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Abstract

We consider two types of non-reactive aerial sensors, which are subject to false-positive and
false-negative errors. The sensors search for threat objects such as ballistic missile launchers
or improvised explosive devices. The objects are located in a certain area of interest, which
is divided into a grid of area-cells. The grid is defined such that each area-cell may contain
at most one object. The objective of a sensor is to determine if a certain area-cell is likely
or unlikely to contain an object. An area-cell is said to be determined if the searcher
can ascertain with a given high probability these events. Since definitive identification of
a threat object, and subsequent handling of that threat, are done by limited number of
available ground combat units, the determination of an area-cell can help field commanders
better allocate and direct these scarce resources. We develop two models, one for each type
of sensor, that describe the search process and maximize the expected number of determined
area-cells.

1 Introduction

Advents in sensing, unmanned aerial vehicles (UAVs), and satellite technologies are expected
to increase the military use of aerial or space sensors for detecting threat objects such as
improvised explosive devices or missile launchers. These advanced technologies may generate
powerful and effective sensors, which necessitate operational concepts in order to facilitate
their efficient utilization. In this paper we address operational concepts associated with
employing sensors in persistent search missions over an extended search area. Specifically,
we consider the problem of efficiently allocating non-reactive sensors across a search area of
interest. The sensors are non-reactive in the sense that the search plan is set in advance,
and it is not updated in real time during the search process following new information (e.g.,
pre-programmed “send-and-forget” UAVs). The details of the operational search setting are
given in Section 2.

The theory of optimal search has a history of principal importance in military operations.
The theory has fundamental applications to anti-submarine warfare, counter-mine warfare,
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and search and rescue operations. The books [6] and [10] are classical references in this area;
with [11] a valuable recent reference. Discrete search problems of the type addressed in this
paper are not new. Optimal whereabout search, where we seek to maximize the probability of
determining which box contains a certain object, is studied in [1] and [5]. Chew [3] considers
an optimal search with stopping rule where all search outcomes are independent, conditional
on the location of the searched object and the search policy. Wegener [12] investigates a
search process where the search time of a cell depends on the number of searches so far. A
minimum cost search problem is discussed in [8], where only one search mode is considered
and the sensor has perfect specificity. The paper [9] deals with discrete search with multiple
sensors in order to maximize the probability of successful search of a single target during a
specified time period. Other discrete search problems are studied in [2, 7, 13]. However, all
of the aforementioned references assume that the sensor has perfect specificity, that is, there
are no false positive detections. Our models, which are based on [4], relax this assumption.

The main contribution of this paper, in addition to the relaxation of the perfect specificity
assumption, is the development of two novel sensor models (smart and dummy sensors; see
Section 2), and their application to a variety of scenarios. For the scenarios examined, the
results and analysis indicate that,

• The level of initial intelligence regarding the area of interest has a significant effect
on the optimal employment of the sensors and on the expected number of determined
area-cells, and this effect is quantified.

• The optimal employment of a sensor follows a greedy rule where search effort is first
invested in area-cells that are more likely to be determined than others.

• The smart sensor significantly outperforms the dummy sensor in situations of minimum
uncertainty regarding the presence or absence of the threat object. In other situations
the effect is not significant.

• The effectiveness of a sensor is determined by the relative values of its sensitivity and
specificity and not by the absolute values of these parameters, except when either of
these two parameters is very small, in which case sensor’s effectiveness is very sensitive
to the values of the other parameter.

The paper is organized as follows. In Section 2 we describe the operational setting and in
Section 3 we formulate the models for the dummy and smart sensors. In Section 4 we analyze
the models with respect to various scenarios, and in Section 5 we discuss the conclusions of
the paper.

2 Operational Setting

Targets (e.g., missile launchers) are scattered in an area of interest and the objective of the
field commander is to detect as many as possible of them. The area of interest is divided
into a grid of area-cells such that each area-cell may contain at most one target. A sensor
is assigned to search a certain area-cell for a certain time period during which it can make
a finite number of discrete observations or looks. The result of each look is either a detect
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result or a no detect result. The sensor is imperfect – it is subject to false-positive and false-
negative errors – and therefore the sensor’s cues may be erroneous. The information provided
by the sensor is used by the field commander to decide on further tactical or operational
actions. Our goal is to help the field commander to determine the best search plan such that
the information provided by the search results – his awareness regarding which area-cells are
likely to contain targets and which area-cells are likely to be empty – is maximized. This
informational MOE is described next.

