Chapter 1
Introduction
-- Formally, a graph G consists of a finite nonempty set V of objects called vertices (the singular is vertex) and a set E of 2-element subsets of V called edges
-- The sets V and E are the vertex set and edge set of G, respectively
-- Vertices are sometimes called points or nodes and edges are sometimes called lines
-- There are some who use the term simple graph for what we call a graph
-- Two graphs G and H are equal if $V(G) = V(H)$ and $E(G) = E(H)$, in which case we write $G = H$
-- If uv is an edge of G, then u and v are said to be adjacent in G
-- The number of vertices in G is often called the order of G, while the number of edges is its size
-- A graph with exactly one vertex is called a trivial graph, implying that the order of a nontrivial graph is at least 2
-- A graph G such as the one of Figure 1.3 (a) that has labels on vertices/edges is a labeled graph and Figure 1.3 (b) represents an unlabeled graph
-- If $e = uv$ is an edge of G, then the adjacent vertices u and v are said to be joined by the edge e
-- The vertices u and v are referred to as neighbors of each other
-- In this case, the vertex u and the edge e (as well as v and e) are said to be incident with each other
-- Distinct edges incident with a common vertex are adjacent edges
-- A graph H is called a subgraph of a graph G, written $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$
-- If $H \subseteq G$ and either $V(H)$ is a proper subset of $V(G)$ or $E(H)$ is a proper subset of $E(G)$, then H is a proper subgraph of G
-- If a subgraph of a graph G has the same vertex set as G, then it is a spanning subgraph of G
-- A subgraph F of a graph G is called an induced subgraph of G if whenever u and v are vertices of F and uv is an edge of G, then uv is an edge of F as well
-- If S is a nonempty set of vertices of a graph G, then the subgraph of G induced by S is the induced subgraph with vertex set S. This induced subgraph is denoted by $G[S]$. For a nonempty set X of edges, the subgraph $G[X]$ induced by X has edge set X and consists of all vertices that are incident with at least one edge in X. This subgraph is called an edge-induced subgraph of G
-- A **u - v** walk \(W \) in \(G \) is a sequence of vertices in \(G \), beginning with \(u \) and ending at \(v \) such that consecutive vertices in the sequence are adjacent, that is, we can express \(W \) as where \(k \geq 0 \) and \(v_i \) and \(v_{i+1} \) are adjacent for \(i = 0, 1, 2, \ldots, k-1 \). If \(u = v \), then the walk \(W \) is **closed**; while if \(u \neq v \), then \(W \) is **open**.

-- The number of edges encountered in a walk (including multiple occurrences of an edge) is called the **length** of the walk.

-- A walk of length 0 is a **trivial walk**.

-- Borrowing terminology from the Old West, we define a **u - v trail** in a graph \(G \) to be a **u - v walk** in which no edge is traversed more than once.

-- A **u - v walk** in a graph in which no vertices are repeated is a **u - v path**.

-- A **circuit** in a graph \(G \) is a closed trail of length 3 or more.

-- A circuit that repeats no vertex, except for the first and last, is a **cycle**.

-- A **k-cycle** is a cycle of length \(k \).

-- A 3-cycle is also referred to as a **triangle**.

-- A cycle of odd length is called an **odd cycle**; while, not surprisingly, a cycle of even length is called an **even cycle**.

-- The vertices and edges of a trail, path, circuit or cycle in a graph \(G \) form a subgraph of \(G \), also called a **trail**, **path**, **circuit** or **cycle**.

-- If \(G \) contains a **u - v path**, then \(u \) and \(v \) are said to be **connected** and \(u \) is **connected to** \(v \) (and \(v \) is connected to \(u \)).

-- A graph \(G \) is **connected** if every two vertices of \(G \) are connected, that is, if \(G \) contains a **u - v path** for every pair \(u, v \) of vertices of \(G \).

-- A graph \(G \) that is not connected is called **disconnected** (i.e. there are two vertices \(x \) and \(y \), and no \(x - y \) path).

-- A connected subgraph of \(G \) that is not a proper subgraph of any other connected subgraph of \(G \) is a **component** of \(G \).

-- In this case, \(G \) is the union of the graphs \(G_1, G_2, \ldots, G_k \).

