Refactoring Network Control and Management:

A Case for the 4D Architecture
Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andyy#fts,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, Huedky
{dmaltz,acm,yh,jibin,hzhangdcs.cmu.edu
gisli@ru.is jrex@cs.princeton.edu albert@researchatt xie@nps.edu

September, 2005
CMU-CS-05-177

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This research was sponsored by the NSF under ITR Awards AR5820, ANI-0331653, and ANI-0114014. Views
and conclusions contained in this document are those ofutimes and should not be interpreted as representing tretabffi
policies, either expressed or implied, of AT&T, NSF, or th&SUgovernment.

Keywords: Network control plane, centralized versus distributedicindecision plane, dissemina-
tion plane, routing design, routing protocols

Abstract

We argue for the refactoring of the IP control plane to suppetwork-wide objectives and control. We
put forward a design that refactors functionality into a @lodD architecture composed of four separate
planes: decision, dissemination, discovery and data. édision-making logic is moved out of routers
along with current management plane functions to creatayi@dtly centralized decision plane, where
network-level objectives and policies are specified andreefd by direct configuration of states on indi-
vidual network elements. Pulling much of the control staue lagic out of the routers enables both simpler
protocols, which do not have to embed decision-making lagid more powerful decision algorithms for
implementing sophisticated goals. Remaining on the reugea wafer-thin class of intrinsically distrib-
uted control functions. These support the discovery plaossisting of elementary functions to discover
topology and network state, and the dissemination plangsisting of elementary functions to distribute
explicit instructions to manipulate the data plane fonimgdnechanisms.

This paper motivates the need for a new approach to netwartkkai@nd management, describes the
4D architecture, and sketches the design space and chesdlpoged by the architecture. As a first explo-
ration of the design space and its challengs, we have catestia working prototype that implements the
4D architecture. Through evaluation of this prototype onffécent network topologies derived from pro-
duction networks, we demonstrate that (i) the 4D architeotan achieveubsecondeconvergence times
upon single link or router failures and can adequately detl @ther failure scenarios includingetwork
partition; (ii) the 4D architecture is able to implement a network gasntent such as a reachability matrix
more robustly than currently possible; and (iii) the 4D aetture does not introduce excess overhead.

Contents

1 Introduction

2 Network Control and Management Today

2.1 Reachability Control in Enterprise

2.3 Same Problems, Many Guises .
2.4 Moving Forward

3 The 4D Architecture
3.1 DesignPrinciples
3.2 New 4D Network Architecture . .

Networkso o o
2.2 Enforcing Peering Policies in Transit Networks

3.3 Advantages of the 4D Architecture e
3.4 Challenges forthe 4D Architecture e

4 Design and Implementation
4.1 TargetPlatform
4.2 Neighbor Discovery

4.3 Communication Between DEsandRouters
4.4 Computing FIB Entries and Packet Filters
4.5 Coordinating Multiple DecisionElements,

4.6 Interacting with Other Networks .

5 Evaluation

5.1 Evaluation Environmentand Scenarios

5.2 Response to Single Failures . . .

5.3 DE Failures and Network Partitions

5.4 Overhead of the 4D Architecture
6 New Capabilities of the 4D Architecture
7 Related Work

8 Summary

11
11
11
12
13
14
15

15
16
16
18
20

21

23

25

1 Introduction

Most data networks were designed to provide best-effortraanmication among cooperating users. This
has resulted in a box-centric architecture in which eachcéwparticipates in a distributed control pro-
tocol thatembedghe path computation logic. For example, in IP networks,gath computation logic

is governed by distributed protocols such as Dijkstra’s 8PBellman Ford. In Ethernet networks, the
path computation logic is in the Spanning Tree protocol [Idday’s data networks, controlled by nu-
merous institutions and operated in diverse environmexgs, (data center, access, enterprise, and service
provider), must support network-level objectives and bdpees far more sophisticated than best-effort
packet delivery, including traffic engineering, survidéij security, and policy enforcement. Retro-fitting
these network objectives on the box-centric architectaeléd to bewildering complexity, with diverse
state and logic distributed across numerous network elesr@am management systems. This complex-
ity is responsible for the increasing fragility of IP netisrand the tremendous difficulties facing people
trying to understand and manage their networks.

Continuing on the path of incremental evolution would leacdlditional point solutions that exac-
erbate the problem. Instead, we advocate re-architedti@gdntrol and management functions of data
networks from the ground up. We believe that a clean-slapecgeh based on sound principles will, at
the minimum, provide an alternative perspective and slggd 6n fundamental trade-offs in the design of
network control and management functions. More strongiybelieve that such an approacmecessary
to avoid perpetuating the substantial complexity of todagntrol plane.

To guide our design, we start from a small set of principlestwork-level objectivesetwork-wide
views anddirect control These principles lead us to a 4D architecture that refactetwork functionality
into four components—thaata, discovery, dissemination, and decision plafiée decision plane creates
a network configuration that satisfies network-level oliyest It has a network-wide view of the topology
and events, and it has direct control over the operationefitita plane. No decision logic is hardwired
in protocols distributed among switches. The output of theslon logic is communicated to switches by
the dissemination plane. Our study investigategx@dmreme design poirwhere control and management
decisions are made in a logically centralized fashion. Biimguall the decision logic out of the network
elements, we enable both simpler protocols and more sagdtedt algorithms for driving the operation
of the data plane. In addition, we believe that the technolognds toward ever-more powerful and
inexpensive computing platforms make our design poinaetitre in practice.

Despite the many potential advantages of the 4D architeckay questions remairls the 4D ar-
chitecture feasible? Centralizing the decision-making logic at servers raisasinal concerns about re-
sponsiveness, scalability, and reliability [2, Fre the advantages of the 4D architecturerealizable?

As discussed in Section 6, our architecture introduces rapalalities, such as network-wide reachabil-
ity policies, and zero device-specific configuration of swatswitches. Can these capabilities be realized
without introducing significant complexity?

To answer these questions, we have implemented a protofyihe dD architecture. We chose to
target the first 4D prototype at controlling IPv4 networksd ave base our evaluations on topologies taken
from production enterprise networks that vary in size frddid 100 routers. However, we believe that our
architecture is applicable to a wide range of networks: €ijworks with different packet-forwarding par-
adigms, such as longest-prefix-matching forwarding (IR I&Vv6), exact-match forwarding (Ethernet),
and label switching (MPLS and VLAN/Ethernet) and (ii) netk® in different environments, including
data centers, enterprise networks, access/metro netvesrtservice provider backbones. Using our cur-
rent prototype, we demonstrate that it is feasible to gived®vorks more sophisticated capabilities while
making them fully self-configuring, comparable to switchgtiernet networks. Further, we believe that
applying the 4D architecture to Ethernet will enable Etleémetworks to retain their simplicity while
obtaining the scalability and functionality seen in IP netks[4].

3

The contributions of this paper are threefold. First, wetkggaize fundamental design principles
capturing the essence of the problem of network control aadagement. We present a 4D network ar-
chitecture founded on these principles, and we articuldtg tive 4D architecture potentially has major
advantages over existing designs. Second, through ei@lwdiresponsiveness and overhead of our proto-
type, we demonstrate the viability of the 4D architecture specifically validate the viability of the novel
refactoring and relocating of control functions. Third, demonstrate new and valuable functionality
facilitated by the 4D architecture that is currently uniathle in traditional networks.

2 Network Control and Management Today

In today’s data networks, the functionality that contrdls hetwork is split into three main planes: (i) the
data planethat handles the individual data packets; (ii) tontrol planethat implements the distributed
routing algorithms across the network elements; and (i@jlmanagement plartat monitors the network
and configures the data-plane mechanisms and control-ptat@cols.

While the original IP control plane was designed to hawengledistributed algorithm to maintain
the forwarding table in the data plane, today’s IP data, control and managelanes are far more
complex. The data plane needs to implement, in additionaxd-hop forwarding, more functions such as
tunneling, access control, address translation, and dquguEhe states used to implement these functions
are governed by multiple entities and have to be configuremgh a rich set of individual, interacting
commands. Even for the forwarding state, there are usuall§ipte routing processes running on the same
switch. While there are many dependencies among the stadgb@logic updating the states, most of the
dependencies amot maintained automatically. For example, controlling ragtand reachability today
requires complex arrangements of commands to tag routesréilites, and configure multiple interacting
routing processes, all the while ensuring that no routesked to handle more routes and packet filters
than it has resources with witch to cope. A change to any orteopghe configuration can easily break
other parts. The problem is exacerbated as packet delienyat commence until the routing protocols
create the necessary forwarding tables, and the manag@ta@et cannot reach the control plane until
the routing protocols are configured. Resolving this c&2lrequires installing a significant amount of
configuration information on IP routers before deploymetudies of production networks show them
requiring hundreds of thousands of lines of low-level camfagion commands distributed across all the
routers in the network [5]. These configurations and the dyodorwarding state they generate require a
myriad of ad hoc scripts and systems in the management maraidate, monitor, and update them. The
result is a complex and failure-prone network.

We present two examples that illustrate the network frggiiaused by today’s complex and unwieldy
control and management infrastructure. The examplegrditeshow the lack of coordination between
routing and security mechanisms can result in a fragile otyand how today’s control and management
infrastructure makes it difficult to properly coordinate tmechanisms.

2.1 Reachability Control in Enterprise Networks

Today, many enterprise networks attempt to control whicktrand services on their network can com-
municate (i.e., reach each other) as part of their securayegy [5]. They implement their strategies using
a combination of routing policy and packet filters, but thipeach is fraught with peril even in simple
networks.

Consider the example enterprise network in Figure 1. Thepamy has two locations, A and B. Each
location has a number of “front office” computers used by thiesagents (AF1-2 and BF1-2). Each

1This problem is so profound in today’s networks that whenpessible remote routers/switches are plugged into telegh
modems so that the Public Switched Telephone Network pesvddmanagement communication path of last resort.