An area-cell is said to be determined if it can be ascertained, with a given (high) prob-
ability, whether it contains a target or not. Specifically, given two probability thresholds,
selected by the commander and reflecting his attitude regarding uncertainty, an area-cell is
determined to be empty if the post-search probability that a target is in that cell is lower
than the lower threshold. The area-cell is determined as containing a target if that posterior
probability is higher than the higher threshold. The objective is to maximize the expected
number of area cells that are determined. This type of information – classifying area-cells
as being very likely or very unlikely to contain targets – can help field commanders filter a
sizable area of interest down to only those area-cells that are likely to contain a target, and
therefore better focus their operational effort.

The sensors we consider are non reactive; the assignment of looks to area-cells is made
in advance and it does not change dynamically following information (detection and no-
detection results) obtained during the search. This situation is applicable in particular to
pre-programmed UAVs whose way-points and search pattern cannot be modified during the
search mission.

We consider two types of sensors: dummy and smart. The dummy sensor evaluates the
detection/no-detection results of a certain area-cell only at the end of the search, after all
assigned looks have been exhausted. Based on the resulting posterior probability and the
two probability thresholds, the searcher decides at that point if the area-cell is determined
or not. This sensor represents a batch handling of the sensor data; the searcher examines
the sensor’s results and decides upon them only after the search process is over. The smart
sensor examines the detection/no-detection results and computes the probability of a target
continuously during the search. If at any point during the search this probability crosses
either of the two thresholds, the area-cell is determined before all the looks are exhausted.

3 Models

We start this section by describing the basic framework shared by the two models. Specifi-
cally, we assume that one sensor is assigned an area of interest to search, which is partitioned
into a grid of I area-cells. We assume that the area of interest can be partitioned in such a
way that each area-cell i, for i = 1, 2, . . . , I, contains at most one threat object. The sensor
has a finite number of L looks that it can apply to the search. These looks are allocated to
the various area-cells prior to the start of the search mission.

We suppose that there is some initial intelligence about the presence of threat objects,
which is manifested by a prior probability. Let θ = (θ1, . . . , θI) be the parameter that
describes the presence/absence of threat objects; that is, θi = 1 if there is a threat object in
area-cell i, and θi = 0 otherwise. The intelligence is captured by the prior probability mass
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function of θi,
π

(0)
i = P (θi = 1),

for i = 1, . . . , I. Following a single look at an area-cell, the sensor returns either a detection
or a no-detection signal. The sensor is characterized by its sensitivity and specificity; for
each area-cell i we have

pi = P (sensor indicates detection|θi = 1),

which is called the sensitivity of the sensor. The specificity of the sensor is 1− qi, where

qi = P (sensor indicates detection|θi = 0).

Although the pi’s and qi’s may depend on the area-cell, we assume that they do not depend
on the number of looks. Without loss of generality we take pi > qi, because we can reverse
the cue if pi < qi. We explicitly assume that pi 6= qi, for otherwise the sensor does not
provide any valuable information.

After the sensor looks at an area-cell, the intelligence regarding the likelihood of a threat
object gets updated, and we obtain a posterior probability. More specifically,

π
(1)
i (ω) =





piπ
(0)
i

piπ
(0)
i +qi(1−π(0)

i )
, if ω = sensor indicates detection

(1−pi)π(0)
i

(1−pi)π(0)
i +(1−qi)(1−π(0)

i )
, if ω = sensor indicates no-detection.

(1)

In this way, for area-cell i we have a sequence of posteriors π
(1)
i , π

(2)
i , . . ., adapted to the

sequence of signals generated by the sensor in that area-cell.
We assume that the collection of look results are independent for a given area-cell; this

assumption asserts that there is not systematic bias in the sensor. The results for different
area-cells may be dependent. As the number of looks for a area-cell i increases, the posterior
approaches 1 (if θi = 1) or 0 (if θi = 0). In reality, one would stop looking when the posterior
becomes sufficiently close to 1 or 0. This motivates the introduction of two thresholds, which
are subjective measures set by an individual involved in the search mission, such as the watch
officer in the tactical operations center, or the field commander in charge of attacking these
threat objects. An area-cell is considered to be determined if the posterior has crossed either
an upper threshold or a lower threshold. If the posterior has crossed the upper threshold β,
then the conclusion is that the area-cell is most likely to contain a threat object. Conversely,
if the posterior has crossed the lower threshold α, then the area-cell is most likely to be clear.
To make the problem non-trivial, we assume throughout the paper that 0 ≤ α < β ≤ 1.

