CLOSED k-STOP DISTANCE IN GRAPHS

GRADY BULLINGTON1, LINDA EROH1, RALUCCA GERA2

AND

STEVEN J. WINTERS1

1Department of Mathematics
University of Wisconsin Oshkosh
Oshkosh, WI 54901 USA

2Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943 USA

e-mail: bullingt@uwosh.edu
eroh@uwosh.edu
rgera@nps.edu
winters@uwosh.edu

Abstract

The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices $S = \{x_1, x_2, \ldots, x_k\}$ in a simple graph G, the closed k-stop-distance of set S is defined to be

$$d_k(S) = \min_{\theta \in \mathcal{P}(S)} \left(d(\theta(x_1), \theta(x_2)) + d(\theta(x_2), \theta(x_3)) + \cdots + d(\theta(x_k), \theta(x_1)) \right),$$

where $\mathcal{P}(S)$ is the set of all permutations from S onto S. That is the same as saying that $d_k(S)$ is the length of the shortest closed walk through the vertices $\{x_1, \ldots, x_k\}$. Recall that the Steiner distance $sd(S)$ is the number of edges in a minimum connected subgraph containing all of the vertices of S. We note some relationships between Steiner distance and closed k-stop distance.
The closed 2-stop distance is twice the ordinary distance between two vertices. We conjecture that \(\text{rad}_k(G) \leq \text{diam}_k(G) \leq \frac{k}{k-1} \text{rad}_k(G) \) for any connected graph \(G \) for \(k \geq 2 \). For \(k = 2 \), this formula reduces to the classical result \(\text{rad}(G) \leq \text{diam}(G) \leq 2\text{rad}(G) \). We prove the conjecture in the cases when \(k = 3 \) and \(k = 4 \) for any graph \(G \) and for \(k \geq 3 \) when \(G \) is a tree. We also study the closed \(k \)-stop center and closed \(k \)-stop periphery of a graph, for \(k = 3 \).

Keywords: Traveling Salesman, Steiner distance, distance, closed \(k \)-stop distance.

2010 Mathematics Subject Classification: 05C12, 05C05.

1. **Definitions and Motivation**

In this paper, all graphs are simple (i.e., no loops or multiple edges). For vertices \(u \) and \(v \) in a connected graph \(G \), let \(d(u, v) \) denote the standard distance from \(u \) to \(v \) (i.e., the length of the shortest path from \(u \) to \(v \)). Recall that the eccentricity \(e(v) \) of a vertex \(v \) is the maximum distance \(d(v, w) \) over all other vertices \(w \in V(G) \). The radius \(\text{rad}(G) \) of \(G \) is the minimum eccentricity \(e(v) \) over all vertices \(v \in V(G) \), and the diameter \(\text{diam}(G) \) is the maximum eccentricity \(e(v) \) taken over all vertices \(v \in V(G) \).

Let \(G = (V(G), E(G)) \) be a graph of order \(n \) (\(|V(G)| = n \)) and size \(m \) (\(|E(G)| = m \)). Let \(S \subseteq V(G) \). Recall ([2, 4, 5, 6, 7]) that a Steiner tree for \(S \) is a connected subgraph of \(G \) of smallest size (number of edges) that contains \(S \). The size of such a subgraph is called the Steiner distance for \(S \) and is denoted by \(sd(S) \). Then, the Steiner \(k \)-eccentricity \(se_k(v) \) of a vertex \(v \) of \(G \) is defined by \(se_k(v) = \max\{sd(S) | S \subseteq V(G), |S| = k, v \in S \} \). Then the Steiner \(k \)-radius and \(k \)-diameter are defined by \(\text{srad}_k(G) = \min\{se_k(v) | v \in V(G) \} \) and \(\text{sdiam}_k(G) = \max\{se_k(v) | v \in V(G) \} \).

