name of a major ISP. Since there is no means short of human
inspection to reliably find these leaks, we use three rules to
strip out all comments, including multi-line comments like
the banner in lines 3–6 of Figure 1. Among a dataset of 173
networks, an average of 1.5% of the words were found to be
comments and removed (90th percentile 6%).

An additional four rules are needed to anonymize mis-
cellaneous information, including phone numbers in dialer
strings, and so on.

4.3 Anonymizing IP Addresses
Two of the best prefix preserving IP address anonymiza-

tion schemes are due to Xu [4] and Minshall[5]. Xu’s has the
property that very little state must be shared to consistently

4More details available in the technical report [3].

map addresses, making it amenable to parallelization, while
Minshall’s requires a data-structure to store the mapping as
it is created.

However, anonymizing configs requires that the IP anon-
ymization scheme has the properties discussed earlier, such
as being class-preserving and subnet-address-preserving. We
have found that using a data-structure-based mapping scheme
makes it easier to implement these requirements. By con-
trolling how new entries are added to the data-structure, we
can shape the mapping to have the needed properties while
maintaining as much of the randomness needed for security
as possible.

We use an extended version of Minshall’s original “-a50”
scheme as taken from tcpdpriv. We configured it to be
class-preserving, and modified it so all “special” IP addresses
(e.g., netmasks, multicast) are passed through unchanged.
Doing so requires dealing with collisions that occur when
the algorithm maps a non-special address a into an address
s that falls within the range of special addresses. When
such collisions occur, we recursively map s until there is
no collision, which we have proven maintains the structure-
preserving property of the algorithm.

4.4 Anonymizing AS Numbers
The space of Autonomous System Numbers (ASNs) is di-

vided into public and private ranges, 1-64512 and 64513-
65536 respectively. Public ASNs need to be anonymized
because they are globally unique and the mapping between
public ASN and network owner can be obtained from many
sources.

There are no semantics and no relationships embedded
in public ASNs,5 so a random permutation can be used
to anonymize them. Since private ASNs are not globally
unique and do not leak identity information about the net-
works, they are not anonymized.

There are two major challenges in anonymizing ASNs.
First is to correctly identify every appearance of an ASN
in the configuration file. For example, an ASN can appear
inside a BGP community attribute. ASNs can also appear
in regular expressions that are used in routing policies re-
lated to AS-path attributes of BGP routes (line 32). A list
of 12 rules is used to locate all the ASNs and ASN regu-
lar expressions in the configuration files — this is the most
fragile part of our method since ASNs are syntactically in-
distinguishable from simple integers. Strategies for coping
with errors are discussed in Section 6.

The second challenge in anonymizing ASNs is dealing with
ASNs that do not explicitly appear in the text of the configs,
but are accepted by regular expressions that do appear in the
configs. For example, 70[1-3] accepts ASN 701, 702, and
703. If this regexp appeared in a pre-anonymization config,
it would need to be rewritten so that the post-anonymization
version accepts whichever ASNs 701, 702, and 703 are mapped
to by the random permutation. The use of digit wildcards
and ranges in regexps dealing with public ASNs is quite rare,
appearing in two of 31 networks studied, because there is lit-
tle structure among public ASNs for the regexps to exploit.
Even among private ASNs, where the network designer is
free to impose structure, only 3 of 31 networks use ranges
in regexps dealing with private ASNs. Although rare, we
feel these cases must still be handled properly. The use of

5An exception is UUNET, which owns the contiguous range
of ASNs from 701–705.

alternation in regexps (e.g., (701|1|1239) .*) is very com-
mon, appearing in 10 networks, but can be easily handled
by anonymizing each ASN individually.