-- The **distance** between \(u \) and \(v \) is the smallest length of any \(u - v \) path in \(G \) and is denoted by \(d_G(u, v) \) or simply \(d(u, v) \) if the graph \(G \) under consideration is clear.

-- A **u - v path** of length \(d(u, v) \) is called a **u - v geodesic**.

-- If the vertices of a graph \(G \) of order \(n \) can be labeled (or relabeled) \(v_1, v_2, \ldots, v_n \) so that its edges are \(v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n \), then \(G \) is called a **path**; while if the vertices of a graph \(G \) of order \(n \geq 3 \) can be labeled (or relabeled) \(v_1, v_2, \ldots, v_n \) so that its edges are \(v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n \) and \(v_1 v_n \), then \(G \) is called a **cycle**.

-- A graph \(G \) is **complete** if every two distinct vertices of \(G \) are adjacent.
-- The complement of a graph G is that graph whose vertex set is also $V(G)$ and such that for each pair u, v of distinct vertices of G, uv is an edge of if and only if uv is not an edge of G

-- The graph then has n vertices and no edges; it is called the empty graph of order n

-- A graph G is a bipartite graph if $V(G)$ can be partitioned into two subsets U and W, called partite sets, such that every edge of G joins a vertex of U and a vertex of W. If this does happen, however, then we call G a complete bipartite graph

-- If either $s = 1$ or $t = 1$, then K_s, t is a star

-- A graph G is a k-partite graph if $V(G)$ can be partitioned into k subsets $V_1, V_2, ..., V_k$ (once again called partite sets) such that if uv is an edge of G, then u and v belong to different partite sets. If, in addition, every two vertices in different partite sets are joined by an edge, then G is a complete k-partite graph

-- The complete k-partite graphs are also referred to as complete multipartite graphs

-- The join $G + H$ consists of $G \cup H$ and all edges joining a vertex of G and a vertex of H

-- For two graphs G and H, the Cartesian product $G \times H$ has vertex set $V(G \times H) = V(G) \times V(H)$, that is, every vertex of $G \times H$ is an ordered pair (u, v), where $u \in V(G)$ and $v \in V(H)$

-- The graph $C_4 \times K_2$ is often denoted by Q_3 and is called the 3-cube

-- The graphs Q_n are then called n-cubes or hypercubes

-- The n-cube can also be defined as that graph whose vertex set is the set of ordered n-tuples of 0s and 1s (commonly called n-bit strings) and where two vertices are adjacent if their ordered n-tuples differ in exactly 1 position

-- A multigraph M consists of a finite nonempty set V of vertices and a set E of edges, where every two vertices of M are joined by a finite number of edges (possibly zero)

-- If two or more edges join the same pair of (distinct) vertices, then these edges are called parallel edges

-- In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself

-- Such an edge is called a loop

-- A digraph (or directed graph) D is a finite nonempty set V of objects called vertices together with a set E of ordered pairs of distinct vertices

-- The elements of E are called directed edges or arcs
Then u is said to be adjacent to v and v is adjacent from u. If, in the definition of digraph, for each pair u, v of distinct vertices, at most one of (u, v) and (v, u) is a directed edge, then the resulting digraph is an oriented graph. The digraph D is also called an orientation of G.

Chapter 2
Degrees

The degree of a vertex v in a graph G is the number of edges incident with v and is denoted by deg G v or simply by deg v if the graph G is clear from the context. The set N (v) of neighbors of a vertex v is called the neighborhood of v. Thus deg v = | N (v)|. A vertex of degree 0 is referred to as an isolated vertex and a vertex of degree 1 is an end-vertex (or a leaf). The minimum degree of G is the minimum degree among the vertices of G and is denoted by δ(G); the maximum degree of G is denoted by Δ (G). Since every edge of G joins a vertex of U and a vertex of W, it follows that adding the degrees of the vertices in U (or in W) gives the number of edges in G, that is, A vertex of even degree is called an even vertex, while a vertex of odd degree is an odd vertex.