In this paper, we study an alternate but related method of defining the distance of a set of vertices. The closed \(k \)-stop distance was introduced by Gadzinski, Sanders, and Xiong [3] as \(k \)-stop-return distance. The closed \(k \)-stop-distance of a set of \(k \) vertices \(S = \{x_1, x_2, \ldots, x_k \} \), where \(k \geq 2 \), is defined to be

\[
dl_k(S) = \min_{\theta \in P(S)} \left(d(\theta(x_1), \theta(x_2)) + d(\theta(x_2), \theta(x_3)) + \cdots + d(\theta(x_k), \theta(x_1)) \right),
\]
where $\mathcal{P}(\mathcal{S})$ is the set of all permutations from \mathcal{S} onto \mathcal{S}. That is the same as saying that $d_k(\mathcal{S})$ is the length of the shortest closed walk through the vertices $\{x_1, \ldots, x_k\}$. The closed k-stop eccentricity $e_k(x)$ of a vertex x in G is $\max\{d_k(S) | x \in S, S \subseteq V(G), |S| = k\}$. The minimum closed k-stop eccentricity among the vertices of G is the closed k-stop radius, that is, $\text{rad}_k(G) = \min_{x \in V(G)} e_k(x)$. The maximum closed k-stop eccentricity among the vertices of G is the closed k-stop diameter, that is, $\text{diam}_k(G) = \max_{x \in V(G)} e_k(x)$.

Note that if $k = 2$, then $d_2(\{x_1, x_2\}) = 2d(x_1, x_2)$. We thus consider $k \geq 3$. In particular, the closed 3-stop distance of x, y and z ($x \neq y, x \neq z, y \neq z$) is

$$d_3(\{x, y, z\}) = d(x, y) + d(y, z) + d(z, x).$$

For simplicity, we will write $d_3(x, y, z)$ instead of $d_3(\{x, y, z\})$.

The closed 3-stop eccentricity $e_3(x)$ of a vertex x in a graph G is the maximum closed 3-stop distance of a set of three vertices containing x, that is,

$$e_3(x) = \max_{y,z \in V(G)} \left(d(x, y) + d(y, z) + d(z, x) \right).$$

The central vertices of a graph G are the vertices with minimum eccentricity, and the center $C(G)$ of G is the subgraph induced by the central vertices. Similarly, we define the closed k-stop central vertices of G to be the vertices with minimum closed k-stop eccentricity and the closed k-stop center $C_k(G)$ of G to be the subgraph induced by the closed k-stop central vertices. A graph is closed k-stop self-centered if $C_k(G) = G$.

The peripheral vertices of a graph G are the vertices with maximum eccentricity, and the periphery $P(G)$ of G is the subgraph induced by the peripheral vertices. Similarly, we define the closed k-stop peripheral vertices of G to be the vertices with maximum closed k-stop eccentricity and the closed k-stop periphery $P_k(G)$ of G as the subgraph induced by the closed k-stop peripheral vertices. For simplicity in this paper, we will sometimes omit the words “closed” and “stop”, so for instance, we will refer to the closed 3-stop eccentricity as the 3-eccentricity of a vertex.

Notice that for all values of $k \geq 2$, two times the k-Steiner distance is an upper bound on the closed k-stop distance of a set of vertices in a graph. (Given a Steiner tree for a set of k vertices, one possible closed walk through those vertices would trace each edge of the Steiner tree twice.) The k-Steiner distance plus one is always a lower bound for the closed k-stop distance, since the edges of a closed walk form a connected subgraph.
Necessarily, in a closed walk, either an edge is repeated or a cycle is formed, so at least one edge could be omitted without disconnecting the subgraph. That is, for a set \(S \) of \(|S| = k \in \{1, 2, \ldots, n - 1, n\} \) vertices, we have that

\[
\begin{align*}
(1) & \quad s_{ek}(v) + 1 \leq e_{k}(v), \forall v \in V(G), \\
(2) & \quad s\text{rad}_{k}(G) + 1 \leq \text{rad}_{k}(G) \leq 2 s\text{rad}_{k}(G), \text{ and} \\
(3) & \quad s\text{diam}_{k}(G) + 1 \leq \text{diam}_{k}(G) \leq 2 s\text{diam}_{k}(G).
\end{align*}
\]

For other graph theory terminology we refer the reader to [1]. In this paper we study the closed \(k \)-stop distance in graphs. Particularly, we present an inequality between the radius and diameter that generalizes the inequality for the standard distance. We also present a conjecture regarding this inequality that is verified to be true in trees. We also study the closed \(k \)-stop center and closed \(k \)-stop periphery of a graph, for \(k = 3 \).