4

Data Center Front Office

AD1 AF1
D\E i1l metric=1 2.1 /D

AR & Roe—L_| AF2
AD2 Til'z i i2'21metric:l
o Location A
,,,, metic=l L L RB
' Location B I
BD1 lig2 i4.2 J metric=1
l:‘\f i3.1 i4.1
R3 metric=1 R4 {:‘ BF1
BD2 [~——{ | BF2

Figure 1: Enterprise network with two locations, each laatvith a front office and a data-center.

location also has a data center where servers are kept (AittBD1-2). Initially, the two locations are
connected by a link between the front office routers, R2 andoRdr which inter-office communications
flow. The Interior Gateway Protocol (IGP) metric for eackklimshown in italics. The company’s security
policy is for front-office computers to be able to commurgcaith other locations’ front office computers
and the local data center’s servers, but not the data ceinfee other location. Such policies are common
in industries like insurance, where the sales agents ofleaeaktion are effectively competing against each
other even though they work for the same company. The sgqaiicy is implemented using packet filters
on the routers controlling entrance to the data centersop piackets that violate the policy. Interface il1.1
is configured with a packet filter that drops all packets frowe BF subnet, and interface i3.1 drops all
packets from the AF subnet.

The network functions as desired, until the day when the-datger staff decides to add a new,
high-capacity dedicated link between the data centersnstas a dashed line between R1 and R3 —
perhaps they have decided to use each other as remote badatipihs). It seems reasonable that with
packet filters protecting the entrances to the data centeesew link between data centers should not
compromise the security policy. However, the new link clemnthe routing such that packets sent from
AF to BD will travel from R2 to R1 to R3 to BD — completely avoidj the packet filter installed on
interface i3.1 and violating the security policy. When tlesidners eventually discover the security hole,
probably due to an attack exploiting the hole, they woulddslty respond by copying the packet filter
from i3.1t0 i3.2, so it now also drops packets from AF. Thitefildesign does plug the security hole, but
it means that if the front office link from R2 to R4 fails, AF Wile unable to reach BF. Even though the
links from R2 to R1 to R3 to R4 are all working, the packet filber interface i3.2 will drop the packets
from subnet AF.

In this example, the problems arise because the ability oftevark to carry packets depends on
the routing protocols and the packet filters working in catic&Vhile routing automatically adapts to
topology changes, there is no corresponding way to autoaigtiadapt packet filters or other state. It
could be argued that a more “optimal” placement of packetriltor the use of multi-dimensional packet
filters (i.e., filters that test both source and destinatiarass of a packet) would fix the problems shown
in this example. However, as networks grow in size and coxitylérom the trivial example used here
for illustrative purposes, finding these more optimal phaeats and maintaining the multitude of multi-
dimensional packet filters they generate requires devadogund integrating entirely new sets of tools into
the network’s management systems. Since these tools wikparate from the protocols that control
routing in real time, they will perpetually be attemptingémain synchronized with routing protocols by
trying to model and guess the protocols’ behavior.

In contrast, the 4D architecture simply and directly eliaigs this entire class of problems. The 4D
architecture allows the direct specification of the desiredchability matrix” and automated mechanisms
for simultaneously setting both the forwarding-table stand packet filters on the routers based on the

5

br.atl.as1

br.atl.as3

Figure 2: Autonomous Systems (ASs) peering with each otlasgBGP sessions. AS1 must place packet
filters on its ingress links to prevent AS3 from sending p&ite destinations for which AS1 has not
agreed to provide transit.

current network state.

2.2 Enforcing Peering Policies in Transit Networks

Routing policy is based on the premise that a router that doeannounce a route to a destination to a
peer will not be sent packets for that destination by that. g¢ewever, the routing system does nothing to
prevent an unscrupulous peer from sending packets to teihdBon anyway. Enforcing routing policy
is nearly impossible with today’s control and managemesugs.

Figure 2 shows an example of three Autonomous Systems (A&s)ng with each other via three
eBGP sessions (one eBGP session along each of the links shadha figure). Assume that AS1 is a
major transit network, and it announces a route to destinatin its eBGP session with AS2. If AS1’s
policy is to not provide AS3 with transit service fdr it does not announcein its eBGP sessions with
AS3. However, if AS3 wishes to be unscrupulous (e.g., use faBttansit service without paying), it can
assume AS1 does know a waydde.g., so AS1's own customers can reaghlf AS3 sends packets for
d to br.nyc.asl, they will definitely be delivered, as br.agd. must have a route tbin order to handle
legitimate traffic from AS2.

Enforcing routing policy requires installing packet fikeio drop packets to destinations which have
not been announced as reachable. As the announcement®&deogian AS, and the AS’s own topology,
change over time the announcements sent by the AS will chandehe packet filters must be moved
correspondingly. Implementing such functionality by adpanother ad hoc script to the management
plane is essentially impossible today. Even if it were dassio write a script that snoops on the eBGP
announcements sent to each neighboring border router atallgnpacket filters on the ingress interface
as appropriate, the script would be extremely dangerousvasuld not properly order the packet filter
installation/removal with the BGP announcements. For gitanit would be bad to announce to a neighbor
border router a route to a destination before removing tlo&egidilters that drop the packets sent to the
destination.

Beyond ordering issues, transit networks handle a largebeuof destinations, and each packet filter
applied to an interface consumes forwarding resourceseahetes the effective capacity of the interface.
It might be desirable to move packet filters into the netwohenever possible, away from the ingress
interfaces, so that one packet filter can enforce the BGRpfdr multiple ingress interfaces.

Enforcing routing policy requires dynamically placing geatfilters to respond to the continually
changing routes selected by that policy. Correctly andhagity placing the filters requires that the place-
ment be synchronized with the announcement of routing tersand that the placement algorithms have
access to the complete routing topology of the network. Thearthitecture provides the primitives and
abstractions needed to implement correct placement gieatand support placement optimization algo-
rithms.

2.3 Same Problems, Many Guises

The global Internet is composed of many separate data nietwdesigned and managed by different
people and organizations with different goals. Individaelworks serve radically different purposes; in
addition to the familiar backbone networks, there are agaegtro, enterprise and data-center networks.
In each of these settings, the network administrators gleutp “program” their networks, integrating a
diverse set of technologies and protocols, and artfullgireethe configurable parameters that determine
the network’s functionality and dynamics.

While the specific context, technology, and mechanisms rhapge from network to network, there
is commonality among the problems. For example, while Etianvas initially designed to run on a shared
medium, it has since evolved into a networking technologhwaifull package of data plane, control plane,
and management plane to rival IP. Just as IP has many routinggols to compute FIB state, Ethernet
has many variations of the spanning tree protocol [6]. JsisPanetworks have mechanisms like MPLS
to control the paths packets take, Ethernet has VLANs (andNA-in-VLANS). Just as IP networks
have needed to implement sophisticated functionality fikéfic engineering, security policies and fast
restoration, these same needs are being required of Ethemmany contexts, such as enterprises, data
centers [7], and metro/access networks [8]. Just as ad hnageaent capabilities need to be overlaid on
top of IP control plane, achieving advanced functionalitfethernet networks has led to increasingly ad
hoc and complex management systems. The systems musteopetsitle Ethernet’s control plane, often
coming into conflict with it.

2.4 Moving Forward

We argue the key to solving the problems illustrated aboeegiating a way for the architectural intent and
operational constraints governing the network to be exgaeslirectly, and then automatically enforced
by configuring all the data-plane mechanisms on the indalidauters/switches. Until this occurs, we
expect the design and operation of robust networks to remdifficult challenge, and the state of the art
to remain a losing battle against a trend where ever richénare complex state and logic are embedded
in distributed protocols or exposed through box-levelriiaiees.

3 The 4D Architecture

Rather than exploring incremental extensions to today'sroband management planes, we propose a
clean-slateredesign of the division of functionality. We believe thageeen-field approach based on
sound principles is necessary to avoid perpetuating thetaotial complexity in today’s design. We
have developed the 4D architecture aseatreme design poirthat moves all responsibility for network
control and management to a logically-centralized denigilane. We deliberately chose an extreme
design as we believe that it crystallizes the issues, scettioring the strengths and weaknesses of this
architecture will lead to important network-level abstiags and a deeper understanding of the essential
functionality needed in the individual routers and switthm this section, we propose our vision of the
desired architecture — in later sections we explain its em@ntation.

3.1 Design Principles

The rich literature on the complexity of today’s control andnagement planes has led us to the following
three principles that we believe are essential to dividinggresponsibility for controlling and managing a
data network:

Network-level objectives: Running a robust data network depends on satisfying olsgsctor per-
formance, reliability, and policy that can (and should) kpressed separately from the low-level network

7

network—level objectives

Decision

. Dissemination .
network—wide direct

views control
Discovery

Data

Figure 3: New 4D architecture with network-level objectiyaetwork-wide views, and direct control

elements. For example, a traffic-engineering objectivddcba stated as “keep all links below 70% uti-
lization, even under single-link failures.” A reachalyiliolicy objective could be stated as “do not allow
hosts in subnet B to access the accounting servers in subh&bday’s network requires these goals
to be expressed in low-level configuration commands on tlwittual routers, increasing the likelihood
that the objectives are violated due to semantic mistakémislating the network-level objectives into
specific protocols and mechanisms.

Network-wide views: Timely, accurate, network-wide views of topology, traffarid events are cru-
cial for running a robust network. The network-wide view rnascurately reflect the current state of the
data plane, and include accurate information about eacdicelencluding its name, resource limitations,
and physical attributes. However, today’s control plans m@ designed to provide these network-wide
views, forcing substantial retro-fitting to obtain themstiead of adding measurement support to the sys-
tem as an afterthought, we believe providing the infornratiecessary to construct a complete, consistent,
network-wide view should be one of the primary functionsha touters and switches.