Finding the sharpness of a bound: find an infinite class (such as the paths on n vertices, or an infinite class that can be described by adding conditions) that achieves the equality of the bound. For a vertex v in a multigraph or pseudograph G, the degree deg v of v in G is the number of edges of G incident with v, where there is a contribution of 2 for each loop at v in a pseudograph. For the pseudograph G of Figure 2.4, Figure 2.4 : Illustrating degrees in a multigraph and a digraph. For a vertex v in a digraph D, the outdegree od v of v is the number of vertices of D to which v is adjacent, while the indegree id v of v is the number of vertices of D from which v is adjacent. If δ (G) = Δ (G), then the vertices of G have the same degree and G is called regular. If deg v = r for every vertex v of G, where 0 ≤ r ≤ n − 1, then G is r-regular or regular of degree r.

A 3-regular graph is also referred to as a cubic graph. The graphs K 4, K 3, 3 and Q 3 are cubic graphs; however, the best known cubic graph may very well be the Petersen graph, shown in Figure 2.6. The graphs H r, n described above are called Harary graphs, named for Frank Harary.
If the degrees of the vertices of a graph G are listed in a sequence s, then s is called a **degree sequence** of G

A finite sequence of nonnegative integers is called **graphical** if it is a degree sequence of some graph

The adjacency matrix of G is the $n \times n$ matrix $A = [a_{ij}]$, where while the incidence matrix of G is the $n \times m$ matrix $B = [b_{ij}]$, where These matrices are shown for the graph G of Figure 2.17

Two $u - v$ walks are considered **equal** if, as sequences, they are identical, term by term

A graph G of order at least 2 is **irregular** if every two vertices of G have distinct degrees

Recall that we defined a nontrivial graph G to be **irregular** if every two vertices of G have distinct degrees

For a graph G and a vertex v of G, define the **F-degree** $\text{F deg } v$ of v in G as the number of copies (unlabeled subgraphs, induced or not, having the same structure) of F in G that contain v

A graph G is **F-regular** if every two vertices of G have the same F-degree, while G is **F-irregular** if every two vertices of G have distinct F-degrees

If M is a multigraph and all parallel edges joining pairs of vertices of M are replaced by a single edge, then the resulting graph G is called the **underlying graph** of M

Formally, two (labeled) graphs G and H are **isomorphic** (have the same structure) if there exists a one-to-one correspondence f from $V(G)$ to $V(H)$ such that $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$. In this case, f is called an **isomorphism** from G to H. Thus, if G and H are isomorphic graphs, then we say that G is **isomorphic** to H and we write $G \cong H$

If two graphs G and H are not isomorphic, then they are called **non-isomorphic graphs**

A graph G is **self-complementary** if $G \cong \text{complement}(G)$

As expected, two digraphs D_1 and D_2 are **isomorphic** if there exists a one-to-one correspondence $V(D_1) \rightarrow V(D_2)$ such that $(u, v) \in E(D_1)$ if and only if $(f(u), f(v)) \in E(D_2)$

One of the major consequences of knowing that isomorphism is an equivalence relation on a set of graphs is that this produces a partition of this set into equivalence classes (subsets) which are **isomorphism classes**

For unlabeled graphs H and G, we say that H is **isomorphic to a subgraph** of G if for any labeling of the vertices of H and G, the labeled graph H is isomorphic to a subgraph of the labeled graph G
There are two other isomorphisms from the graph H to itself, namely 3 and 4, defined by and An isomorphism from a graph G to itself is called an automorphism of G
This group is denoted by Aut (G) and is called the automorphism group of G
Consequently, each of the elements of Aut (F) can be expressed in terms of and, namely, Because of this property, and are generators for the group Aut (F)
F and the group table for Aut (F) For a vertex v of a graph G, the set of all vertices into which v can be mapped by some automorphism of G is an orbit of G
Two vertices u and v are similar if they belong to the same orbit
On the other hand, if a graph G contains a single orbit, then every two vertices of G are similar and G is called vertextransitive
An edge e = uv of a connected graph G is called a bridge of G if G − e is disconnected
An edge e is a bridge of a disconnected graph if e is a bridge of some component of G
A tree is an acyclic connected graph
A tree containing exactly two vertices that are not end-vertices (which are necessarily adjacent) is called a double star
Another common class of trees consists of the "caterpillars." A caterpillar is a tree of order 3 or more, the removal of whose endvertices produces a path called the spine of the caterpillar
There are occasions when it is convenient to select a vertex of a tree T under discussion and designate this vertex as the root of T
The tree T then becomes a rooted tree
Acyclic graphs are also referred to as forests
A spanning subgraph H of a connected graph G such that H is a tree is called a spanning tree of G
Let G be a connected graph each of whose edges is assigned a number (called the cost or weight of the edge
For each subgraph H of G, the weight w (H) of H is defined as the sum of the weights of its edges, that is, We seek a spanning tree of G whose weight is minimum among all spanning trees of G
Such a spanning tree is called a minimum spanning tree
The problem of finding a minimum spanning tree in a connected weighted graph is called the Minimum Spanning Tree Problem
Kruskal’s Algorithm: For a connected weighted graph G, a spanning tree T of G is constructed as follows: For the first edge e 1 of T, we select any edge of G
of minimum weight and for the second edge e_2 of T, we select any remaining edge of G of minimum weight