2. Possible Values of Closed 3-stop Eccentricities

It is well-known that the ordinary radius and diameter of a graph \(G \) are related by \(\text{rad}(G) \leq \text{diam}(G) \leq 2\text{rad}(G) \). Furthermore, for every \(k \) such that \(\text{rad}(G) < k \leq \text{diam}(G) \), a graph must have at least two vertices with eccentricity \(k \), and at least one vertex with eccentricity \(\text{rad}(G) \). In the case of closed 3-stop distance, there is at least one vertex with closed 3-stop eccentricity \(\text{rad}_{3}(G) \), and there are at least three vertices with closed 3-stop eccentricity \(\text{diam}_{3}(G) \).

Proposition 1. A connected graph \(G \) of order at least 3 has at least three closed 3-stop peripheral vertices.

Proof. Let \(x \in V(P_{3}(G)) \). Then there exist vertices \(x_{1} \) and \(x_{2} \in V(G) \) such that \(e_{3}(x) = d(x, x_{1}) + d(x_{1}, x_{2}) + d(x_{2}, x) = e_{3}(x_{1}) = e_{3}(x_{2}) \). Thus \(x, x_{1}, x_{2} \in V(P_{3}(G)) \). \(\square \)

Recall that in a graph \(G \), the following relation holds: \(\text{rad}(G) \leq \text{diam}(G) \leq 2\text{rad}(G) \). We present a similar sharp inequality between the closed 3-stop radius and closed 3-stop diameter.

Proposition 2. For a connected graph \(G \), we have

\[\text{rad}_{3}(G) \leq \text{diam}_{3}(G) \leq \frac{3}{2} \text{rad}_{3}(G). \]
Proof. The first inequality follows by definition. Let \(u \in V(C_3(G)) \), and let \(y \in V(P_3(G)) \). There are vertices \(w \) and \(x \), necessarily also in the closed 3-stop periphery, such that \(e_3(y) = d(y, w) + d(w, x) + d(x, y) = e_3(x) = e_3(w) \). Assume, without loss of generality, that \(d(u, y) + d(y, x) + d(x, u) \leq d(u, w) + d(w, x) + d(x, u) \) and \(d(u, w) + d(w, y) + d(y, u) \leq d(u, w) + d(w, x) + d(x, u) \). This gives \(d(u, y) + d(y, x) \leq d(u, w) + d(w, x) \) and \(d(w, y) + d(y, u) \leq d(w, x) + d(x, u) \).

Case I. \(d(w, x) \leq 2d(u, y) \).

Using the inequalities above,

\[
e_3(y) = d(y, w) + d(w, x) + d(x, y) \
\leq d(w, x) + d(x, u) - d(y, u) + d(w, x) + d(u, w) + d(w, x) - d(u, y) \
= d(u, x) + d(x, w) + d(w, u) + 2(d(w, x) - d(u, y)) \
\leq e_3(u) + 2(d(w, x) - d(u, y)).
\]

Now, clearly, \(d(w, x) \leq d(w, u) + d(u, x) \), and from our assumption for this case, \(2d(w, x) \leq 4d(u, y) \). Thus, \(4d(w, x) \leq d(w, u) + d(u, x) + d(w, x) + 4d(u, y) \), which simplifies to

\[
2(d(w, x) - d(u, y)) \leq \frac{1}{2} (d(u, w) + d(w, x) + d(x, u))
\leq \frac{1}{2} e_3(u).
\]

Thus, \(e_3(y) \leq \frac{3}{2} e_3(x) \).

Case II. \(d(w, x) > 2d(u, y) \).