Direct control: Satisfying network-level objectives is much easier witredi control over the con-
figuration of the data plane. The decision logic should nobh&&lwired in protocols distributed among
switches. Rather, only the output of the decision logic thtse communicated to switches. Early data
networks embed the path computation logic in simple distat protocols. For example, in IP networks,
the path computation logic is governed by distributed prok®such as Dijkstra’s SPF or Bellman Ford. In
Ethernet networks, the path computation logic is deterthingthe Spanning Tree protocol[1]. Since itis
difficult to extend the distributed control protocols to popt more sophisticated network-level objectives
such as traffic engineering or reachability, the managemlantk is used to implement these additional
capabilities. With only indirect influence over the netwaidday’s management plane must replicate the
state and logic of the control plane and perform a complegrgion of the functionality. The problem
would be much easier to solve if the management plane coumghote the forwarding tables and install
them in the routers. For direct control to be meaningful, utstbe complete. If configuration commands
or multiple entities can affect the state in the network elats, then yet more entities are required for
auditing (and correcting) the settings [9, 10, 11] to enslieenetwork-level objectives are upheld.

In addition to these three principles, any design must atssider traditional systems requirements,
such as scalability, reliability, and consistency. Ouethprinciples attempt to capture the issues specific
to the control and management of networks. By separatingatwork-specific issues from the traditional
systems requirements, we can apply existing techniquesdtber areas of distributed computing research
to the traditional systems problems while exposing foret@srutiny the network-specific ones.

3.2 New 4D Network Architecture

Although the three principles could be satisfied in many ways have deliberately made the 4D ar-
chitecture an extreme design point where all control andagament decisions are made in a logically

8

centralized fashion by servers that have complete contret the network elements. The routers and
switches only have the ability to run network discovery poats and accept explicit instructions that con-
trol the behavior of the data plane, resulting in networkices that are auto-configurable. Our proposed
network architecture has the following four componentsllastrated in Figure 3:

Decision plane The decision plane makesl decisions driving network-wide control, including
reachability, load balancing, access control, secunitgl,iaterface configuration. Replacing today’s man-
agement plane, the decision plane operateeah time on a network-wide view of the topology, the
traffic, and the capabilities and resource limitations ef tbuters. The decision plane uses algorithms to
turn network-level objectives (e.g., reachability mattoad-balancing goals, survivability requirements,
planned maintenance events) directly into the packetdhapdtate that must be configured into the data
plane (e.g., forwarding table entries, packet filters, gumy parameters). The decision plane consists of
multiple servers called decision elements that conneetthyrto the network.

Dissemination plane: The dissemination plane provides a robust and efficient conication sub-
strate that connects routers and switches with decisionezies. While the dissemination plane may use
the same set of physical links as the data packets, the diszom paths are maintained separately from
the data paths so they can be operational without requiemguration or successful establishment of
routes or paths in the data-plane. In contrast, in todaytwaeris, control and management data are car-
ried over the data paths, which need to be established byhgoptotocols before they can be used. The
dissemination plane moves management information crdmteke decision plane to the data plane and
state identified by the discovery plane to the decision planedoes not create state itself.

Discovery plane: The discovery plane is responsible for discovering whatspaf entities make up
the network and creating logical identities to represenséhentities. The discovery plane defines the
scope and persistence of the identities, and carries owdutmmatic discovery and management of the
relationships between them. This includes box-level disop(e.g., what interfaces are on this router?
How many FIB entries can it hold?), neighbor discovery (evghat other routers does this interface
connect to?), and discovery of lower-layer link charastess (e.g., what is the interface’s capacity?). The
network-wide views used by the decision plane are formemuh fitte information learned by the discovery
plane. In contrast, in today’s IP networks, the only auteoraechanism is neighbor discovery between
two preconfigured and adjacent IP interfaces; physicalgesiscovery and associations between entities
are driven by configuration commands and external inverdatgbases.

Data plane: The data plane handles individual packets based on thetbtgtés outputby the de-
cision plane. This state includes the forwarding tablekpgfilters, link-scheduling weights, and queue
management parameters, as well as tunnels and networksaddaeslation mappings. The data plane
may also have fine-grain support for collecting measuresi@f on behalf of the discovery plane.

The 4D architecture embodies our three principles. Thes@®tiplane logic operates on a network-
wide view of the topology and traffic, with the help of the @issnation plane in collecting the measure-
ment data, to satisfy network-level objectives. The deaigilane has direct control over the operation of
the data plane, obviating the need to model and invert therecof the control plane. Pulling much of
the control state and logic out of the routers enables batblsr protocols, which do not have to embed
decision-making logic, and more powerful decision aldomns for implementing sophisticated goals.

3.3 Advantages of the 4D Architecture

Our 4D architecture offers several important advantages tmday'’s division of functionality:

Separate networking logic from distributed systems issuesThe 4D architecture does not and
cannot eliminate all distributed protocols, as networksiamentally involve routers/switches distributed
in space. Rather, the 4D proposes separating the logicahtiots the network, such as route computation,

9

from the protocols that move information around the netwaorkis separation creates an architectural
force opposing the box-centric nature of protocol desigth éevice configuration that causes so much
complexity today. The 4D tries to find the interfaces and fiemality we need to manage complexity—

those that factor out issues that are not unique to netwgrkitd enable the use of existing distributed
systems techniques and protocols to solve those problems.

Higher robustness: By simplifying the state and logic for network control, antgsaring the internal
consistency of the state, our architecture greatly redtieeéragility of the network. The 4D architec-
ture raises the level of abstraction for managing the né¢waliowing network administrators to focus
on specifying network-level objectives rather than cormiigy specific protocols and mechanisms on in-
dividual routers and switches. Network-wide views provédeonceptually-appealing way for people and
systems to reason about the network without regard for cexnpiotocol interactions among a group
of routers/switches. Moving the state and logic out of thievoek elements also facilitates the creation
of new, more sophisticated algorithms for computing the.gdéne state that are easier to maintain and
extend.

Better security: Security objectives are inherently network-level goalsr &xample, the decision
plane can secure the network perimeter by installing pafikets on all border routers. Managing
network-level objectives, rather than the configurationnafividual routers, reduces the likelihood of
configuration mistakes that can compromise security.

Accommodating heterogeneity: The same 4D architecture can be applied to different netwgrk
environments but with customized solutions. For exampian ISP backbone with many optimization
criteria and high reliability requirements, the decisidang may consist of several high-end servers de-
ployed in geographically distributed locations. A datatee environment with Ethernet switches may
require only a few inexpensive PCs, and still achieve farexsmphisticated capabilities (e.g., traffic engi-
neering with resilience) than what spanning tree or statiBN configuration can provide today.

Enabling of innovation and network evolution: Separating the network control from the routers/switches
and protocols is a significant enabler for innovation andvogt evolution. The decision plane can incor-
porate new algorithms and abstractions for computing the-pl@ane state to satisfy a variety of network-
level objectiveswithoutrequiring the change of eithdatapacket formats ocontrol protocolgdissemi-
nation and discovery plane protocols in the case of 4D). titexh, moving the control functionality out
of the router/switch software enables new players (e.g.research community and third-party software
developers) to contribute to the creation of these algmsth

3.4 Challenges for the 4D Architecture

Initial implementation efforts, such as those reportedubsgquent sections show the benefits of the 4D
architecture described above can be achieved. Howeveg, éine clear risks its design must avoid:

Complexity apocalypse:A major drawback of today’s architecture is that it has ermrscomplexity
distributed horizontally across the network elements artically across many layers. The 4D architec-
ture must achieve the same functionality as today’s systetne also centralizing the decision logic and
introducing new capabilities, such as a network-wide rahgly policies and zero pre-configuration of
routers/switches. Does the refactoring proposed by therdbitacture dramatically simplify the overall
system, or merely exchange one kind of complexity for am@the

Stability failures: Since the network is distributed in space, there are unabtéddelays in informing
the decision elements of events. For the global-scalemgerand transit networks that companies want
to create, is it possible to create a network-wide view stalld accurate enough for controlling such
networks?

Scalability problems: The largest networks today have thousands of routersts@stand tens of
thousands of devices and the default-free zone of todatesHat handles routes hundreds of thousands

10

of destination prefixes. Is it possible for conventional/ees to manage so many devices and respond to
events fast enough to meet the network’s goals? Will the atnaiumanagement information being moved

by the dissemination plane overwhelm the network’s abibtgarry data?
Response timeWith the unavoidable speed-of-light delays and the largatjty of control/management

information to process, is it possible to respond to netwaitkires and restore data flow within an accept-

able period of time?
Security vulnerabilities: An attacker who compromises a decision element in a 4D n&teauld

control the entire network, similar to the power affordedaaiversary that breaks into the today’s man-

agement plane or the routers themselves. The security ofsygfem depends primarily on securing the

dissemination plane that forms the communication charetiseen the routers/switches and the decision
plane, and securing the decision plane itself. Is a 4D nétware or less vulnerable to attack than routers
running distributed routing protocols?

4 Design and Implementation

This section discusses a number of the interesting desigstigns that arise in turning the principles and

planes of the 4D architecture into a working prototype thattiols an actual network. Our approach

in creating the prototype was to choose simplicity over guanfance, taking natural design decisions to
their logical conclusions. Section 5 shows that even th@kstic mechanisms we have chosen result in a
prototype with very reasonable performance.

4.1 Target Platform

Unlike other control/management architectures that & ttb specific data planes, the 4D architecture
could be used to control a variety of different networks. fstance, the 4D architecture could be used
as the control plane for an Ethernet-based network (remidtie spanning tree protocol, bridge learning
algorithms, and VLAN management) , or a router-based IP od\fwhere it replaces the control and

management planes).
For the evaluation of the viability of the 4D architecturetlvis paper we have chosen to prototype

the control of a routed IPv4 network. Our choice is partiatigtivated by the potential impact our design
could have on routed networks, but also by the significantbrarof tools available for profiling and in-

vestigating such networks (e.g. traceroute, ping) allgwis to validate the functionality of our prototype.
For ease of programming, we use x86 based PCs running a sfdndeax kernel as our routers. The code
for our prototype runs in user-space, manipulating the FiBies and packet filters in the kernel tables

when commanded to do so by the remote decision elements.
Successful deployment of the 4D architecture is transpaoeend-systems; all the end-to-end tools

will continue to function as normal. Hosts connected to thetqiype network are unmodified. The
decision elements, where all decisions with network-widelications are made, are servers connected
to the network at various points. Every router in the netwuoirks code implementing the data plane, the
discovery plane, and dissemination plane. Every decidement runs code implementing the discovery,
dissemination and decision plane.