We anonymize regular expressions involving digit wild-
cards and ranges by leveraging automata theory [6]. Using
that terminology, the set of ASNs a regexp accepts is called
the language accepted by the regexp. Since there are only
216 ASNs in BGPv4, we can find the language accepted by
the regexp by simply applying the regexp to a list of all 216

ASNs and seeing which it accepts. If the accepted language
includes only private ASNs, which do not need anonymiza-
tion, no changes are required to the regexp. If there are
public ASNs in the accepted language, these are all anony-
mized and the challenge becomes computing a regexp that
will accept this new language. Currently, we construct a
regexp that is the alternation of all ASNs in the language.
For example 70[1-3], becomes 701|702|703 and then we
anonymize 701, 702 and 703 individually. The resulting reg-
exps could be very long, but this is not a problem when
anonymized configs are primarily analyzed by software tools.
We could use known polynomial-time algorithms for con-
structing the minimum finite automata (FA) that accepts
the new language and then convert this FA back into a reg-
exp, but we have not had need for this functionality.

4.5 Anonymizing BGP Community Attributes
BGP community attributes are usually represented by two

integers, written as 701:1234, where the first integer (701)
is an ASN and the second (1234) is an ordinary integer (for
an example, see line 28 in Figure 1). Community attributes
are normally used to inform a directly connected BGP peer
how routes carrying the attribute should be handled.

The ASN part of an attribute is located and anonymized
as discussed above. To be conservative, we must assume
that even the integer part of the attributes used by each
network are publicly known and sufficiently distinctive to
identify the network owner, so the integer part of community
attributes must also be anonymized. This represents a loss
of information, but we have chosen to favor anonymity over
information wherever such trade-offs must be made.

Like AS numbers, community attributes can appear in
regexps (e.g., line 31 in Figure 1), and are anonymized using
the same method as AS numbers. Five of the 31 networks
used regexps involving communities, but only two networks
used regexps with range expressions.

5. VALIDATION OF ACCURACY
Anonymization of configuration files is potentially a lossy

process. To validate that information relevant to network re-
searchers is surviving the anonymization process unchanged,
we use end-to-end tests that compare attributes of the con-
figs pre- and post-anonymization. We developed two suites
of tests that a colleague with access to the unanonymized
configuration files runs over both the anonymized and un-
anonymized configurations and then checks for differences
in the output.

The first suite of tests verifies that independent charac-
teristics of the configurations are being preserved by com-
paring properties such as: (a) the number of BGP speakers;
(b) the number of interfaces; and (c) the structure of the
address space (i.e., number of subnets of each size).

The second suite of tests consists of running our tools
to reverse engineer the routing design [1] of a network and

comparing the extracted designs. Extracting the routing
design makes an excellent test case, as it depends on many
aspects of the configuration files being consistent inside each
file and across all the files in the network, including physi-
cal topology, routing protocol configuration, routing process
adjacencies, routing policies, and address space utilization.

While our tests have given us great confidence that our
anonymizer implementation preserves information related to
routing design, it is possible that other aspects of the configs
we have not tested are being altered. As more research is
conducted using anonymized configs, we expect the number
of tests in the validation suite to increase.

In general, the anonymizer is capable of preserving any
relationship between configuration data elements of which
it is programmed to be aware. However, the potential exists
for there to be implicit relationships between elements of the
configuration data that are unknown to the anonymizer, and
so are not preserved during the anonymization. For exam-
ple, it might be “well known” that all addresses used by AS
number X have prefix Y . A network designer could conceiv-
ably configure some router in his or her network to drop all
routes from AS X and other routers to drop all routes to
destinations with prefix Y . Using this external information
and the unanonymized configurations, it would be possible
to determine these two different configurations express the
same intent and achieve the same effect. The anonymiza-
tion process will independently anonymize the AS numbers
and the IP prefixes, however, allowing a reader to determine
that routes to external networks are being dropped via two
different mechanisms, but not that the mechanisms both
target the same AS. The anonymizer today supports wide
classes of useful analysis. If the anonymizer is provided with
the “well known” external information on which the implicit
relationship is based, it can be extended to preserve these
relationships as well.