If we restrict the paths from \(y \) so that they must come and go through \(u \), the resulting paths will be the same length or longer than they would be without the restriction. Thus, \(e_3(y) \leq 2d(y, u) + e_3(u) < d(w, x) + e_3(u) \). Since \(e_3(u) \geq d(u, w) + d(w, x) + d(x, u) \) and \(d(w, x) \leq d(w, u) + d(x, u) \), it follows that \(d(w, x) \leq \frac{1}{2} e_3(u) \). Thus, \(e_3(y) \leq \frac{3}{2} e_3(u) \).

Recall that, for the standard eccentricity, \(|e(u) - e(v)| \leq 1 \) for adjacent vertices \(u \) and \(v \) in a connected graph. Gadzinski, Sanders and Xiong noted a similar relationship for the closed \(k \)-stop eccentricities of adjacent vertices. Suppose \(u \) and \(v \in V(G) \) are adjacent. Let \(x_2, x_3, \ldots, x_k \) be vertices such that \(e_k(u) = d_k(\{u, x_2, x_3, \ldots, x_k\}) \). One possible closed walk through \(\{u, x_2, x_3, \ldots, x_k\} \) would be from \(u \) to \(v \), followed by a shortest closed walk
through \(\{v, x_2, x_3, \ldots, x_k\}\), and then from \(v\) to \(u\). Thus, \(e_k(u) \leq e_k(v) + 2\).
Similarly, \(e_k(v) \leq e_k(u) + 2\).

Proposition 3 [3]. If \(u\) and \(v\) are adjacent vertices in a connected graph, then \(|e_k(u) - e_k(v)| \leq 2\).

The following example shows that it is possible for every vertex between \(rad_3(G)\) and \(diam_3(G)\) to be realized as the closed 3-stop eccentricity of some vertex, though it is also possible that some values may only be achieved once.

Let \(V(G) = \{u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_k, w_1, w_2, \ldots, w_k, x_0, x_1, \ldots, x_k\}\) and \(E(G) = \{u_iu_{i+1}, v_iv_{i+1}, w_iw_{i+1}, x_ix_{i+1} | 1 \leq i \leq k - 1\} \cup \{x_0x_1, x_0u_1, x_0v_1, x_0w_1, u_1v_1, v_1w_1\}\). Then \(rad_3(G) = e_3(x_0) = 4k\), \(e_3(u_i) = e_3(x_i) = e_3(w_i) = 4k + 2i\), and \(e_3(v_i) = 4k + 2i - 1\). Notice that all odd eccentricities larger than \(4k + 2M - 1\) may be skipped by leaving out the vertices \(v_i\) for \(i > M\).

Thus, this construction also shows that not all integers between \(rad_3(G)\) and \(diam_3(G)\) must be realized. Figure 1 shows an example of this construction with \(k = 3\).

![Figure 1. Graph with closed 3-stop eccentricities 12, 13, 14, 15, 16, 17, 18.](image)

In any graph \(G\), there is at least one vertex with closed 3-stop eccentricity \(rad_3(G)\) and at least three vertices with closed 3-stop eccentricity \(diam_3(G)\).

From Proposition 3, we may conclude that, for any two consecutive integers \(k\) and \(k+1\) with \(rad_3(G) \leq k < diam_3(G)\), there must be a vertex with closed
3-stop eccentricity either \(k \) or \(k + 1 \). In fact, for every pair of consecutive numbers between \(\text{rad}_3(G) \) and \(\text{diam}_3(G) \), there must be at least two vertices with closed 3-stop eccentricity equal to one of those numbers.

Proposition 4. Let \(G \) be a connected graph and let \(k \) be an integer such that \(\text{rad}_3(G) < k < \text{diam}_3(G) - 1 \). Then there are at least two vertices in \(G \) with closed 3-stop eccentricity either \(k \) or \(k + 1 \).