--- Prim's Algorithm: For a connected weighted graph G, a spanning tree T of G is constructed as follows: For an arbitrary vertex u for G, an edge of minimum weight incident with u is selected as the first edge e_1 of T.

--- The following formula was established in 1889 by Arthur Cayley and is often referred to as the Cayley Tree Formula.

--- By a cofactor of an $n \times n$ matrix $M = [m_{ij}]$, we mean $(-1)^{i+j} \det(M_{ij})$, where $\det(M_{ij})$ indicates the determinant of the $(n-1) \times (n-1)$ submatrix M_{ij} of M, obtained by deleting row i and column j of M.

--- Chapter 5

--- Connectivity

--- A vertex v in a connected graph G is a cutvertex of G if $G - v$ is disconnected.

--- A nontrivial connected graph with no cut-vertices is called a nonseparable graph.

--- A maximal nonseparable subgraph of a graph G is called a block of G.

--- By a vertex-cut in a graph G, we mean a set U of vertices of G such that $G - U$ is disconnected.

--- A vertex-cut of minimum cardinality in G is called a minimum vertex-cut.

--- For a graph G that is not complete, the vertex-connectivity (or simply the connectivity) $\kappa(G)$ of G is defined as the cardinality of a minimum vertex-cut of G; (The symbol is the Greek letter kappa.)

--- If $G = K_n$ for some positive integer n, then $\kappa(G)$ is defined to be $n - 1$.

--- In general then, the connectivity $\kappa(G)$ of a graph G is the minimum value of $|U|$ among all subsets U of $V(G)$ such that $G - U$ is either disconnected or trivial.

--- For a nonnegative integer k, a graph G is said to be k-connected if $\kappa(G) \geq k$.

--- An edge-cut in a nontrivial graph G is a set X of edges of G such that $G - X$ is disconnected.

--- An edge-cut X of a connected graph G is minimal if no proper subset of X is an edge-cut of G.

--- An edge-cut of minimum cardinality is called a minimum edge-cut.

--- The edge-connectivity $\lambda(G)$ of a nontrivial graph G is the cardinality of a minimum edge-cut of G, while we define $\lambda(K_1) = 0$.

--- For a nonnegative integer k, a graph G is k-edge-connected if $\lambda(G) \geq k$.

--- These graphs are referred to as the Harary graphs, named for Frank Harary.
For an integer \(k \) with \(1 \leq k \leq d \), the \textit{kth power} \(G^k \) of \(G \) is the graph with \(V(G^k) = V(G) \) such that \(uv \) is an edge of \(G^k \) if \(1 \leq d(G(u, v)) \leq k \).

A set \(S \) of vertices of a graph \(G \) is said to \textit{separate} two vertices \(u \) and \(v \) of \(G \) if \(G - S \) is disconnected and \(u \) and \(v \) belong to different components of \(G - S \).

Such a set \(S \) is called a \textit{\(u - v \) separating set}.

A \(u - v \) separating set of minimum cardinality is called a \textit{minimum \(u - v \) separating set}.

An \textit{internal vertex} of a \(u - v \) path \(P \) is a vertex of \(P \) different from \(u \) and \(v \).