4.2 Neighbor Discovery

The problem of neighbor discovery is not unique to our desiyt it does impact the time required to
respond to link failures. Because of its importance, somie lyers (e.g., SONET) provide extremely
rapid link liveness checking as a fundamental primitiveuport neighbor discovery and maintenance.
However, many others link layers (e.g., Ethernet) do’riatenvironments where link-layer neighbor dis-

2Some modern Ethernet interfaces provide proprietary meigtietection primitives, but we do not have these availtable
us.

11

covery is not available, it is commonly implemented with éxplicit exchange of HELLO packets. Such
a hello based protocol has been shown to be viable for supg@tib-millisecond restoration times [13]

. In our prototype, which is implemented using Ethernetriatees, the discovery plane code on each
router sends 28-byte long HELLO messages out every intedaery 30 ms. Failure to receive a HELLO
from neighbor for 100 ms is treated as indicating that thke inneighbor has failed. Each router uses
the results of neighbor discovery to create a Link-stateeiisement (LSA) that contains the status of
its interfaces and the identity of the router(s) connecteithé interfaces. Each DE periodically polls the
routers, requesting that the routers send their currentsliSAhe DE. Whenever a router detects a change
in a neighbor’s status, it sends a triggered LSA to every Bi hlas recently polled it.

4.3 Communication Between DEs and Routers

The 4D architecture physically separates the decisioreptagic that controls the network from the routers
that comprise the network. The dissemination plane prevideans for the decision elements to commu-
nicate with each and every router. The problem is unusuaveral ways. First, the dissemination paths
must be able to boot strap themselves, ideally requiring peor configuration on the routers. Second,
the dissemination plane will be used to carry a wide variétgformation. Some information, like LSAs,
might need to be distributed to multiple places (e.g., alihef decision elements), while other informa-
tion, like commands from a DE to a router, cannot be silerabt.| On the one hand, the potential design
space is very large, as there is tremendous freedom in degitire dissemination plane; on the other, the
dissemination plane’s sole function is to distribute sfdtga and instruction) and can therefore employ
standard distributed systems techniques.

One option for the dissemination plane would be to use noleal routing tables to direct manage-
ment information along the dissemination paths. Anothe¢ioopyvould be to have routers run a spanning
tree protocol among themselves, with decision elementsnggas roots of the trees. However, spanning
tree protocols have been reported to have slow reconveegdéhcFor our prototype, we have chosen to
implement the dissemination plane using source routesh Be@mnagement message is segmented into
dissemination frames, and each frame carries in its hehdedéntity of the source, destination, and the
series of routers/switches/DEs through which it must pass.

Decision element beacongDur design leverages the fact that there are fewer decigomeats than
routers to simplify the design of the dissemination plarectedecision element sends a beacon identifying
itself as a decision element every 500 ms. The beacons adefldbroughout the network in an orderly
fashion using the Dynamic Source Routing Protocol [14]. W a single beacon packet to serve three
separable purposes: setting up source routes in the netpalithg LSAs from the routers, and serving
as DE heartbeats. When a router or decision element re@elveacon, it appends its identity to a source
route that is built up inside the beacon and then forwardspg ob the beacon out each interface except
the one which it has received the beacon from.

Creating dissemination paths and collecting topology infomation: Whenever a router receives a
beacon or a message from a DE update), it remembers the souteecontained in the beacon/message
for use as a path to reach DE that sent the beacon/messageofiters store one route to each DE).
Receipt of a beacon also causes each router to send its tlBAnback to the DE that originated the
beacon. When a router has information it must send to a DE, @.giggered LSA) it uses the source
route from the last message from the DE. When a DE has infeowmed send to a router, it uses the LSAs
it has received to assemble a view of the network topology,Gam then compute a source route to the
router.

Coping with lost management messagedt is always possible for congestion to cause management

12

messages to be l0$tTo avoid the silent loss of a state update, when a routervese message from a
DE it sends the DE an acknowledgement. The prototype’s whisstion plane retransmits state updates
that have not been acknowledged after a fixed timeout (s&Gatzs). Our prototype dos not send ACKs
for LSAs or retransmit lost LSASs.

A more interesting problem arises when a link or router fallse router detecting the failure notifies
the decision elements by immediately sending a triggerefl W&h its new neighbor information. In
some cases the route to a decision element is across the [fake However, most often (always for link
failure) at least one router adjacent to a failed link or eowtill have a working source route to each DE,
so any failure generally results in a least one triggered k&#&hing each DE. For the routers whose path
to the DE is broken, we adopt the simplest possible apprazamely to simply wait for the next DE
beacon — when the next beacon floods the network, the roulldearn a new path to the DE. We reduce
the likelihood of a long latency for flushing out any “stradtie SAs by having the DE send a “triggered”
beacon whenever it receives a triggered LSA. To bound oweelhieiggered beacons are rate limited to
one per 20 ms.

4.4 Computing FIB Entries and Packet Filters

The 4D architecture places upon the decision plane the msgplity for calculating all the state required
by the data plane, including FIB entries and packet filtenscdnventional route calculation, the actual
computation of the routes is quite simple. For example, O8ppies Dijkstra’s algorithm to a set of
LSAs and BGP applies a 7-step ranking function to a set of knmwtes. The complexity of conventional
approaches lies in coming up with ways of filtering LSAs, isgtiink weights, tagging, scoring, and
dropping routes, etc. so that when the simple computatigreiformed the results put the data plane
into a state that happens to meet the objectives of the nketslesigner. In the 4D architecture, we turn
the problem around. We provide the designer with the abibtyglirectly express their network-level
objectives, and accept that a more complex computation reaetuired to generate routes that meet
these requirements.

Traffic-engineering [15] and redundant/resilent path piag [16] are two problems for which a num-
ber of algorithms are known for computing routes that obdyvaek-level objectives. In this paper, we
illustrate another type of capability: the specificatiormaachability matrix as a network-level objective.
That is, network designers can specify sets of source arishdgsn subnet pairs that should or should not
be allowed to exchange packets. Using this matrix, dessgcan precisely and unambiguously specify
the reachability (security policies) they wish their netlwto enforce. The decision plane will compute
routes so that packets can flow between any two subnets dedrteche network and not prohibited by
the reachability matrix, while installing packet filters @rle needed to ensure the reachability matrix is
enforced.

In our current prototype, whenever a DE receives an LSA athg a change in the network, it begins
a 40 ms hold-down timer to allow time for other LSAs spawnedhg/same event to reach the DE. When
the timer expires, it begins to compute entries for the Flidgan each router by assembling the most
current LSA from each router into a matrix representing thgsgcal connectivity of the data links in the
network (the weight of each link is set at one). The Floyd-$Mfail algorithm is run on the matrix to
compute the all-pairs shortest paths for the network. Thalt® are processed to produce a FIB entry
for each destination for each router in the network such plaakets will follow the shortest paths to
their destinations. For each source destination subnethgishould not be able to reach each other, we

3A more sophisticated implementation would give message#&deaby the dissemination plane higher priority than ndrma
data packets to reduce the chance of loss, but loss is stiiilple. Our prototype sends management messages withriige sa
priority as data packets.

13

initially place a packet filter to drop that traffic on the irfeee closest to the destination. We then use a
greedy heuristic to optimize the filter placement and comlfilters by “pulling” the filters towards the
source of forbidden traffic until further pulling would rageiduplicating the filters.

The running-time of the FIB calculation algorithm just deised isO(N?3 + I + N D) whereN is the
number of routers in the network and thé term comes from the Floyd-Warshall algorithinis the total
number of interfaces in the network, and the term arises tt@processing of the all-pair shortest paths
matrix to determine which interface should be used for eadtidlation. D is the number of destination
subnets known by the network, and theD term represents the need to generate for each router a FIB
entry for each of theD destinations. In a production system an incremental algorithm could beluse
instead of Floyd-Warshal, reducing th& term to an amortized (N log). Still, as shown in Section 5
the measured running times for the simpler algorithm of tleéqtype are within acceptable ranges.

The 4D architecture exposes the logic that controls the artvieeding it with the inputs it requires
and implementing its decisions. However, the question mesnaow best to organize this logic. For
example, some decision plane algorithms can run in read;tiput there should not be a requirement
that all algorithms must run in real-time. There must alsa@lean ways to mix algorithms that control
different facets of the network state. One possible appreadeveloping algorithms that allow network-
level objectives to be separated into optimization obyestand mandatory objectives. This decomposition
enables potentially slow-running optimization algorithto complete their computation, while allowing
fast-running algorithms to react quickly to ensure that daary objectives are always met. For example,
a network with both traffic engineering and reachability mxabbjectives might simultaneously use a
slow-running linear program to identify a range of link weig that keep the link utilization in the network
within some factor of the optimal level and our filter placernalgorithm to ensure that the reachability
matrix is obeyed exactly at all times.

4.5 Coordinating Multiple Decision Elements

The 4D architecture takes the extreme design point of Idlgicantralizing all decision making; in our
prototype this means all decisions are made by a singleidea$ement. This begs the question of how
to handle the failure of the decision element or a partitibthe network that leaves some routers cut off
from the decision element. In designing a system to copetivébe failures, we can take advantage of the
specific characteristics of networks and their failure m&deor example, single link and router failures
are the most common, followed by correlated failures whebex thundle or shared resource goes down.
The simultaneous failure of multiple pieces of widely seyatl equipment is extraordinarily rare. Further,
even when all decision elements fail, the network does rastddhe ability to forward packets — all that
is lost is the ability to react to further changes.