Proof. Suppose to the contrary that \(v \in V(G) \) is the only vertex with closed 3-stop eccentricity either \(k \) or \(k + 1 \). Let \(A = \{ u \in V(G) | e_3(u) < k \} \) and \(B = \{ u \in V(G) | e_3(u) > k + 1 \} \). Notice that both \(A \) and \(B \) are non-empty and \(A \cup B \cup \{ v \} = V(G) \). Consider any \(x \in A \) and \(y \in B \). Since \(e_3(x) \leq k - 1 \) and \(e_3(y) \geq k + 2 \), it follows from Proposition 3 that any \(x-y \) path must contain a vertex with eccentricity either \(k \) or \(k + 1 \). However, \(v \) is the only such vertex. Thus, \(v \) is a cut-vertex and \(A \) and \(B \) are not connected in \(G - v \). Let \(w \) and \(y \) be vertices such that \(e_3(v) = d_3(v, w, y) \). Since \(e_3(w) \geq e_3(v) \) and \(e_3(y) \geq e_3(v) \), both \(w \) and \(y \) must be in \(B \). Now, let \(u \in A \). Every path from \(u \) to \(w \) or \(y \) must go through \(v \), so \(e_3(u) \geq d_3(u, w, y) = 2d(u, v) + d_3(v, w, y) = 2d(u, v) + e_3(v) \). But this contradicts the fact that \(e_3(u) < e_3(v) \).

In every example that we have found, there are at least three vertices with closed 3-stop eccentricity either \(k \) or \(k + 1 \) for \(\text{rad}_3(G) < k < \text{diam}_3(G) - 1 \).

Conjecture 5. Let \(G \) be a connected graph and let \(k \) be an integer such that

\[\text{rad}_3(G) < k < \text{diam}_3(G) - 1. \]

Then there are at least three vertices in \(G \) with closed 3-stop eccentricity either \(k \) or \(k + 1 \).

3. Closed \(k \)-stop Radius and Closed \(k \)-stop Diameter

In this section we study closed \(k \)-stop eccentricity. Proposition 1 can be generalized for \(k \geq 4 \).

Proposition 6. Let \(G \) be a connected graph of order at least \(k \), \(k \in \mathbb{N} \). Then \(G \) has at least \(k \) vertices that are closed \(k \)-stop peripheral.
Proof. Let $x_1 \in V(P_k(G))$. Then there exist vertices $x_2, x_3, \ldots, x_k \in V(G)$ such that $e_k(x_1) = d(x_1, x_2) + d(x_2, x_3) + \cdots + d(x_k, x_1) = e_k(x_2) = e_k(x_3) = \cdots = e_k(x_k)$. Thus $x_1, x_2, \ldots, x_k \in V(P_k(G))$. ■

Also, Proposition 2 can be generalized for $k = 4$.

Proposition 7. For any connected graph G, we have
\[
rad_4(G) \leq diam_4(G) \leq \frac{4}{3}rad_4(G).
\]

Proof. Let G be a connected graph. Suppose $u \in V(C_4(G))$ and $v \in V(P_4(G))$. Furthermore, suppose that $e_4(v)$ is attained by visiting w, x, and y, not necessarily in that order. We must have w, x, and $y \in V(P_4(G))$, and $e_4(v) = e_4(w) = e_4(x) = e_4(y) = d_4(\{v, w, x, y\})$.

Without loss of generality, we may assume that the minimum distance among $d(v, w)$, $d(v, x)$, $d(v, y)$, $d(w, x)$, $d(w, y)$, and $d(w, y)$ is $d(v, w)$. If we now distinguish v and w from x and y, we may assume, without loss of generality, that the distance from $\{v, w\}$ to $\{x, y\}$, that is, the minimum distance among $d(v, x)$, $d(v, y)$, $d(w, x)$, and $d(w, y)$, is $d(v, y)$. Thus, v is the vertex in common in these two distances. Now,

\[
\begin{align*}
4) \quad rad_4(G) &= e_4(u) \\
5) \quad &\geq d_4(u, w, x, y) \\
6) \quad &= \min(d(u, w) + d(w, x) + d(x, y) + d(y, u), d(u, x) + d(x, w) + d(w, y) + d(y, u)) \\
7) \quad &+ d(w, y) + d(y, u), d(u, w) + d(w, y) + d(y, x) + d(x, u)) \\
8) \quad &\geq d(w, y) + d(w, x) + d(x, y).
\end{align*}
\]

The last inequality follows by applying the triangle inequality to each of terms in the minimum. Thus, $4rad_4(G) \geq 4d(w, y) + 4d(w, x) + 4d(x, y)$.