A collection \(\{ P_1, P_2, \ldots, P_k \} \) of \(u - v \) paths is called \textit{internally disjoint} if every two of these paths have no vertices in common other than \(u \) and \(v \).

More generally, for \(k + 1 \) distinct vertices \(u, v_1, v_2, \ldots, v_k \), a collection \(\{ P_1, P_2, \ldots, P_k \} \) of \(k \) paths, where \(P_i \) is a \(u - v_i \) path (\(1 \leq i \leq k \)), are \textit{internally disjoint} if every two distinct paths in the collection have only \(u \) in common.

For \(2k \) distinct vertices \(u_1, u_2, \ldots, u_k, v_1, v_2, \ldots, v_k \), a collection \(\{ P_1, P_2, \ldots, P_k \} \) of \(k \) paths, where \(P_i \) is a \(u_i - v_i \) path (\(1 \leq i \leq k \)), are \textit{disjoint} if no two distinct paths in the collection have a vertex in common.

Such a graph \(G^k \) is then called a \textit{distance-labeled graph}.

A path \(P \) in \(G^k \) is called \textit{proper} if every two adjacent edges in \(P \) have different labels.

By a \textit{proper edge labeling} of \(G \) we mean a labeling of the edges of \(G \) from the set \(\{ 1, 2, \ldots, k \} \) for some positive integer \(k \) such that no two adjacent edges are labeled the same.

\textbf{Chapter 6}

\textbf{Traversability}

A circuit \(C \) in a graph \(G \) is called an \textit{Eulerian circuit} (pronounced oy-LEER-e-an) if \(C \) contains every edge of \(G \).

A connected graph that contains an Eulerian circuit is called an \textit{Eulerian graph}.

For a connected graph \(G \), we refer to an open trail that contains every edge of \(G \) as an \textit{Eulerian trail}.

This became known as the \textit{Königsberg Bridge Problem}.

A cycle in a graph \(G \) that contains every vertex of \(G \) is called a \textit{Hamiltonian cycle} of \(G \).

A \textit{Hamiltonian graph} is a graph that contains a Hamiltonian cycle.

A path in a graph \(G \) that contains every vertex of \(G \) is called a \textit{Hamiltonian path} in \(G \).

In 1857, Hamilton invented a game called the \textit{Icosian Game}.

-- The closure \(C(G) \) of a graph \(G \) of order \(n \) is the graph obtained from \(G \) by recursively joining pairs of nonadjacent vertices whose degree sum is at least \(n \) (in the resulting graph at each stage) until no such pair remains

-- A Hamiltonian walk in a connected graph \(G \) is a closed spanning walk of minimum length in \(G \).

Chapter 7

Digraphs

-- Recall that a **digraph** \(D \) consists of a finite nonempty set \(V \) of objects called **vertices** and a set \(E \) of ordered pairs of distinct vertices.

-- Each element of \(E \) is an **arc** or a **directed edge**.

-- If a digraph \(D \) has the property that for each pair \(u, v \) of distinct vertices of \(D \), at most one of \((u, v)\) and \((v, u)\) is an arc of \(D \), then \(D \) is an **oriented graph**.

-- The digraph \(D \) is then referred to as an **orientation** of \(G \).

-- A digraph \(H \) is called a **subdigraph** of a digraph \(D \) if \(V(H) \) is a subset of \(V(D) \) and \(E(H) \) a subset of \(E(D) \).

-- A digraph \(D \) is **symmetric** if whenever \((u, v)\) is an arc of \(D \), then \((v, u)\) is an arc of \(D \) as well.

-- Also, recall that if \((u, v)\) is an arc of a digraph, then \(u \) is said to be **adjacent to** \(v \) and \(v \) is **adjacent from** \(u \).

-- The vertices \(u \) and \(v \) are also said to be **incident with** the arc \((u, v)\).

-- The number of vertices to which a vertex \(v \) is adjacent is the **outdegree** of \(v \) and is denoted by \(od(v) \).

-- The number of vertices from which \(v \) is adjacent is the **indegree** of \(v \) and is denoted by \(id(v) \).

-- A sequence of vertices of \(D \) such that \(u_i \) is adjacent to \(u_{i+1} \) for all \(i \) \((0 \leq i \leq k-1)\) is called a **(directed) \(u-v \) walk** in \(D \).