In most realistic situations, the number of looks available is not large relative to the
number of area-cells I and therefore an optimal resource (looks) allocation is needed. Specif-
ically, the decision variables for both the dummy and smart sensor models are the number
of looks allocated to area-cell i, denoted by li. The measure of effectiveness is the expected
number of area-cells determined with at most L looks. Observe that

E(# area-cells determined with l1, . . . , lI looks) =
I∑
i=1

P (area-cells i determined in li looks).
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It follows that the optimization problem is to choose l1, . . . , lI that

maximize
I∑
i=1

P (area-cell i determined in li looks) (2)

subject to
I∑
i=1

li ≤ L

li ≥ 0 and integer for i = 1, . . . , I.

In order to solve this problem we need to find P (area-cell i determined in li looks) for the
dummy and smart sensors. This is the subject of the next two subsections.

Remark 1 The objective function in Problem 2 is non-linear, and even not necessarily
concave; see Figure 3. Once P (area-cell i determined in li looks) is found for each number
of looks 1, 2, . . . , L, Problem 2 can be implemented and solved – we used GAMS to illustrate
the results in this paper.

3.1 Dummy Sensor

The dummy sensor is characterized by the fact that in each area-cell the sensor checks its
status (i.e. posterior probability) only after the allocated l looks are exhausted. If at that
point the posterior is larger than β or smaller than α then the area-cell is declared determined.
A smarter sensor would watch the posterior continuously and determine the area-cell as soon
as the posterior crosses a threshold. Indeed, this is the characterization of the smart sensor
discussed in the next subsection.

Let Di = number of detections in area-cell i. Conditioning on θi we have

P (Di = d) =

(
l

d

)
pdi (1− pi)l−d × π(0)

i +

(
l

d

)
qdi (1− qi)l−d × (1− π(0)

i ), (3)

for d = 0, 1, . . . , l. When Di = d the dummy posterior ψ
(l)
i (d) is given by, after some algebra,

ψ
(l)
i (d) =

pdi (1− pi)l−dπ(0)
i

pdi (1− pi)l−dπ(0)
i + qdi (1− qi)l−d(1− π(0)

i )
(4)

Next we ask: How many detections will cause the dummy posterior to be outside either
threshold? In other words, for what values in the range of Di do we have ψ

(l)
i (d) ≥ β

or ψ
(l)
i (d) ≤ α? Solving for d in Equation (4) we obtain α < ψ

(l)
i (d) < β if and only if

ai < d < bi, where

ai =

log

(
α

1−α
1−π(0)

i

π
(0)
i

)
+ l log

(
1−qi
1−pi

)

log
(
pi(1−qi)
(1−pi)qi

) (5)
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and

bi =

log

(
β

1−β
1−π(0)

i

π
(0)
i

)
+ l log

(
1−qi
1−pi

)

log
(
pi(1−qi)
(1−pi)qi

) (6)

Hence
P (area-cell i not determined in l looks) = P (ai < Di < bi) (7)

where the probability mass function of Di is computed according to Equation (3). It is
beneficial to view the interval (ai, bi) as a no determination region. Naturally,

P (area-cell i determined in l looks) = 1− P (area cell i not determined in l looks),

can then be employed in the optimization problem.
As an example of the dummy sensor model, consider Figure 1. For l = 1, it is impossible

to determine the area cell because the posterior is always inside the thresholds; for l = 2,
having two detections cause the posterior to be above β and so the area-cell is determined.
Observe, however, that the probability of determining the area-cell is less for l = 3 (.47) than
for l = 2 (.48), because getting a no-detection after two detections decreases the posterior
and pushes it back to within the thresholds.

3.2 Smart Sensor

The smart sensor monitors the posterior continuously and therefore may determine an area-
cell as soon as the posterior crosses a threshold, before the looks allocated to that cell are
actually exhausted. The subsequent looks are essentially redundant. Although there are
several approaches to compute the probability of detection, a simple approach is to use
dynamic programming. Define Vi,l(πi) as the probability of determining the presence, or
absence, of a threat object after l looks in area-cell i, given the current prior probability is
πi. We have the boundary conditions

Vi,l(πi) = 1, if πi ≥ β or πi ≤ α,

else if l = 0
Vi,0(πi) = 0.

For l ≥ 1, the recursion is given by

Vi,l(πi) = (piπi + qi(1− πi))Vi,l−1

(
piπi

piπi + qi(1− πi)
)

+ ((1− pi)πi + (1− qi)(1− πi))Vi,l−1

(
(1− pi)πi

(1− pi)πi + (1− qi)(1− πi)
)
.