On the other hand, $3diam_4(G) = 3e_4(v) = 3\min(d(v, w) + d(w, x) + d(x, y) + d(y, v), d(v, w) + d(w, y) + d(y, x) + d(x, v), d(v, x) + d(x, w) + d(w, y) + d(y, v)) \leq 3d(v, w) + 3d(w, x) + 3d(x, y) + 3d(y, v)$.

From our initial assumptions, $3d(v, w) \leq d(x, y) + 2d(w, y)$ and $3d(y, v) \leq d(w, x) + 2d(w, y)$. Thus, we have $3diam_4(G) \leq 3d(v, w) + 3d(w, x) + 3d(x, y) + 3d(y, v) \leq 4d(x, y) + 4d(w, x) + 4d(w, y) \leq 4rad_4(G)$. ■

Conjecture 8. For any integer $k \geq 2$ and any connected graph G, we have
\[
rad_k(G) \leq diam_k(G) \leq \frac{k}{k-1}rad_k(G).
\]
Notice that for \(k = 2 \), this conjecture reduces to the classical result for ordinary distance that \(\text{rad}(G) \leq \text{diam}(G) \leq 2\text{rad}(G) \). We have shown that the conjecture is true for \(k = 3 \) and \(k = 4 \). However, for higher values of \(k \), the proof would have to take into account the order of the eccentric vertices \(w, x, \) and \(y \) of the peripheral vertex \(v \) in the last step of equation 8. Suppose, for instance, that the vertices \(v_1, v_2, \ldots, v_k \) are arranged so that the length of a closed walk is minimized, that is, \(d(v_1, v_2) + d(v_2, v_3) + \cdots + d(v_{k-1}, v_k) + d(v_k, v_1) \) is as small as possible. If another vertex \(v \) is included, we may wonder if the minimum length closed walk for \(\{v_1, v_2, \ldots, v_k, v\} \) can always be achieved by inserting \(v \) in some location in the list \(v_1, v_2, \ldots, v_k \) or if the original vertices may also have to be rearranged. If \(k \leq 3 \), the minimum can always be achieved by simply inserting \(v \). However, consider the example in Figure 2 for \(k = 4 \). A minimum closed walk containing \(\{v_1, v_2, v_3, v_4\} \) has length 8 and visits these four vertices in order \(v_1, v_2, v_3, v_4, v_1 \) or in reverse order \(v_1, v_4, v_3, v_2, v_1 \). However, a minimum closed walk containing \(\{v_1, v_2, v_3, v_4, v\} \) has length 11 and visits the vertices in one of the following orders: \(v_1, v_3, v_2, v, v_4, v_1, v_1, v_3, v_4, v, v_2, v_1, v_1, v_2, v, v_4, v_3, v_1, v_1, v_4, v, v_2, v_3, v_1 \), or \(v_1, v_4, v, v_2, v_3, v_1 \).

4. Closed \(k \)-stop Distance in Trees

In this section we study the closed \(k \)-stop distance in trees. We start with some observations and illustrations concerning closed \(k \)-stop distance.

Figure 2. The shortest closed walk including \(v_1, v_2, v_3, v_4, v \) cannot be formed by inserting \(v \) into the shortest closed walk including \(v_1, v_2, v_3, v_4 \).
Proposition 9. If G is a graph, and T is a spanning tree of G, then for any vertices $x_1, x_2, \ldots, x_k \in V(G)$, $d_k(\{x_1, x_2, \ldots, x_k\})$ in G is at most $d_k(\{x_1, x_2, \ldots, x_k\})$ in T.