-- The number of occurrences of arcs on a walk is the **length** of the walk.

-- A walk in which no arc is repeated is a **(directed) trail**, while a walk in which no vertex is repeated is a **(directed) path**.

-- A \(u-v \) walk is **closed** if \(u = v \) and is **open** if \(u \neq v \).

-- A closed trail of length at least 2 is a **(directed) circuit**; a closed walk of length at least 2 in which no vertex is repeated except for the initial and terminal vertices is a **(directed) cycle**.
The underlying graph of a digraph D is obtained by removing all directions from the arcs of D and replacing any resulting pair of parallel edges by a single edge.

A digraph D is connected (sometimes called weakly connected) if the underlying graph of D is connected.

A digraph D is strong (or strongly connected) if D contains both a $u-v$ path and a $v-u$ path for every pair u, v of distinct vertices of D.

The directed distance or, more simply, the distance (u, v) from u to v is the length of a shortest $u-v$ path in D.

A $u-v$ path of length (u, v) is a $u-v$ geodesic.

An Eulerian circuit in a (strong) digraph D is a circuit containing every arc of D.

An Eulerian digraph is a digraph containing an Eulerian circuit.

A tournament is an orientation of a complete graph.

Therefore, a tournament can be defined as a digraph such that for every pair u, v of distinct vertices, exactly one of (u, v) and (v, u) is an arc (Ties are not permitted).

A tournament T is transitive if whenever (u, v) and (v, w) are arcs of T, then (u, w) is also an arc of T.

As with graphs, a path P in a digraph D is a Hamiltonian path of D if P contains all vertices of D.

A cycle C in D is a Hamiltonian cycle if C contains every vertex of D.

If D has a Hamiltonian cycle, then D is a Hamiltonian digraph.

Chapter 8

Matchings and Factorization

A set of edges in a graph is independent if no two edges in the set are adjacent.

By a matching in a graph G, we mean an independent set of edges in G.

We say that M matches the set $\{u_1, u_2, \ldots, u_k\}$ to the set $\{w_1, w_2, \ldots, w_k\}$.

Let G be a bipartite graph with partite sets U and W such that $|U| \leq |W|$.

For a nonempty set X of U, the neighborhood $N(X)$ of X is the union of the neighborhoods $N(x)$, where x is in X.

The graph G is said to satisfy Hall’s condition if $|N(X)| \geq |X|$ for every nonempty subset X of U.

Then this collection of sets has a system of distinct representatives if there exist nondistinct elements x_1, x_2, \ldots, x_n such that $x_i \in S_i$ for $1 \leq i \leq n$.
Such a matching is called a **maximum matching**

If a graph G of order $2k$ has a matching M of cardinality k, then this (necessarily maximum) matching M is called a **perfect matching** as M matches every vertex of G to some vertex of G

The edge independence number $\alpha'(G)$ of a graph G is the maximum cardinality of an independent set of edges

A vertex and an incident edge are said to **cover** each other

An edge cover of a graph G without isolated vertices is a set of edges of G that covers all vertices of G

The edge covering number $\beta'(G)$ of a graph G is the minimum cardinality of an edge cover of G

An edge cover of G of cardinality $\alpha'(G)$ is a **minimum edge cover** of G

A set of vertices in a graph is **independent** if no two vertices in the set are adjacent

The vertex independence number (or the independence number) (G) of a graph G is the maximum cardinality of an independent set of vertices in G

An independent set in G of cardinality (G) is called a **maximum independent set**

A vertex cover in a graph G is a set of vertices that covers all edges of G

The minimum number of vertices in a vertex cover of G is the vertex covering number (G) of G

A vertex cover of cardinality $\alpha(G)$ is a **minimum vertex cover** in G

A 1-regular spanning subgraph of a graph G is also called a **1-factor** of G

A component of a graph is **odd** or **even** according to whether its order is odd or even

A graph G is said to be **1-factorable** if there exist 1-factors F_1, F_2, \ldots, F_r of G such that $\{ E(F_1), E(F_2), \ldots, E(F_r) \}$ is a partition of $E(G)$