Given a prior π
(0)
i and l looks, we start the above recursion with Vi,l(π

(0)
i ).
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Figure 1: Probability transitions for the dummy sensor model, for π(0) = 0.7, p = 0.8,
q = 0.3, α = 0.1, and β = 0.9. Inside each node, the top number is the posterior, and the
number in brackets is the probability of arriving at the node; nodes with bold posteriors
occur when the area-cell is determined.

Another (computationally faster) approach to compute Vi,l(π
(0)
i ) is to notice that Πi =

(π
(k)
i : k ≥ 0) is a Markov chain defined on [0, 1]. Let τ = inf{k ≥ 0 : π

(k)
i 6∈ (α, β)} be the

first look at which the posterior crosses either threshold. We have

Vi,l(π
(0)
i ) = P (τ ≤ l). (8)

Let B = (Bxy : α < x, y < β) be the restriction of the transition kernel of Πi to (α, β). Then

P (τ > l) =
∑

α<y<β

Bl

π
(0)
i y
,

which together with Eq. (8) leads to Vi,l(π
(0)
i ).

An example of the smart sensor search process is shown in Figure 2. In this example
B1
.7,.86 = .65, B1

.7,.4 = .35 and B1
.7,y = 0 for all other values of y. Also P (τ > 2) = .52

and P (τ > 3) = .42. The difference between the dummy and smart sensors is that the
smart sensor determines the area-cell when arriving at a node whose posterior is outside the
thresholds. So while the probability that a dummy sensor determines an area-cell after 3
looks is .37 (see Figure 1) the smart sensor determines it with probability .48 + .10 = .58.
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Figure 2: Probability transitions for the smart sensor model, for π(0) = 0.7, p = 0.8, q = 0.3,
α = 0.1, and β = 0.9. Inside each node, the top number is the posterior, and the number in
brackets is the probability of arriving at the node; nodes with bold posteriors occur when
the area-cell is determined.

4 Results and Analysis

In this section we present the results and their analysis for both the dummy and smart sensor
models. In the first subsection we discuss the single area-cell scenario, while in the second
subsection we optimize sensor employment in multiple area-cells.

4.1 Single area-cell Scenario

We analyze the effect of the model parameters on the probability of determining a single
area-cell, so the optimization problem (2) does not come into play. To simplify notation, we
drop the subindex i in the discussion that follows in this subsection.

First, we consider the dummy sensor. From the definition of a and b, it is easy to see
that they are linear functions of l with positive slope since p > q, and that the difference
b− a is constant in l. So, we have the following result (see the Appendix for all proofs).

Proposition 1 The probability of determining an area-cell approaches 1 as the number of
looks grows to infinity.

Observe that the number of integers that lie in the open interval (a, b) is not necessarily
constant as a function of the number of looks l. That is, on the sample paths where the



January 7, 2008 9

dummy posterior is outside the thresholds, a sensor signal may push the dummy posterior
back into (α, β), thus increasing the probability of not determining the area-cell. Looking at
Equation (7), this suggests that P (area-cell i determined in l looks) may not be monotonic
in the number of looks l. Indeed, for certain parameter settings, increasing the number of
looks actually lowers the probability of determining an area-cell. Figure 3 illustrates this
situation: When the number of looks goes from 3 to 4, the probability of determining the
area-cell decreases; the same happens when going from 5 to 6 looks, 7 to 8 looks, etc. This
phenomenon is demonstrated also in Figure 1, as discussed above. From the definition of a
in (5) and of b in (6), it follows that the cardinality of the open interval (a, b) is generally
not continuous in the model parameters. Ultimately, this causes Figure 3 – Figure 8 to be
jagged for the dummy sensor.
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Figure 3: Probability of determining an area-cell as a function of number of looks, for
π(0) = 0.5, p = 0.8, q = 0.2, β = 0.95, and α = 0.05.

An important issue is the effect of the prior intelligence on the probability of determining
an area-cell. Note that the prior π(0) is the mixture parameter of the Binomial mixture in
Equation (3), and it appears in the definition of a and b. When the number of looks is large,
the area-cell is determined with very high probability, regardless of the prior. Hence, for the
purpose of our analysis we assume that l is not too large and consider three ranges of π(0):

• π(0) is close to the lower threshold α. In this case D
D≈ Bin(l, q) (where

D≈ means
approximately distributed, and Bin(l, q) is a binomial distribution with l looks and
probability of detection q). Also, a and b are in the highest part of their range; that is,
we determine the area-cell for small values of D. But this is precisely what happens

when D
D≈ Bin(l, q) and q is not too large: D is most likely to be a small number.