As a result of Proposition 9 we have that $\operatorname{rad}_k(G) \leq \operatorname{rad}_k(T)$ and $\operatorname{diam}_k(G) \leq \operatorname{diam}_k(T)$. For this reason we study trees next.

In a tree T, the upper inequalities (1), (2), and (3) actually become equalities, so $e_k(v) = 2s_{k}(v)$ for all $v \in V(T)$, $\operatorname{rad}_k(T) = 2s\operatorname{rad}_k(T)$ and $\operatorname{diam}_k(T) = 2s\operatorname{diam}_k(T)$, where the $s\operatorname{rad}_k(T)$ and $s\operatorname{diam}_k(T)$ are the Steiner radius and diameter, respectively. A closed walk containing a set of vertices traces every edge of a Steiner tree for those vertices twice. As a consequence, we have the following observation, also noted independently in [3].

Observation 10. Let T be a tree and let $k \geq 2$ be an integer. Then $e_k(v)$ is even, for all $v \in V(T)$.

For any positive integer $k \geq 2$ and connected graph G, the Steiner k-center of G, $sC_k(G)$, is the subgraph induced by the vertices v such that $s_{k}(v) = s\operatorname{rad}_k(G)$. Notice that since the Steiner distance of two vertices is simply the usual distance, $sC_2(G) = C(G)$. Oellermann and Tian found the following relationship between Steiner k-centers of trees.

Theorem 11 [7]. Let $k \geq 3$ be an integer and T a tree of order greater than k. Then $sC_{k-1}(T) \subseteq sC_k(T)$.

Similarly, the Steiner k-periphery of a graph G, $sP_k(G)$, is the subgraph induced by the vertices v such that $s_{k}(v) = s\operatorname{diam}_k(G)$. When $k = 2$, notice that $sP_2(G)$ is the usual periphery $P(G)$. Henning, Oellermann, and Swart found a relationship similar to the one above for the Steiner k-peripheries of trees.

Theorem 12 [4]. Let $k \geq 3$ be an integer and T a tree of order greater than k. Then $sP_{k-1}(T) \subseteq sP_k(T)$.

Since $\operatorname{rad}_k(T) = 2s\operatorname{rad}_k(T)$ and $\operatorname{diam}_k(T) = 2s\operatorname{diam}_k(T)$ for a tree T, we have $sC_k(T) = C_k(T)$ and $sP_k(T) = P_k(T)$. Thus, the results above produce the following corollary.

Corollary 13. Let T be a tree of order n. Then $C(T) \subseteq C_3(T)$ and $P(T) \subseteq P_3(T)$. Furthermore, for any k with $3 \leq k \leq n$, we have $C_k(T) \subseteq C_{k+1}(T)$ and $P_k(T) \subseteq P_{k+1}(T)$.

We next present the only tree that is closed 3-stop self-centered.

Proposition 14. Let T be a tree. T is closed 3-stop self-centered if and only if $T \cong P_n$ ($n \geq 3$).

Proof. If $T \cong P_n$ ($n \geq 3$), the result follows. For the converse, let $T \not\cong P_n$ be a tree of order $n \geq 3$. Then T has three end-vertices $x, y, z \in V(P_3(T))$ such that $diam_3(T) = d_3(x, y, z)$. Let $x = x_0, x_1, \ldots, x_p = y$ be the geodesic from x to y in T. Then $e_3(x) = d(x, y) + d(y, z) + d(z, x)$, and $e_3(x_1) = d(x_1, y) + d(y, z) + d(z, x_1) < e_3(x)$, and so T is not closed 3-stop self-centered.

As a quick corollary of the above proof we have the following result.

Corollary 15. Let T be a tree. T is closed 3-stop self-peripheral if and only if $T \cong P_n$ ($n \geq 3$).

As we have seen already, the path P_n has many special properties. The next result shows that P_n is the only tree that has the same closed k-stop eccentricity for each vertex and for any k with $1 \leq k \leq n - 1$. This result follows as the path has only two end vertices and a unique path between them.