We then say that G is **factored** into the 1-factors F_1, F_2, \ldots, F_r, which form a **1-factorization** of G

For this reason, the 1-factorization described in the proof is called a **cyclic factorization**

A **2-factor** in a graph G is a spanning 2-regular subgraph of G

A graph G is said to be **2-factorable** if there exist 2-factors F_1, F_2, \ldots, F_k such that $\{ E(F_1), E(F_2), \ldots, E(F_k) \}$ is a partition of $E(G)$

A Hamiltonian factorization of a graph G is a 2-factorization of G in which each 2-factor is a Hamiltonian cycle

A graph G is **Hamiltonian-factorable** if there exists a Hamiltonian factorization of G
-- Hamiltonian factorization of K_9 More generally, a spanning subgraph F of a graph G is called a factor of G
-- The graph G is said to be factorable into the factors F_1, F_2, \ldots, F_k if \{$E(F_1), E(F_2), \ldots, E(F_k)$\} is a partition of $E(G)$
-- If each factor F_i is isomorphic to some graph F, then G is F-factorable
-- A graph G is said to be decomposable into the subgraphs H_1, H_2, \ldots, H_k if \{$E(H_1), E(H_2), \ldots, E(H_k)$\} is a partition of $E(G)$
-- Such a partition produces a decomposition of G
-- If each H_i is isomorphic to some graph H, then the graph G is H-decomposable and the decomposition is an H-decomposable
-- A Steiner triple system of order n is a set S of cardinality n and a collection T of 3-element subsets, called triples, such that every two distinct elements of S belong to a unique triple in T
-- From the K_3-decomposition of K_7, we have now produced a Steiner triple system of order 7 from the set \{1, 2, \ldots, 7\}, namely: The K_3-decomposition is a cyclic decomposition of K_7
-- A one-to-one function $f : V(G) \rightarrow \{0, 1, 2, \ldots, m\}$ is called a graceful labeling of G if the induced edge labeling $f' : E(G) \rightarrow \{1, 2, \ldots, m\}$ defined by is also one-to-one
-- The length of a smallest cycle in a graph is referred to as its girth
-- For an integer $g \geq 3$, a g-cage is a 3-regular graph of minimum order that has girth g

Chapter 9
Planarity
-- A graph G is called a planar graph if G can be drawn in the plane so that no two of its edges cross each other
-- A graph that is not planar is called nonplanar
-- A graph G is called a plane graph if it is drawn in the plane so that no two edges of G cross
-- This problem is referred to as the Three Houses and Three Utilities Problem
-- A plane graph divides the plane into connected pieces called regions
-- This is the exterior region
-- The subgraph of a plane graph whose vertices and edges are Figure 9.5: A planar graph and a plane graph incident with a given region R is the boundary of R
-- This is referred to as the Euler Identity
A graph G is **maximal planar** if G is planar but the addition of an edge between any two nonadjacent vertices of G results in a nonplanar graph.

More formally, a graph G' is called a **subdivision** of a graph G if $G' \neq G$ or one or more vertices of degree 2 are inserted into one or more edges of G.

A "drawing" in plane is also called an **embedding** of G in the plane. In addition, we say that G can be **embedded** in the plane.

A common surface is the **torus**, a doughnut-shaped surface (see Figure 9.19 (a)). In Figure 9.19 (b), we see that the graph K_4 can be embedded on the torus.

The surface S_k is also called a **surface of genus** k.

What we have just observed then is that every graph can be **embedded** on some surface.

The smallest nonnegative integer k such that a graph G can be embedded on S_k is called the **genus** of G and is denoted by $\gamma(G)$.

A region is called a **2-cell** if any closed curve that is drawn in that region can be continuously contracted (or shrunk) in that region to a single point.

An embedding, every region of which is a 2-cell, is called a **2-cell embedding**.

Chapter 10

Coloring

The conjecture that every map can be colored with four or fewer colors became known as the **Four Color Conjecture** (proof based on a set that was later referred to as an **unavoidable set of reducible configurations**).

A **reducible configuration** is any arrangement of regions that cannot occur in a map.

By a **proper coloring** (or, more simply, a **coloring**) of a graph G, we mean an assignment of colors (elements of some set) to the vertices of G, one color to each vertex, such that adjacent vertices are colored differently.