Hence, when π(0) ≈ α and q not too large, the probability of determining the area-cell
is large.
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• π(0) is close to the upper threshold. In this case D
D≈ Bin(l, p) so that D puts most

of its mass in the higher end of its range if p is large. Also, a and b are in the low
part of their range, so that we determine the area-cell for large values of D. Putting
the last two observations together, we conclude that the probability of determining an
area-cell is large when π(0) is close to β and p is large.

• π(0) is not close to either threshold, p and q are mid range. In this situation π(0) is
a mixture of binomials, and since p and q are mid range, D is most likely to take
values in the middle of its range. Also, a and b are in the middle part of their range.
Putting these two arguments together, we conclude that the probability of determining
an area-cell will be small under these circumstances.

Figure 4 illustrates the above analysis. Other than confirming our explanation of the
effect of the prior, Figure 4 is rather striking because of its jumps; these are due to the
change in the number of integers that lie in the interval (a, b) as we change the prior, a
phenomenon observed and discussed earlier.
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Figure 4: Probability of determining an area-cell as a function of the initial prior, for l = 11,
p = 0.6, q = 0.4, β = 0.9, and α = 0.1.

Now we address the effect of sensitivity (p) and specificity (1 − q). The basic question
regarding the parameters p and q is: What is a good dummy sensor with respect to these pa-
rameters? Naturally, p = 1 and q = 0 is the perfect sensor, but this situation is unattainable
in practice. As Figure 5 suggests,

• it is the difference p− q that makes a sensor better or worse, regardless of the absolute
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values of the parameters; the probability of determining an area-cell increases with
p− q.
• for low values of p, the probability of determining an area-cell is very sensitive to
q; that is, a small increase in q causes the probability of determining an area-cell to
decrease significantly. The reason for this behavior is that (a, b) expands to include all
the integers in [0, l] as q gets closer to p small.

• for high values of q, the probability of determining the area-cell is very sensitive to p.
As p moves from q to 1, the no determination region (a, b) moves away from [0, l], thus
causing the area-cell to be determined.
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Figure 5: Contour plot of the probability of determining an area-cell for the dummy sensor,
as a function of the sensitivity and specificity, for l = 11, π(0) = .8, β = 0.9, and α = 0.1.

Regarding the smart sensor, the following proposition summarizes some of its properties.

Proposition 2 The smart sensor has a determination probability that is non-decreasing,
approaches one as the number of looks increases, and is not smaller than the determination
probability of the dummy sensor for the same number of looks.

Figure 3 illustrates the last proposition. We explain the observation that the probability
of determining an area-cell remains constant when going from 3 to 4 looks, from 5 to 6 looks,
etc, by the fact that for the parameter settings of Figure 3, on any sample path where the
posterior is within (α, β) prior to looking at the area-cell, the posterior remains within (α, β)
regardless of the sensor signal (detection or no-detection). Like in the dummy sensor case,
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a determination probability that is not everywhere differentiable causes Figure 3 – Figure 8
to be non-smooth for the smart sensor as well.

The effect of prior intelligence on the smart sensor is illustrated in Figure 4, with the
following interpretation:

• As π(0) gets close to either threshold, the probability of determining the area-cell
approaches 1. That is, when π(0) ≈ α and α is small, according to Equation (1),
π(1)(no-detection) ≈ 0 (so we cross the lower threshold) with probability equal to
P (no-detection signal) ≈ 1 − q, so that P (τ = 1) ≈ 1 − q; if we get a detection in
the first look, the same analysis shows that P (τ = 2) ≈ q(1 − q). Proceeding in that
fashion we see that P (area-cell determined for l small) ≈ 1 when π(0) ≈ α and α ≈ 0.

• The analysis for the upper threshold β is analogous when π(0) ≈ β and β ≈ 1, and we
have P (area-cell determined for l small) ≈ 1.

• A remarkable feature of Figure 4 is that the smart sensor significantly outperforms
the dummy sensor when the prior π(0) is close to either threshold. The reason for
this behavior is that the dummy sensor only checks the value of the posterior when
all the looks have been exhausted, by which time it is possible that ψ(l) is within the
thresholds. In the next section we discuss how this phenomenon carries over to the
multiple area-cell situation.