6. POTENTIAL VULNERABILITIES
There are two general ways in which the anonymization

provided by our approach can be attacked. First, textual
information accidentally left inside a post-anonymization
configuration file could identify the owner of the network.
Second, it might be possible to analyze the configuration
files to determine a set of network characteristics that are
so unusual they form a unique “fingerprint” of the network.
If these characteristics can be measured externally via the
public Internet, then a search of all known networks could be
made looking for a fingerprint that matches the fingerprint
of the configs.

6.1 Textual Attack Based on Unanonymized
Strings

It is very unlikely a textual attack could succeed against
the strings in an anonymized configuration file, as we take
the extremely conservative approach of stripping all com-
ments from the configs and hashing all strings except those
known to be innocuous with the cryptographically secure
SHA1 hash (salted with a secret chosen by the network
owner). However, it is possible that a non-string that car-
ries identity information could escape the rules we use to find
and anonymize them. AS numbers have been the greatest
threat, as they are simple integers.

Our best defense against textual attacks is an iterative
methodology. After anonymizing configs, we highlight for a

human operator lines that seem likely to leak information
(usually a tiny fraction of the configs). Lines they believe
are dangerous are used to add more rules to the anonymizer.
Our experience is that the iteration closes quickly, requiring
fewer than 5 iterations over 3 months to anonymize 4.3 mil-
lion lines of configuration from 7655 routers running more
than 200 different IOS versions. As an example of a leak-
highlighting method, the anonymizer can record all AS num-
bers it sees before hashing them, and then grep out all lines
from the anonymized configs that still include any of those
numbers.6

6.2 Attacks on the IP Address Anonymization
Hypothetical attacks have been proposed [7] on the tcpdpriv

algorithm on which our IP address anonymization is based.
Fortunately, they use the frequency with which addresses
appear in a dynamic packet trace — information that is not
available from anonymized static configuration files.

However, because the IP address anonymization is struc-
ture preserving, the number of subnets of different sizes
is the same in pre- and post-anonymization configs. This
means an attacker could construct a fingerprint of a net-
work via counting up how many subnets of different sizes
(/30s, /29s, /28s, etc.) appear in the anonymized configs.
To determine the identity of the physical network that the
configs belong to, he could then send probe packets into can-
didate physical networks attempting to measure how many
subnets of different sizes each candidate contains from the
ICMP Reply or backscatter packets received. Conceivably
this could be done by “pinging” every consecutive address in
the address blocks announced by the candidate network in
BGP, and using heuristics such as “most subnets have hosts
clustered at the lower end of the subnet’s address range” to
guess where subnet boundaries must lie.

Although remotely determining the address space finger-
print of a physical network seems extremely challenging (or
impossible in the case of networks behind firewalls or not
reachable from the Internet), for this security analysis we
will assume it is possible. The remaining question that we
will experimentally evaluate in future work is whether ad-
dress space usage fingerprints are sufficiently unique to en-
able the identification of networks. Should large numbers of
networks have roughly the same fingerprint, the risks of this
attack succeeding will be quite low.

6.3 Attacks Based on Network Topology and
Peering

Although we independently hash the AS numbers that
identify the peers of an anonymized network, anonymized
configs accurately represent the number of routers at which
the anonymized network peers with other networks, and
the number of peering sessions that terminate on each of
those routers. This peering structure could serve as one
form of fingerprint that could be checked against maps made
using the RocketFuel techniques [8]. However, there are
many side-door peerings between real backbone networks
that RocketFuel and RouteViews do not see, so it is an open
experimental question for future work to determine if there
is enough entropy in the peering structures to make them

6This has worked well on the configs we have tried it on, al-
though it would work poorly for Genuity customers as Ge-
nuity’s AS number (AS 1) will appear in many unrelated
config lines.

useful as fingerprints. It seems likely that peering struc-
ture can be used to fingerprint backbone networks, but not
edge networks — both because they have fewer points of
attachment to the backbone and because they do not gen-
erally provide transit so their peering structure cannot be
measured via RocketFuel. Also, edge networks often have
firewalls that drop unsolicited probes, such as traceroutes,
and so their internal topology cannot be measured from out-
side.