To cope with DE failures our prototype implements a versibrthe hot-standby model. At any
time a single master decision element takes responsililitgonfiguring the data plane on each router
in the network, but multiple decision elements are plugged the network. Each of the standby DEs
gathers information from the network and performs the caipans exactly the same way as the master
5. However, the standbys do not send out the results of theipotations.

4While the number of destination subnéss likely to be small in many enterprise networks, it is cathgover 150,000 in
transit backbone networks. However, various address ggtioe schemes can be used by the DEs to subsume many destinat
subnets into a single route, so the) would be replaced by the total number of aggregated routéinetwork, which could
be much smaller.

5So during normal operation when the network is not partéshnthese DEs would converge to the same FIB entries,
achieving “eventual consistency” among the DEs withoutdherhead of replicating FIB entries from the master DE to the
standbys.

14

The prototype selects the master DE using a very simplei@heptotocol based on the DE beacons.
At boot time, each DE begins sending periodic beacons araivieg LSAs from the routers in the net-
work. The DE listens for beacons from other DEs for at leaste¢himes the beacon period (i.e., 1.5 s).
The DE decides it should be the master and begin sending codsna routers if, after this waiting pe-
riod, it has the highest priority of all received beacons.élWthe master DE receives a beacon from a DE
with higher priority than its own, it immediately switchesd hot standby and ceases sending commands
to routers. The two implications of this election protocr# ¢hat (1) when the master DE dies it may be
1.5 s before another DE becomes master, and (2) when a DE igfhripriority than the current master
boots up, the current master will immediately stop sendorgrmands to routers, creating a window of up
to 1.5 s when no DE is willing to send commands to routers sineenew master is not yet sure that it is
the winner of the election.

4.6 Interacting with Other Networks

In this paper, we have focused primarily on controlling ttedes of a single Autonomous System or en-
terprise network, as there is tremendous complexity irmidtvmain problems [5]. Yet, the local network
will need to connect to other networks. This means that thartitecture must provide a way to secure
the dissemination paths: defining the boundary of the loeiork and preventing routers in neighboring
networks from injecting commands into the local network.miist also accept routing advertisements
from outside networks, so the decision plane can decide baliréct packets to destinations outside the
local network.

To uphold our principle of direct control, we must solve #ag@soblems with minimal configuration
on the routers and leveraging the DE-based path computdfioa conventional approach to defining a
network’s boundary is to explicitly configure the borderters (BRs) to know which of their interfaces
are internal and which face the “outside world.” They thee asspecially configured routing protocol
session, like eBGP, to accept routes from the BRs of neigidparetworks. In our prototype, we solve
the problem of defining the network boundary and securingdiegemination paths by assuming each
router in the network is configured via a USB key or flash carthai single security certificate. This
certificate can be common across all devices, so it is not Eelepecific configuration. It is needed to
authenticate the routers that are part of the network anddbision elements that are authorized to control
the network. As a part of neighbor discovery, each routerdmuision element uses its security certificate
to decide whether the neighbor is part of the same network®and it reports this information as part of
its LSA. The dissemination plane does not forward DE beacomsnterfaces that face external routers,
and it does not forward source routed messages that arritrese interfaces.

Our prototype does not explicitly model the exchange ofe@avertisements with external networks,
although this can be achieved by using RCP’s [17] approableyeveBGP is used to collect routes from
neighboring networks and feed them to an engine in the aecane that computes inter-domain routes.

5 Evaluation

Centralizing the decision-making logic at servers raisganmal concerns about responsiveness, scalability,
and reliability [2, 3]. In this section, we will show that td® architecture is &asibleapproach for con-
trolling a network by examining the behavior of our admityesimplistic 4D prototype. Our goal isot

to show that the prototype performs faster or better tharpanycular tweaking of an OSPF/EIGRP/BGP
implementation. Rather, we will show that its performarggiable and roughly comparable to the per-
formance seen in today’s production networks.

15

5.1 Evaluation Environment and Scenarios

We have implemented our prototype in the Emulab [18] envirtent using Linux-based PCs as IPv4
routers. Emulab is not a simulator — it provides a frameworkéinning aribtrary code on large numbers
of PCs, which are connected together in a user-specifieddgies. In the experiments reported below, all
PCs run the standard Emulab Linux v2.4 kernel. All PCs, idiclg those used for the compute-intensive
decision elements, have clock speeds between 600 and 850-Mtiese were state-of-the-art machines
in 1999. Each Emulab PC has four 100 Mbps Ethernet interfdscan be used to create network
topologies. A fifth control interface is invisible to the potype and used only for experiment adminis-
tration (e.g., starting and stopping the experiment). Tab&post-experiment correlation of events from
the log file on each PC, all PCs synchronize their clocks byinmthe Network Time Protocol over their
control interfaces, and we verify that each PC’s clock isckyanized to within 2 ms of the others. The 4D
code being evaluated does not take advantage of the avisylabisynchronized clocks — they are used
solely for post-experiment data analysis.

In each experiment we run, the routers are initialized teehayFIB entries and no knowledge of their
neighbors. The routers discover their own interfaces alydcannected neighbors, and disseminate the
information to the decision elements. The decision elemeldct a master, and the master installs FIB
state into each of the routers. To verify that our softwarepexrformed correctly, we have run traceroute,
ping, and sent user data across the network before, dundggfeéer failure events.

The network topologies used in this section are those ofymtbah enterprise networks obtained
through analysis of the networks’ router configuration f{lgs Due to the four interface limit on Em-
ulab PCs, routers in the production networks that have nfae 4 interfaces are modeled by chaining
together Emulab PCs to create a “supernode” with enouglfacts (e.g., a router with 8 interfaces will
be represented by a string of 3 Emulab PCs). Multipoint fatars in the production networks are handled
similarly, with a string of Emulab PCs used to represent thatipoint link. This model increases the
number of nodes and interfaces in our Emulab scenarios, ingeéme results reported here are a con-
servative estimate of how our prototype would perform onaébieial production networks. As these are
enterprise networks, we do not configure the Emulab infuatitre to add artifical propagation delay or
packet loss to the links. The topologies we use in our expartsvary in size from one with 10 Emulab
PCs (as routers) and 11 links to one with 100 Emulab PCs andirii#9 On topologies with less than 20
routers, we insert 3 single-homed decision elements ir@ddpology. On larger topologies, we insert 5
single-homed decision elements.

5.2 Response to Single Failures

The most common failure scenarios involve the failure dfigita single link or a single router. In this
subsection, we examine the 4D prototype’s response to Huesearios.

In each experiment, we bring up a topology of routers andsttacielements and wait for the topology
to stabilize. We then cause either a node or a link to fail. aibd router, we send the binary a signal to
terminate, causing the router to abruptly stop participggitn the network and to remove all routes from its
routing table. To fail a link, we bring down the interface amef the routers. We have implemented the
router binary to ignore any send errors from a downed intetfao link failures are only found through
the neighbor discovery protocol.

For each network topology, we randomly select 5 of its link&il. For each of these links, we then
run 5 separate experiments where we fail the link, for a tftab runs. The procedure for the router failure

8A more sophisticated implementation of the 4D architectmight take advantage of synchronized clocks to improve
performance of the dissemination plane. See our reseaestdagn the 4D [19] for more information.

16

Detecting failed link £===
Sending failure notification to DE
DE 1v%eies

350 |- a tation on
Sending new data plane state to routers T

300
250
200

150

Convergence Time (in milliseconds)

100

50

%,

/)%\ KN 0%\ o@’& %
€ 5, O

.
9 N %N B S %

Topology (number of switches)

Figure 4: Reconvergence time after a single link failureraged over 25 runs per network. Number of
routers in the network is given in parentheses next to thearktname.

experiments is the same, only with 5 routers selected rétlaer5 links. This results in 25 experiments in
which a single node fails.

There are four phases of network convergence. First, theeltigtween a failure and the time adjacent
routers discover the failure. Second, the time for the dmssation plan to carry triggered LSAs announc-
ing the failure to the master decision element. Third, theetfor the decision element to calculate new
FIB updates for the routers. Fourth, the time for dissenmngblane to carry FIB updates to each router
and for the routers to install the updates.

Figure 4 shows the mean network reconvergence time aftak &dilure in 9 different networks. The
reconvergence time is measured from the time the link igtalksvn to the time the last router installs its
update, at which point all routers will have working routesli destinations. Each bar is divided into four
stripes, one for each phase of the reconvergence. For agstannvergence took an average of 153 ms in
network A. Of that time, 96 ms were spent discovering thatlitiiefailed, 3 ms were spent transmitting
an LSA to the decision element, 44 ms were spent in recomguatinfigurations for all routers, and 10 ms
were spent sending the configuration to each router andlingtthe configuration.

For all topologies, reconvergence time is acceptably lawtopologies of less than 50 routers, con-
vergence time is below 200 ms. For the two larger topologiesyergence time is less than 300 ms.
These convergence times are comparable to those of litdkseaworks, where sub-second reconvergence
is considered excellent [20, 21].

The mean reconvergence time for the 9 networks varies batd&2 and 286 ms. Of that time, 100
ms is spent detecting the link failure, and another 40 msestsghile the decision element’s hold-down
timer’ runs out. The problems of neighbor discovery and batchingsd.@a a hold-down timer, which
represent over 75% of the time spent in reconvergence in miotfype, are common to both the 4D
architecture and fully-distributed architectures, scsitéasonable to expect both architectures to have
comparable performance. Many proposals to reduce reqgenee time in conventional architectures
begin with faster neighbor discovery [21] or adding hardwwsupport for link status detection. Those
techniques are equally applicable to the 4D architecture.

Tables 1 and 2 zoom in on the results from two topologies, ogdsvA and |, respectively. Each table
provides the mean, maximum, and minimum values for eacheabfasonvergence over the 25 experiments
performed. Removing the 40 ms hold down timer, the mean ctatipn time scales from 4 ms in network

"The purpose of the hold-down timer in both fully distributeshtrol planes and in the 4D architecture is to prevent the
network from recalculating routes before all the “bad neha3 arrived. In essence, this timer trades response tinaduoefs
for a reduction in the number of network state changes.