Proposition 16. Let T be a tree of order n. Then $e_k(v) = 2n$, for all $v \in V(T)$, and for all $k \in \{1, 2, \ldots, n - 1\}$ if and only if $T = P_n$, the path of order n.

The following is a consequence of the Steiner distance in trees.

Proposition 17. Let T be a tree and k an integer with $1 \leq k \leq n$. Then T has at most $k - 1$ end vertices if and only if T is closed k-stop self-centered.

Proof. Let T be a tree with at most $k - 1$ end vertices, say they form the set $S = \{x_1, x_2, \ldots, x_{k-1}\}$, $k \geq 3$. Then for all $v \in V(G)$,

$$e_k(v) = \min_{\theta \in \mathcal{P}(S)} \left(d(\theta(v), \theta(x_1)) + d(\theta(x_1), \theta(x_2)) + d(\theta(x_2), \theta(x_3)) + \cdots + d(\theta(x_{k-1}), \theta(v)) \right),$$

where $\mathcal{P}(S)$ is the set of all permutations from $\mathcal{P}(S)$ onto $\mathcal{P}(S)$. Since T is a tree with $k - 1$ end vertices, it follows that $e_k(v) = 2m$, $\forall v \in V(G)$.
For the converse, assume that T is closed k-stop self-centered, and assume to the contrary, that T has at least k end vertices, say y_1, y_2, \ldots, y_t, for $t \geq k \geq 3$. Let z_1 be the support vertex of y_1 and let $S = \{y_2, y_3, \ldots, y_{k-1}\}$, $k \geq 3$. Then

$$e_k(z_1) = \min_{\theta \in \mathcal{P}(S)} \left(d(\theta(z_1), \theta(y_2)) + d(\theta(y_2), \theta(y_3)) + d(\theta(y_3), \theta(y_4)) + \cdots + d(\theta(y_{k-1}), \theta(z_1)) \right),$$

where $\mathcal{P}(S)$ is the set of all permutations from $\mathcal{P}(S)$ onto $\mathcal{P}(S)$. However, $e_k(y_1) = 2 + e_k(z_1)$, which is a contradiction to T being closed k-stop self-centered.

As a quick corollary of the above proof we have the following result.

Corollary 18. Let T be a tree and k an integer with $1 \leq k \leq n$. Then T has at most $k-1$ end vertices if and only if T is closed k-stop self-peripheral.

5. Further Research

As seen in Section 3, Proposition 2 can be generalized for $k = 4$. The following conjecture was posed in Section 3.

Conjecture (Section 3): For any integer $k \geq 2$ and any connected graph G, we have

$$\text{rad}_k(G) \leq \text{diam}_k(G) \leq \frac{k}{k-1} \text{rad}_k(G).$$

Chartrand, Oellermann, Tian, and Zou showed a similar result for Steiner radius and diameter for trees.

Theorem 19 [2]. If $k \geq 2$ is an integer and T is a tree of order at least k, then

$$\text{srad}_k(T) \leq \text{sdiam}_k(T) \leq \frac{k}{k-1} \text{srad}_k(T).$$

Since $e_k(v) = 2se_k(v)$ for any vertex v in a tree, we have the corollary.

Corollary 20. If $k \geq 2$ is an integer and T is a tree of order at least k, then

$$\text{rad}_k(T) \leq \text{diam}_k(T) \leq \frac{k}{k-1} \text{rad}_k(T).$$
We have also been able to verify this conjecture for \(k = 3 \) and \(k = 4 \) for arbitrary connected graphs. As an interesting side note, Chartrand, Oellermann, Tian and Zou conjectured that \(srad_k(G) \leq sdiam_k(G) \leq \frac{k}{k-1}srad(G) \) for any connected graph \(G \) [2]. This conjecture was disproven in [5], but our conjecture for closed \(k \)-stop distance holds for the class of graphs used as a counterexample to the Steiner conjecture.

We propose the extension of the study of centrality and eccentricity for closed \(k \)-stop distance in graphs for \(k \geq 4 \).

References