The effect of sensitivity and specificity with respect to the smart sensor (see Figure 6)
is similar to the dummy sensor: The difference p − q is the important measure concerning
sensor performance, and the probability of determining an area-cell increases with p−q. Like
in the dummy sensor model, the probability of determining the area-cell is very sensitive to
q when p is small, and very sensitive to p when q is large.
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Figure 6: Contour plot of the probability of determining an area-cell for the smart sensor,
as a function of the sensitivity and specificity, for l = 11, π(0) = .8, β = 0.9, and α = 0.1.
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4.2 Multiple area-cells Scenario

When there is more than one area-cell, we solve Problem (2) to obtain an efficient allocation
of looks. Evidently, the effectiveness of the sensors increases with the number of looks,
because the uncertainty regarding the presence or absence of threat objects in each area-cell
is revealed as we increase the number of looks. In view of Propositions 1 and 2, for any
fractional allocation l̂1 = t1L, l̂2 = t2L . . . , l̂I = tIL such that all the t’s are positive and
t1 + · · ·+ tI = 1, we have

E(# area-cells determined with l̂1, . . . , l̂I looks)→ I,

as L→∞. Since the optimal allocation is no worse than the l̂1, . . . , l̂I allocation, we have

Proposition 3 Suppose that l∗1(L), . . . , l∗I(L) is an optimal solution to Problem (2) when
there are L looks available. Then, for both the dummy and smart sensor models,

E(# area-cells determined with l∗1(L), . . . , l∗I(L) looks)→ I,

as L→∞.

In words, Proposition 3 states that the expected number of area-cells determined under
an optimal allocation of looks approaches the total number of area-cells, as the number of
looks available grows. Also, since the smart sensor cannot be worse than the dummy sensor,
the expected number of area-cells determined by the smart sensor is never smaller than
the expected number of area cells determined by the dummy sensor. This observation and
Proposition 3 are demonstrated in Figure 7, where I = 6 and all area-cells have the same
prior, sensitivity and specificity probabilities. For L ≤ 7 we have that the dummy and smart
sensor models yield the same result, this is because each of the 6 area-cells gets no more
than 2 looks, and P (area-cell determined) is the same for both sensors in this situation (cf.
Figure 3). As the number of looks available increases, the smart sensor has a larger number
of area-cells determined than the dummy sensor, in accordance with Proposition 2.

Next we examine the effect of the prior, sensitivity and specificity probabilities (π(0)i , pi
and 1− qi, respectively) on the the optimal allocation of looks. The question is: What area
cells get a large (or small) number of looks at optimality? Due to the high dimensionality
of the problem, it is impossible to run a full factorial experiment. Therefore, we settle with
solving Problem (2) under various representative scenarios that capture the main effects of
the above parameters.

Concerning the effect of the prior (see Figure 8), we have the same conclusion as for the
single area-cell scenario, namely: The priors close to the thresholds α and β lead to larger
expected number of area-cells determined, and the smart sensor significantly improves on the
dummy sensor in situations of good prior intelligence. Figure 8 shows these properties for
I = 6 area-cells when the priors of all area-cells shift together from the lower threshold to the
upper threshold. We solved the optimization problem (2) under several other representative
configurations, with all the results supporting the above conclusions.

Table 1 summarizes the results of a more detailed analysis. For each one of the two
sensors we consider two levels of effectiveness, manifested by the sensitivity and specificity
of the sensor, and two configurations of prior probabilities. A relatively ineffective sensor



January 7, 2008 14

0 5 10 15 20 25 30
0

1

2

3

4

5

6

number of looks

E
(#

 s
eg

m
en

ts
 d

et
er

m
in

ed
) dummy

smart

Figure 7: Expected number of area-cells determined as a function of the number of looks,
for I = 6, L = 30, π(0) = 0.8, p = 0.8, q = 0.2, β = 0.9, and α = 0.1.

has p = .6 and q = .4 for all area-cells, while for a relatively effective sensor these parameters
are .7 and .3, respectively. For each sensor and each level of effectiveness we consider two
spatial configurations of the prior probabilities: (1) Uniform Worse-Case configuration where

π
(0)
i = .5, i = 1, ..., 6, and (2) Mixed configuration where the prior is close to the upper

threshold for two area-cells, the prior is far from both thresholds for two area-cells, and the
prior is close to the lower threshold for two area-cells. For each sensor, level of effectiveness
and spatial prior configuration, Table 1 presents the optimal allocation and the maximum
expected number of determined area-cells.