17

Minimum Mean Maximum
Discovery 91 96 107
LSA send 1 3 10
Computation 41 44 51
Config write 8 10 14

Table 1: Minimum, mean, and maximum times (in ms) for eactheffour phases of convergence for 25
link failure experiments on network A (10 routers).

Minimum Mean Maximum
Discovery 89 99 108
LSA send 2 4 12
Computation 143 149 162
Config write 15 28 40

Table 2: Minimum, mean, and maximum times (in ms) for eactheffour phases of convergence for 25
link failure experiments on network | (100 routers).

Minimum Mean Maximum
Discovery 91 97 106
LSA send 2 9 17
Computation 32 40 50
Config write 8 11 18

Table 3: Minimum, mean, and maximum times (in ms) for eactheffour phases of convergence for 25
router failure experiments on network A (10 routers).

A to 109 ms in network I, which has 10 times more routers. Tbaisg is smaller than predicted by the
O(N?) complexity of the Floyd-Warshall implementation.

The reconvergence time for the nine networks after a sirmylter fails is quite similar to those of the
link failure scenarios, both the totals and the breakdowiree largest difference is that it takes slightly
longer for all the LSAs to reach the decision element beceunss a router fails, up to 4 other routers send
LSAs announcing that their link to the failed router has gdoen. Comparing Table 3, which presents
the reconvergence times for a router failure in network Alable 1 illustrates the point.

5.3 DE Failures and Network Partitions

A potential concern with the 4D architecture is that by calitmg decision making at a single Decision
Element (DE), loss of communication with the DE leaves thevoek without the ability to react to
additional changes to the network. As explained above, sper@mental setup adds reliability to the
system by attaching 3 or 5 DEs the network, depending on #eeofithe network

DE Failure: Failure of any DE but the master DE is harmless, since in oatiopype the other DEs
are only hot stand-bys. To evaluate the effect of the faidithe master DE, we run experiments in which
the network is allowed to come up and converge, and then tiséemAE is shutdown without warning.

Figure 5 shows the time required for a new DE to take contrahefnetwork after the master DE
fails, broken out into the steps involved. The first step ieding that the old master has failed. Once
this occurs, the situation is the same as the reconvergeeoasos described previously. To verify that
the network is in a known-good state, the new master compaitgss for each switch, and then writes the

18

2000

New DE decides original DE has crashed ===
Path recomputation on new DE
Sending new data plane state to routers 7%

1500

1000 [

Convergence Time (in milliseconds)

500

2% 2%
0&7/ G(GK
9

% % o%\ EN oslo 2%
@, @, I %

Topology (number of switches)

Figure 5: Mean reconvergence time after the failure of theteradecision element averaged across five
runs on each network.

Last switch discovers a link down E==3
DE receives last Isa

300 DE queues switch configs for send m:o:oins

g .

Last switch completes writing its confi

250 -
200 -
150

100

Convergence Time (in milliseconds)

Topology (number of switches)

Figure 6: Reconvergence time in the main network after atjpartevent.

configurations to the switche®% As expected, the time for a new master DE to take control isidatad

by the time required for the election. With the election aidon requiring that three beacons be missed
before a new master takes over and beacons being sent e@em@etermining that the master DE has
failed takes 1-1.5 s. If this is too long a window to be withauDE, changes to either beacon frequency
or number of missed beacons could decrease the detectienltimted only by the propagation delay
between DEs (the cost of additional beacons is minimal).

Network Partition: If events should cause the network to partition, only onénose partitions will
contain the master DE and, by the definition of a network pantj the switches in other partitions will
be unable to communicate with the master DE. Just as netvasigkers can choose to build a topology
that is more or less resistant to partition (e.g., a ringu@emesh), the designers have the freedom to add
DEs to their network until all likely partitions include adst one DE.

To evaluate the response of our prototype to a partitionefmh network we select five scenarios
involving failures of links and/or switches that result ireation of at least two partitions. We then run
each scenario five times. To analyze the response to théqartive separately consider the partition that
contains the original master DE from the other partitions.

As shown in Figure 6, the partition with the original mastdf Besponds in essentially the same
manner as the single-failure reconvergence scenariosiegdmarlier, with two significant changes. First,
there is greater variance in how long it takes all the swidbaliscover which neighbors are missing. The

80ne possible optimization to this process is for the new erdstquery each switch for its configuration and only perform
writes on switches that require state changes.

19

2000 F Last partitioned DE becomes boss &<
Last partitioned DE queues switch configs for send
Last switch completes writing its config #7235

1500

1000

Convergence Time (in milliseconds)

Topology (number of switches)

Figure 7: Reconvergence time in the partitioned networkrattpartition event.

acon
LSA
Config #2i53

250 | o
ACK i

200

150

Data Sent (KB)

100

50

rrrrrr

RS I SO s
2% 2% 2% 2% 2%
% % % % % N
s, 3, 3,

Topology (number of switches)

Figure 8: Bytes sent by the master DE in each network, avdrager 5 runs.

variation exists because our experimental administraooipts cannot instantaneously create a partition:
depending on the network, it takes between 0 and 200 ms td@hatthe links and switches that create
the partition.

Figure 7 shows the reconvergence time in the partitionsdbatot contain the original master DE.
In these partitions, the response is essentially the saméaexs a master DE fails (cf. Figure 5). Again,
there is small additional variation in detecting the absesf@a master DE since the partition is not created
instantaneously, and beacons from the original master DEid their way into the new partition as the
partition is being created.

These results show that loss of communication with a detisiement, attributed to either decision
element failure or a network partition, does not result itastophic failure even with our simplistic
replication and election strategies. In fact, the failura ®E does not cause any noticable change to data
crossing the network unless there are additional eventsdafnew master DE can be elected.

5.4 Overhead of the 4D Architecture

To be scalable, itis critical that the dissemination-pldoes not consume excessive bandwidth in carrying
data between the routers and the decision elements. Figah®\Bs the average number of bytes of
management information sent by the active DE during five,sE2®nd single-link failure scenarios. DE’s,
like all entities running the discovery plane code, send 82 ED packets of 28 bytes out each interface
each second — we omit this fixed overhead from the figure. AllsD&hether the master or not, send
beacons every 500 ms, but these beacons are a negligibtéation to the overhead. Only the master DE

20

Received (KB)

Data

%
2 %
9

Topology (number of switches)

Figure 9: Bytes received by each DE in each network, averagesoruns.

sends configurations to the routers, and this is the only oot of sent bytes that varies with network.
At worst, when all routers in the network are completely gmppproximately 28 bytes per route per
router must be sent. The volume of configuration data doesargtdirectly with network size because
the use of delta encoding means that the size of the updapespsrtional to the number of routes that
change, which is a function of the topology.

Figure 9 shows the average number of bytes of managementafion received by each DE during
the same scenarios. The bytes received are dominated bpdggpmllection, which scales linearly with
the number of interfaces in the network, consuming rougyogtes per interface per router per LSA.
Variation in volume of LSAs received among networks of sangize is due to variation in the number of
links in the topologies. The absolute count of bytes invdligenot large: receiving an LSA from every
router in a 100 router network totals 32 KB.

6 New Capabilities of the 4D Architecture

In this section, we describe one example of how the expreggiwer of the 4D architecture can be used
to change the way network reachability is conveyed and eatbrThe data center example in section 2.1
shows what can go wrong in today’s practice of reachabibiytol, and here we use the same example to
illustrate how the 4D architecture avoids the problem throint control of packet filtering and routing.

We implement the example by connecting 13 PCs, 5 as router8 as hosts, to form a network as
shown in Figure 1. We conduct two experiments, each runtirgugh the example scenario. In the first
experiment, we use a traditional control plane, runningQhagga [22] OSPF daemon on the five routers
to calculate routes for the network and manually add packetdj just as a real network operator would.
In the second experiment, the network is controlled using4du prototype, with the decision element
given a 2-line reachability specification describing theidge security policy. During both experiments
we use data traffic sent at 240 packets/second to test whhtheetwork’s security policy is obeyed: one
flow that should be permitted (AF1 sending to BF1) and one float $hould be forbidden (AF1 sending
to BD1).

In the conventional network, the manually calculated arded filters are insufficient to block traffic
forbidden by the security policy. In the 4D architecturejtes and packet filters are calculated together,
with the network’s global reachability specification taketo account. Figure 10 plots the loss rate versus
time during the period surrounding the introduction of thek Ibetween A and B’s data centers. The
conventional network’s response is shown in the top grapti,car prototype’s behavior is shown in the
bottom graph. Initially, traffic from AF1 to BD1 is blocked Ipacket filters. In the conventional network,
the filter is manually placed by the network architect onriiatee i3.1 to prevents As front office traffic

21

T T T T
AF1 sending to BD1 (before packet filter fixup) —+—
Inter-data-center link up

\

Packet loss rate (%) - OSPF

1 1 i 1 1
9.6 9.8 10 10.2 104 10.6 10.8 11
Time (sec)

T T
AF1 sending to BD1 —+—

Inter-data-center link up
Routes and Packet filters re-installed by DE ——=

Packet loss rate (%) - 4D
@
2

1 1 i 1 1 1 1
9.6 9.8 10 10.2 10.4 10.6 10.8 1
Time (sec)

Figure 10: Impact of adding new link (R1 to R3) on traffic frorkAto BD1, which should be dropped to
obey security policy. Conventional network (top figure), A&work (bottom figure).