The smallest number of colors in any coloring of a graph G is called the **chromatic number** of G and is denoted by $\chi(G)$. (The symbol is the Greek letter "chi"). If it is possible to color (the vertices of) G from a set of k colors, then G is said to be **k-colorable**.

A coloring that uses k colors is called a **k-coloring**.

If $\chi(G) = k$, then G is said to be **k-chromatic** and every k-coloring of G is a **minimum coloring** of G.

A **clique** in a graph G is a complete subgraph of G.

The order of the largest clique in a graph G is its **clique number**, which is denoted by $\omega(G)$.

A coloring of a graph G can also be thought of as a function c from $V(G)$ to the set \mathbb{N} of positive integers (or natural numbers) such that adjacent vertices have...
distinct functional values, that is, a coloring of G is a function $c : V(G) \rightarrow N$ such that $uv \in E(G)$ implies that $c(u) \neq c(v)$

-- This graph is triangle-free (it has no triangles) but has chromatic number 4
-- A graph G is called perfect if $(H) = \omega(H)$ for every induced subgraph H of G
-- An edge coloring of a nonempty graph G is an assignment of colors to the edges of G, one color to each edge, such that adjacent edges are assigned different colors
-- The minimum number of colors that can be used to color the edges of G is called the chromatic index (or sometimes the edge chromatic number) and is denoted by $'(G)$
-- An edge coloring that uses k colors is a k-edge coloring

Chapter 12
Distance
-- For two vertices u and v in a graph G, the distance $d(u,v)$ from u to v is the length of a shortest $u-v$ path in G
-- A $u-v$ path of length $d(u,v)$ is called a $u-v$ geodesic
-- $d(u,v) = d(v,u)$ for all $u,v \in V(G)$ [the symmetric property]. 4
-- $d(u,w) \leq d(u,v)+d(v,w)$ for all $u,v,w \in V(G)$ [the triangle inequality]. That a connected graph satisfies all four of these properties should be clear, with the possible exception of property 4 (the triangle inequality), which we now verify
-- The fact that the distance d satisfies properties 1 – 4 means that d is a metric and $(V(G),d)$ is a metric space
-- For a vertex v in a connected graph G, the eccentricity $e(v)$ of v is the distance between v and a vertex farthest from v in G
-- The minimum eccentricity among the vertices of G is its radius and the maximum eccentricity is its diameter, which are denoted by $\text{rad}(G)$ and $\text{diam}(G)$, respectively
-- A vertex v in G is a central vertex if $e(v) = \text{rad}(G)$ and the subgraph induced by the central vertices of G is the center $\text{Cen}(G)$ of G
-- If every vertex of G is a central vertex, then $\text{Cen}(G) = G$ and G is called self-centered
-- A vertex v in a connected graph G is called a peripheral vertex if $e(v)=\text{diam}(G)$
-- The subgraph of G induced by its peripheral vertices is the periphery $\text{Per}(G)$ of G
-- Such a vertex v is called an eccentric vertex of u
A vertex v is an eccentric vertex of the graph G if v is an eccentric vertex of some vertex of G

Chapter 13
Domination

-- The neighborhood (or open neighborhood) N(v) of v is the set of neighbors of v
-- The closed neighborhood \(N[v] \) is defined as \(N[v] = N(v) \cup \{v\} \)
-- A vertex v in a graph G is said to dominate itself and each of its neighbors, that is, v dominates the vertices in its closed neighborhood \(N[v] \). Therefore, v dominates \(1 + \deg v \) vertices of G
-- A set S of vertices of G is a dominating set of G if every vertex of G is dominated by some vertex in S
-- A minimum dominating set in a graph G is a dominating set of minimum cardinality
-- The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by \(\gamma(G) \)
-- If S is a dominating set of a graph G and no proper subset of S is a dominating set of G, then S is called a minimal dominating set. (In this context, a vertex does not dominate itself.) This type of domination is called total domination
-- A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to at least one vertex of S
-- The minimum cardinality of a total dominating set is the total domination number \(\gamma_t(G) \) of G
-- A total dominating set of cardinality \(\gamma_t(G) \) is a minimum total dominating set for G