Effect of the prior

p, q Spatial Configuration E(# det.) l1 l2 l3 l4 l5 l6 Sensor

0.7705 16 14 0 0 0 0 smart
π(0) = (.5, .5, .5, .5, .5, .5)

0.6447 16 14 0 0 0 0 dummy
p = .6, q = .4

2.4488 8 8 0 0 8 6 smart
π(0) = (.8, .8, .5, .5, .2, .2)

1.9936 10 8 0 0 6 6 dummy

3.6186 5 5 5 5 5 5 smart
π(0) = (.5, .5, .5, .5, .5, .5)

3.3540 5 5 5 5 5 5 dummy
p = .7, q = .3

4.6857 3 3 9 9 3 3 smart
π(0) = (.8, .8, .5, .5, .2, .2)

4.2253 5 5 9 9 1 1 dummy

Table 1: Effect of the prior for L = 30, I = 6, α = 0.1, and β = 0.9.

The take-away of Table 1 is:

• When the sensors are relatively ineffective, and and the prior configuration is uniform
(π

(0)
i = 0.5, i = 1, ..., 6), both the dummy and smart sensors allocate all the looks to
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Figure 8: Expected number of area-cells determined as a function of the initial prior, for
I = 6, L = 30, π(0) = 0.8, p = 0.8, q = 0.2, β = 0.9, and α = 0.1.

just two area-cells. This happens because in this situation it takes a large number of
looks to make the probability of determining an area-cell lift above its zero-value floor.
If the prior configuration is mixed, there are four area-cells with prior probabilities
close to a threshold. Hence, the model allocates the looks in a greedy fashion so as
to determine these four area-cells. In accordance to our single area-cell analysis, the
smart sensor significantly outperforms the dummy sensor.

• When the sensors are relatively effective and the prior configuration is uniform, both
the smart and dummy sensors uniformly allocate the looks among the 6 area-cells.
This occurs because it takes a small number of looks to have the initial shoot up
in the probability of determining an area-cell. Observe that the expected number of
determined cells shows a remarkable increase from the ineffective-sensor uniform-prior
situation; we will have more to say about this issue when we analyze the effect of the
p, q configuration.

• When the sensors are effective and the prior has a mixed spatial configuration, it takes
a few looks to determine the area-cells whose prior is close to a threshold. Hence, the
optimal allocation specifies a large number of looks for the cells whose prior is far from
either threshold.

Regarding the sensitivity and specificity of the sensors, in all the scenarios we assume a
worse-case prior π(0) = 0.5 for all area cells i = 1, ..., 6, and consider two general cases of
sensing situations – relatively effective and relatively ineffective. We consider three types of
spatial configurations of these sensing capabilities over the 6 area-cells. Recall that a sensor
becomes more effective as pi − qi increases (see Figures 5 and 6). Thus, in the effective case
we assume that the average value of pi − qi (denoted as p̄− q̄) is 0.7, while in the ineffective
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case this average difference is 0.2. The three spatial configurations are: (1) Mixed – Three
area-cells with relatively large difference and three with relatively small difference, (e.g.,
pi = .9, qi = .1, i = 1, 2, 3; pi = .8, qi = .8, i = 4, 5, 6), (2) Uniform – All six area-cells have
the same difference (e.g., pi = .9, qi = .2, i = 1, ..., 6), (3) Monotonic – the sensitivity is
monotonic decreasing, the specificity is monotonic increasing but pi − qi remains constant
for every i = 1, ..., 6.

Table 2 summarizes the results of the optimization models for both sensors. From this
table we can draw the following conclusions:

• For an effective sensor (p̄− q̄ = 0.7) almost all the area-cells are determined. While the
smart sensor is obviously better, the difference in the expected number of determined
area-cells between the two sensors is 5% or less. Also, the spatial configuration has
only a small effect on that measure.

• For the ineffective sensor (p̄− q̄ = 0.2) the performance of the sensors is quite poor (one
or two determined area cells) and it depends on the spatial configuration. Both sensors
perform best when the spatial configuration is mixed, and worst when it is uniform.
The difference in the expected number of determined area-cells between these two
spatial configurations is about 100% for both sensors.

• The optimal allocation of looks depends both on the effectiveness of the sensor and the
spatial configuration of its effectiveness across the area-cells, but not on the type of
sensor (smart or dummy). When the sensor is effective, looks are spread out more or
less evenly across the area-cells, unless the sensitivity and specificity are high (e.g., .9
each), in which case one look will suffice. When the sensor is ineffective (p̄− q̄ = 0.2),
then the search effort is concentrated in a few area-cells, which are most likely to
become determined after a considerable number of looks (e.g., 11 looks in the mixed
case). The other area cells are ignored.