T T T T
AF1 sending to BF1 (after packet filter fixup) —+—
Inter-front-office link down

Packet loss rate (%) - OSPF
®
8

1 1 i 1 1 1 1
69.6 69.8 70 70.2 70.4 70.6 70.8 71
Time (sec)

j j j j j AF1 sending to BF1 —+—
Inter-front-office link down
Routes and Packet filters re-installed by DE ——=
100 7
80
60 - \
/ \

40 \
20 \\
/ \

e —

Packet loss rate (%) - 4D

1 1 i 1 1 1 1
69.6 69.8 70 70.2 70.4 70.6 70.8 71
Time (sec)

Figure 11: Impact of link failure (R2 to R5) on traffic from ARt BF1, which should be permitted.
Conventional network (top figure), 4D network (bottom figure

from reaching BD. In the 4D archtecture, the packet filterl&eed automatically by the decision logic.
As a result, both networks show the desired loss rate of 1@%heé forbidden traffic. At time 10, the
new link between the data centers is added. In the convexttimtwork, OSPF responds to the additional
link by recomputing routes and within 600 ms has redirectatfi¢ from AF to BD over the new link,
bypassing the packet filter on interface i3.1 and allowindpifiden traffic to pass through the network.
In the 4D network, both new routesd new packet filter placements appropriate for those wate
computed and loaded into the routers within 200 ms. Sinceehefilters are loaded simultaneously with
the new routes, not a single packet of forbidden traffic ikdea

The inability of conventional networks to jointly controhgket filters and routing means that packet
filters must be placed pervasively throughout the netwouk,this can rob the network of its ability to
resilently carry desired traffic. Figure 11 plots the loge keersus time for traffic sent from A's front office
to B’s front office during a period when the link between the tinont offices goes down. Again, the top
graph depicts the loss rate on the conventional networkevth@g bottom graph depicts the loss rate for a
4D-controlled network. In this scenario, the link betweka two data centers remains up. To patch the
security hole described in the previous paragraphs, theecwional network has manually-placed packet
filters on both i3.1 and i3.2 to drop traffic from AF to BF.

When the link between front offices goes down at time 70, thve filtom AF to BF on the conventional
network immediately begins losing packets. Even thoughfo8Rcessfully reconverges to route traffic
from one front office to the other via the data center link, plaeket filter on interface i3.2 prevents front

22

office traffic from getting through, causing permitted ti@ti> be incorrectly thrown away. In a conven-
tional network, this outage would persist until a human apmrdiagnosed the problem and altered the
configuration files (hopefully remembering to replace thterfd when the outage ends, to avoid reopening
the security hole disscused above). In the 4D-controlledork, the decision element recalculates both
routing and packet filter placement simultaneously, plgeifiilter on i2.1 to block traffic from AF to BD,
but allowing traffic from AF to BF to pass through. Within 30Gsraf the link failure, connectivity is
restored in the 4D network.

This example illustrates how all the principles underlyihg 4D architecture work together to solve
a problem. The network designer specifies a network-levielatilve to the decision plane. The decision
plane uses a network-wide view to compute packet filter pieces and FIB contents that meet the ob-
jectives, and then, using its ability to directly controétfouters, the decision plane configures the routers
to instantiate the solution without introducing undesieabansients behaviors.

7 Related Work

The importance of network control and management in crgattbust networks has been recognized by
both the research and network operator communities for rgaays. Many different paradigms for this
area have been explored, including Signaling System 7 anththlligent Network, active networks, and
policy-based networking, and there is increasing attantiche Internet research community [23]. This
section explains the relationship between the 4D archite@nd some of the many existing efforts.

Routing Control Platform: There has been substantial work on problems of controllitgraanag-
ing networks, and many different paradigms have been exglas outlined in Section 7 on related work.
The Routing Control Platform (RCP) [17, 24] is especiallpsigtent with our philosophy and objectives,
and serves to show how substantial change in the managef@metworks is possible. RCP is a back-
wards compatible system designed to give the operatorsusitrnetworks more control over how BGP
routing decisions are made in their Autonomous System (MW%&).see RCP as an implementation of a
specific point that lies inside the design space of the 4Ditaactare, where RCP makes its design deci-
sions to emphasize scalability and deployability with @mional routers. For its decision elements, RCP
uses Routing Control Servers, which do not need a coordmatiotocol because of the properties of the
underlying discovery plane. For a dissemination plane, R€#3 iBGP sessions to tell the routers which
BGP routes to use. For a discovery plane, RCP snoops on tlierftpof OSPF link-state advertisements,
and learns external BGP routes via the iBGP sessions witbgaetional routers.

This paper and the 4D architecture focus on questions ueaskeld by the work on the RCP. Rather
than focusing on BGP decision logic, we consider how a widetyaof network objectives could be ex-
pressed to the control/management system, and what newicaton protocols are required to achieve
those objectives. RCP only considers BGP routes—a singteopthe total state used by the data-plane
to direct packets through the network. This paper asks haentrolall the data-plane forwarding mech-
anisms (e.g., FIB entries, packet filters, NATs, tunnelskpaischeduling, and buffer management) in a
coordinated fashion to achieve the network’s objectived,ahat protocols are needed to achieve this co-
ordination. RCP assumes routers are already correctlygroefi with significant amounts of state, such
as IP addresses and an Interior Gateway Protocol (IGP).pHpsr examines howeropre-configuration
of routers/switches can be achieved and how a clean slatgndesdevice identifiers and the relation-
ships among them can significantly simplify network cortr@nagement. Beyond considering only IP
networks, this paper also examines how a single managemudritegture could control different types of
networks such as Ethernet (with or without VLAN) IPv4, ang@Rwith or without MPLS).

Traditional telecommunications networks: The concept of centralization is heavily used in many
management paradigms for telecommunication networks|lyduased on circuit-switched technology [25].

23

In contrast, 4D focuses on packet-switching data netwdrashiave more complex data plane primitives
(packet forwarding based on longest-prefix matching, acceatrol, NAT, tunnels, etc) and higher net-
work dynanmics.

Like Signaling System 7 (SS7) [26, 27], the 4D architectwegs communication channels for man-
agement information isolated from the paths used by user. ddowever, SS7 takes the approach of a
hard separation between management and user data ontatsdpdes or channels, while the 4D archi-
tecture explores a softer logical separation appropriatdiriks like Ethernet. The Intelligent Network
(IN) architecture [28] supports extension of network fumcality by enabling user data (call placements)
to trigger Detection Points that invoke per-service codecdiise the terminals in data networks are fully-
programmable devices, the 4D architecture deliberated dot provide a way for a user-originated mes-
sage carried by the data plane to invoke functionality indBeision plane in order to avoid a class of
Denial of Service attacks to which the IN is vulnerable.

Active networks: The active networks community sought to create a network witensible func-
tionality, and pursued several approaches. Some, suctdascenrying packets, are quite different from
the 4D approach, but others, such as creating a minimal kefrfenctionality implemented on each
switch to be invoked from another location [29], share theegoals as the 4D.

Management tools for a distributed control plane: A large number of tools are being developed
to ease the configuration of the existing architecture fortred and management, which depends on in-
dividually configured switches/routers running a disttédzlicontrol plane. Some approaches, like those
adopted by Cplane and Orchestream, developed framewoda@ue the problems inherent in configur-
ing large numbers of distributed switches/routers that oseydifferent command languages. Other tools
focus on specific operational tasks, such as traffic engimger mitigation of Denial-of-Service (DoS)
attacks. For example, Cariden’s MATE [30] and OpNet’'s SPudaf] products can tune OSPF costs or
MPLS Label Switched Paths to the prevailing traffic, and ANetwork’s PeakFlow DoS [32] product de-
tects DoS attacks and generates filters to block the offgrtdaffic. The general approach of Policy-based
networking (PBN) has been studied to automate provisioamd) network management in applications
such as QoS [33].

While very useful for specific tasks, network managemernstand PBN approaches usually assume
existing control plane protocols, focus on a small portibthe configuration state (e.g., packet filters, but
not routing), and do not consider the interactions amondiptielmechanisms. In contrast, in the 4D ar-
chitecture the network is directly controlled by decisiteneents using network-wide views to manage all
network state — it explicitly establishes the decision plas the place in the architecture for coordinating
all the data-plane mechanisms and provides the decisioe piah the information it needs to operate.

Router configuration: A 2002 study estimates that half of network outages stem framan config-
uration error [34]; similar results have been found in stsdif Internet services [35]. Analysis focusing
specifically on BGP routing suggests that configurationrereme responsible for many network anom-
alies [36, 11]. Several tools provide analysis across cardigpn files to reverse engineer the router
topology and summarize the status of the network [9, 10, 138, 9]. However, despite their wide
usage, these tools have not eliminated configuration pnobldn the 4D architecture, waiminate the
router/switch configuration files entiregnd along with them the need to verify their consistency er re
verse engineer their actions. Rather than retrofittingyamatools on top of a shifting pile of management
tools, we propose an architectural change so the netwailk gsnerates a view of its status and topology.

Separating forwarding and control: Driven by the desire to separate router forwarding fromgrot
cols and network services, significant prior work attempediefine an open router interface analogous to
OS interfaces at end-systems [39, 40, 41, 42]. Recent st@imdton efforts within the IETF reflect this
desire [43, 44]. Efforts in the OpenArch and OPENSIG commesisucceeded in provisioning QoS in
multi-service networks [45, 46, 47, 48]. Whereas thesesffattempt to modularize the architecture and

24

the functionality ofindividual routers, we propose to move the logic (e.g., path computptiorrently in

the control planeut of the routers and control plane altogether into a sepaetesion plane equipped
with network-wide views. Several recent proposals [17,50),argue for separating the computation of
routes from the individual routers. We also argue for plgdhe key functionality outside of the network
but go further in two respects. First, we believe that th&igecture should explicitly provide a robust dis-
semination means wirectly control the data plane plane, rather than driving the copteme by sending
BGP or MPLS messages to routers, as extensive configurati@guired before the BGP or MPLS mes-
sages can even be delivered. Second, we believe that thegamaaat plane should dictate other aspects
of network operationbeyond routinde.g., packet filtering and quality of service).