Summarizing these vulnerabilities, until such time as the
actual risks of the fingerprinting attacks like the ones men-
tioned above can be established, we cannot conclude that
our method securely anonymizes backbone networks. How-
ever, for the many networks which cannot be externally
fingerprinted, either because they use firewalls or are not
reachable over the public Internet, this method appears rea-
sonably secure against external attackers. The remaining
concern is that an insider attack, where the probing/finger-
printing is launched from a host in the target network, could
potentially succeed. However, 10 of 31 networks we exam-
ined use internal compartmentalization that would also de-
feat insider attacks. For example, some networks use NATs
to divide up the network into smaller pieces, some use rout-
ing policy to prevent reachability between portions of the
network, and others drop traceroutes and other probe traf-
fic.

7. SUMMARY AND FUTURE WORK
In this paper we make two contributions. First, we have

formulated the key issues of the configuration anonymization
problem, including the requirements for an acceptable anon-
ymization method, major areas of challenges, a methodol-
ogy for validating anonymized data, and potential security
vulnerabilities. The formulation exposes essential trade-offs
between anonymization and information preservation, and
can serve as a basis for further discussions by the research
community leading to refined solutions.

Second, we provide a working solution for configuration
anonymization that meets the formulated requirements. It
has been validated with a major carrier, earning unprivi-
leged researchers access to the configuration files for dozens
of networks.

Towards a Clearinghouse of Configuration Data
The motivation for our work is to create a means by which
network owners will feel comfortable making their configur-
ation data available to the research community.

Using the ability to anonymize router configuration files,
we plan to establish a single-blind methodology for work-
ing with private network data through a website portal.
Network owners could download the configuration anony-
mization tools from the portal via third-party web traffic
anonymizers, and upload their anonymized configurations
after taking whatever additional steps they felt necessary to
verify the anonymization. Researchers with accounts on the
portal could then be given access to the data, communicat-
ing comments to the anonymous network owners through
a blinding function of the portal and the third-party web
traffic/email anonymizers.

While both technical and organizational challenges remain
to be overcome in the creation of network configuration data
sets accessible to the research community, we are excited by
the new areas of research such data sets could open up — ar-
eas with impacts in both networking research and network
operations. Our work on the anonymization of configura-
tions is intended as a first step in generating momentum
towards this goal.

8. REFERENCES

[1] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson,
and A. Greenberg, “Routing design in operational networks:
A look from the inside,” in Proc. ACM SIGCOMM, August
2004.

[2] D. Eastlake, 3rd and P. Jones, RFC 3174 - US Secure Hash
Algorithm 1 (SHA1), 2001. Available from
http://www.ietf.org/.

[3] D. A. Maltz, J. Zhan, G. Xie, H. Zhang, G. Hjalmtysson,
A. Greenberg, and J. Rexford, “Structure preserving
anonymization of router configuration data,” Tech. Rep.
CMU-CS-04-149, Carnegie Mellon University, 2004.

[4] J. Xu, J. Fan, M. Ammar, and S. B. Moon, “Prefix
preserving IP address anonymization: Measurement-based
security evaluation and a new cryptography-based scheme,”
in Proc. International Conference on Network Protocols,
October 2002.

[5] G. Minshall, “tcpdpriv - remove private information from a
tcpdump -w file.” Software distribution available from
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html, 1997.

[6] J. C. Martin, Introduction to Languages and the Theory of
Computation. McGraw-Hill, 1991.

[7] T. Ylonen, “Thoughts on how to mount an attack on
tcpdpriv’s “-a50” option....” Web White Paper available
from
http://ita.ee.lbl.gov/html/contrib/attack50/attack50.html.

[8] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP
topologies with RocketFuel,” in Proc. ACM SIGCOMM,
August 2002.