5 Conclusions

In this paper we developed two bayesian-oriented models that describe the performance of
two types of imperfect sensors – dummy and smart – and presented optimal employment
schemes for these sensors in a variety of scenarios. We have shown and quantified the
advantage of he smart sensor over the dummy one, which underscores the importance of
continuous monitoring of sensor data, in particular in the presence of prior intelligence.
We have demonstrated the importance of this prior intelligence on the effectiveness of the
search; on the optimal employment of the sensors and on the expected number of determined
area-cells. The optimal employment of sensors is greedy in the sense that search efforts
must be allocated to area-cells where they can produce definitive information in the form
of determined area-cells. Finally, we demonstrated that for realistic sensing capabilities, the
effectiveness of a sensor is determined by the relation between its sensitivity and specificity,
rather than the absolute values of these parameters.

The models developed in this paper may be extended to other types of sensors – in par-
ticular reactive sensors that may facilitate dynamic employment during the search mission.
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Effect of sensitivity and specificity

p̄− q̄ Spatial Configuration E(# det.) l1 l2 l3 l4 l5 l6 Sensor

p = (.9, .9, .9, .8, .8, .8) 5.9757 1 1 1 9 8 10 smart
q = (.1, .1, .1, .2, .2, .2) 5.8818 1 1 1 10 8 8 dummy
p = (.9, .9, .9, .9, .9, .9) 5.9255 5 5 5 5 5 5 smart

0.7
q = (.2, .2, .2, .2, .2, .2) 5.6277 5 5 5 5 5 5 dummy
p = (.96, .91, .86, .81, .76, .71) 5.9598 5 5 8 5 5 2 smart
q = (.26, .21, .16, .11, .06.01) 5.7693 6 5 6 5 6 2 dummy

p = (.8, .8, .8, .5, .5, .5) 2.0485 11 11 8 0 0 0 smart
q = (.5, .5, .5, .4, .4, .4) 1.6179 11 11 8 0 0 0 dummy
p = (.8, .8, .8, .8, .8, .8) 0.9845 15 15 0 0 0 0 smart

0.2
q = (.6, .6, .6, .6, .6, .6) 0.8334 15 15 0 0 0 0 dummy
p = (.96, .86, .76, .66, .56, .46) 1.3654 10 13 0 0 0 7 smart
q = (.76, .66, .56, .46, .36, .26) 1.2320 10 13 0 0 0 7 dummy

Table 2: Sensitivity and specificity effects for L = 30, I = 6, π(0) = 0.5, α = 0.1, and
β = 0.9.

Appendix

Proof of Proposition 1. Since we focus on just one area-cell, we drop the subindex i
from the notation. Consider a collection of random variables that describes the number of
detections, indexed by the number of looks: D1, . . . , Dl. We wish to show that

P (Dl ∈ (a(l), b(l)))→ 0

as l→∞. Since
P (Dl ∈ (a(l), b(l))) = E[P (Dl ∈ (a(l), b(l))|θ)],

it suffices to show that both P (Dl ∈ (a(l), b(l))|θ = 1) and P (Dl ∈ (a(l), b(l))|θ = 0) converge
to 0 as l → ∞. Observe that, by the independence of looks assumption, the Central Limit
Theorem implies

P

(
Dl − lp√
lp(1− p) ∈ (u, v)|θ = 1

)
→ P (Z ∈ (u, v))

as l →∞, where Z is a normally distributed random variable with mean 0 and variance 1.
Hence

P (a(l) < Dl < b(l)|θ = 1) = P

(
a(l)− lp√
lp(1− p) <

Dl − lp√
lp(1− p) <

b(l)− lp√
lp(1− p) |θ = 1

)
→ 0,

as l→∞, since l−1/2b(l)− l−1/2a(l)→ 0 as l→∞. Analogously, it is possible to show that

P (a(l) < Dl < b(l)|θ = 0)→ 0,

as l→∞. Hence we conclude that

P (Dl 6∈ (a(l), b(l)))→ 1 (9)
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as l→∞. ⊗

Proof of Proposition 2. We now argue that the smart sensor cannot be worse than the
dummy sensor. Because P (τ ≤ l) is non-decreasing in l, Equation (8) shows that Vi,l(π

(0)
i )

is non-decreasing in l too. Moreover,

P (area-cell i determined in l looks by dummy sensor)

=
∞∑

k=0

P (area-cell i determined in l looks by dummy sensor|τ = k)P (τ = k)

=
l∑

k=0

P (area-cell i determined in l looks by dummy sensor|τ = k)P (τ = k)

≤
l∑

k=0

P (τ = k)

= Vi,l(π
(0)
i ).

The above shows that the smart sensor cannot do worse than the dummy sensor. This,
together with Equation (9) shows that

P (area-cell i determined in l looks by smart sensor)→ 1

as l→∞. ⊗
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