Discovery: Techniques of auto-discovery between neighbors have begroged in ATM with In-
tegrated Local Management Interface (ILMI) [51] and ogticatworks with Generalized Multi-Label
Switching (GMPLS) [52] and Link Management Protocol (LMBB]. ATM discovery assumes homo-
geneous link technology (SONET), OSI control protocol ktand requires NSAP addresses to be con-
figured first. GMPLS discovery assumes IP control protocbksagh switch controller and requires the
protocols to be configured first. In the 4D architecture, we & design discovery service applicable to
multiple network types that requiregropre-configuration. In addition, the discovery service \piib-
vide interfaces to the decision plane to enable consisteheaplicit management of physical and logical
identities, their scopes, their persistence, and theatiggiships.

8 Summary

We make three contributions in this paper. First, we syriteethree fundamental design principles:
network-level objectivesmetwork-wide viewsanddirect contro| that capture the essence of the problem
of network control and management. Based on these prisciple propose a novel 4D architecture that
refactors network functionality into four components—ttada, discovery, dissemination, and decision
planes Second, we implement a prototype of the 4D architecturecanduct a comprehensive perfor-
mance study. Our study demonstrates the viability of the dibitecture, specifically with respect to
responsiveness, reliability, and overhead. Finally, wealestrate that the 4D architecture enables sophis-
ticated new network functionality (such as meeting netwwitte reachability objectives) that is difficult

to achieve in traditional networks.

References

[1] LAN/MAN Standards Committee of the IEEE Computer SogiéEEE Standard for Information
technology—Telecommunications and information exchdege@een systems—Local and metropoli-
tan area networks—Common specifications Part 3: Media AcCeamtrol (MAC) Bridges1998.

[2] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, Myers, G. Xie, J. Zhan, and H. Zhang,
“Network-wide decision making: Toward a wafer-thin corntpdane,” in Proc. ACM SIGCOMM
Workshop on Hot Topics in Networkingp. 59—64, November 2004.

[3] D. Clark, “Public review of ‘Network-wide decision maky: Toward a wafer-thin control plane’,” in
Proc. ACM SIGCOMM Workshop on Hot Topics in NetworkiNgvember 2004.

[4] A. Myers, E. Ng, and H. Zhang, “Rethinking the service mbdcaling Ethernet to a million nodes,”
in Proc. ACM SIGCOMM Workshop on Hot Topics in NetworkiNgvember 2004.

[5] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and@eenberg, “Routing design in opera-
tional networks: A look from the inside,” iRroc. ACM SIGCOMMAugust 2004.

25

[6] LAN/MAN Standards Committee of the IEEE Computer Sogi802.1Q IEEE Standards for Local
and metropolitan area networks Virtual Bridged Local AreatiNorks 2003.

[7] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, “Vikingn@iti-spanning-tree Ethernet architec-
ture for metropolitan area and cluster networks,Pioc. IEEE INFOCOM March 2004.

[8] “Yipes.” http://www.yipes.com.

[9] A. Feldmann and J. Rexford, “IP network configuration ifistradomain traffic engineeringlEEE
Network Magazingpp. 46-57, September/October 2001.

[10] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, Gjatintysson, and J. Rexford, “The cutting
EDGE of IP router configuration,” iRroc. ACM SIGCOMM Workshop on Hot Topics in Networking
November 2003.

[11] N.Feamster and H. Balakrishnan, “Detecting BGP com&gan faults with static analysis,” iRroc.
Networked Systems Design and Implementatitay 2005.

[12] G. Varghese and C. Estan, “The measurement manifast®foc. ACM SIGCOMM Workshop on
Hot Topics in NetworkingNovember 2003.

[13] G. Hjalmtysson, P. Sebos, G. Smith, and J. Yates, “Senfplrestoration for IP/GbE/10GbE optical
networks,’Postdeadline paper PD-36, OFC 200@arch 2000.

[14] D. B. Johnson, D. A. Maltz, and J. BrocAd Hoc Networkingch. The Dynamic Source Routing
Protocol for Multi-HopWireless Ad Hoc Networks, pp. 13921 Addison-Wesley, 2001.

[15] B. Fortz and M. Thorup, “Internet traffic engineering bgtimizing OSPF weights,” ifProc. IEEE
INFOCOM, March 2000.

[16] M. Alicherry and R. Bhatia, “Pre-provisioning netwarko support fast restoration with minimum
over-build,” inProc. IEEE INFOCOM March 2004.

[17] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikhd anvan der Merwe, “The case for sepa-
rating routing from routers,” irProc. ACM SIGCOMM Workshop on Future Directions in Network
Architecture August 2004.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprés®l. Newbold, M. Hibler, C. Barb, and
A. Joglekar, “An integrated experimental environment fistributed systems and networks,”Pmoc.
Operating Systems Design and Implementatpgn 255-270, December 2002.

[19] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, Jx@rd, G. Xie, H. Yan, J. Zhan, and
H. Zhang, “A clean slate 4d approach to network control andagament,ACM Computer Com-
munication ReviewOctober 2005.

[20] H. Villfor, A. Hedlund, E. Aman, T. Eriksson, and T. Allem, “Operator experience
from ISIS convergence tuning,” irProceedings of RIPE 47 Feb 2004. Available as
http://mwww.ripe.net/ripe/meetings/ripe-47/preseiotad/ripe47-routing-isis.pdf.

[21] C. Alaettinoglu, V. Jacobson, and H. Yu, “Towards ms#kcond IGP convergence.” Ex-
pired Internet Draft, Nov 2000. Available as http://wwwcgatdesign.com/news/industry-
publications/drafts/convergence.pdf.

26

[22] “GNU Quagga routing software.” http://www.quagga.ne

[23] D.D. Clark, C. Partridge, J. C. Ramming, and J. T. Wradli, “A knowledge plane for the Internet,”
in Proc. ACM SIGCOMMpp. 3—-10, 2003.

[24] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. 8haand Jacobus van der Merwe, “De-
sign and implementation of a Routing Control Platform,"Hroc. Networked Systems Design and
ImplementationMay 2005.

[25] A. Chiu and J. Strand, “Control plane considerationsdib-optical and multi-domain optical net-
works and their status in OIF and IETE)ptical Networks Magazineol. 4, no. 1, pp. 26—-35, 2003.

[26] T. RussellSignaling System #McGraw-Hill, 2nd ed., 1998.
[27] “Introduction to CCITT signalling system no. 7.” ITU-$tandard Q.700.
[28] “Introduction to intelligent network (IN) capabilityet 1.” ITU-T Standard Q.1211.

[29] J. M. Smith and S. M. Nettles, “Active networking: Onewi of the past, present and futurefEE
Transactions On Systems, Man and Cyberngtiak 34, pp. 4-18, Feb 2004.

[30] “Cariden MATE framework.” http://www.cariden.comifpducts/. Last visited 9/2005.
[31] “OpNet SP Guru.” http://www.opnet.com/products/apghome.html. Last visited 9/2005.
[32] “Arbor Networks Peakflow.” http://www.arbornetworkem/productsp.php. Last visited 9/2005.

[33] R. Chadha, G. Lapiotis, and S. Wright, “Policy-basethmeking,” IEEE Network Magazinevol. 16,
pp. 8-9, 2002.

[34] Z. Kerravala, “Configuration management delivers bass resiliency.” The Yankee Group, Nov
2002.

[35] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Waynternet services fail, and what can be
done about it?,” ifProc. USENIX Symposium on Internet Technologies and Sgs2608.

[36] R. Mahajan, D.Wetherall, and T. Anderson, “UnderstagdBGP misconfiguration,” ifProc. ACM
SIGCOMM August 2002.

[37] “WANDL IP analysis tools.” http://www.wandl.com/htifipat/IPAT_new.cfm. Last visited 9/2005.
[38] “OPNET NetDoctor.” http://www.opnet.com/produatsddules/netdoctor.html. Last visited 9/2005.

[39] G. Hjalmtysson, “The Pronto platform - a flexible todlkor programming networks using a com-
modity operating system,” ifProc. International Conference on Open Architectures ardwork
Programming (OPENARCHKMarch 2000.

[40] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. lkepu, S. Schwab, H. Dandekar, A. Purtell, and
J. Hartman, “A NodeOS interface for active networldEEE J. Selected Areas in Communicatipons
March 2001.

[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kla@ek, “The Click modular routerACM
Trans. Computer Systepsugust 2000.

27

[42] T.V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnam, TaWoo, “The SoftRouter architecture,”
in Proc. ACM SIGCOMM Workshop on Hot Topics in NetworkiNgvember 2004.

[43] A. Doria, F. Hellstrand, K. Sundell, and T. Worst&eneral Switch Management Protocol (GSMP)
V3. Internet Engineering Task Force, 2002. RFC 3292.

[44] “Forwarding and Control Element Separation Chartéittp://www.ietf.org/html.charters/forces-
charter.html.

[45] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Opeignaling for ATM, Internet and mobile
networks (OPENSIG’98),SIGCOMM Computer Communications Reviewl. 29, no. 1, pp. 97—
108, 1999.

[46] A. Lazar, S. Bhonsle, and K. Lim, “A binding architectufor multimedia networks,Journal of
Parallel and Distributed Systemseol. 30, pp. 204—-216, November 1995.

[47] P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. C. Liaw,.yon, and G. Minshall, “Ipsilon’s
general switch management protocol specification versibii RFC 1987, August 1996.

[48] A. Banerjea, “The XBONE: Building overlay networksyi Proc. Workshop on Open Signaling for
ATM, Internet and Mobile Network&998.

[49] O. Bonaventure, S. Uhlig, and B. Quoitin, “The case farrenversatile BGP route reflectors,” July
2004. Internet Draft draft-bonaventure-bgp-route-reéfliesz00.txt, work in progress.

[50] A. Farrel, J.-P. Vasseur, and J. Ash, “Path computagiement (PCE) architecture.” Internet Draft
draft-ash-pce-architecture-01.txt, July 2005.

[51] ATM Forum Technical Committeentegrated Local Management Interface (ILMI) Specificatio
Version 4.01996.

[52] L. Berger,Generalized Multi-Protocol Label Switching (GMPLS) Sitimg Functional Description
2003. RFC 3471.

[53] J. Lang,Link Management Protocol (LMP), draft-ietf-ccamp-Imptk€ October 2003.

28

