2 Chapter 2: Determinants

2.2 Properties of Determinants

1. ELIMINATION METHOD: Finding determinant using row operations on a matrix \(A \):

 (a) \(B \) is obtained by interchanging two rows of \(A \) \(\Rightarrow \) \(\det(B) = -\det(A) \).

 (b) \(B \) is obtained by multiplying a row of \(A \) by \(\alpha \neq 0 \) \(\Rightarrow \) \(\det(B) = \alpha \cdot \det(A) \).

 (c) \(B \) is obtained by adding a multiple of a row of \(A \) to another \(\Rightarrow \) \(\det(B) = \det(A) \).

2. Table 1 compares the two methods (cofactor and elimination). Note that Elimination method is faster if \(n > 3 \).

3. \(A \) is singular \(\iff \) \(\det(A) = 0 \)

4. \(\det(AB) = \det(A) \cdot \det(B) \)

5. more relationships:

<table>
<thead>
<tr>
<th>matrix (B) obtained from matrix (A) through</th>
<th>relation for determinants</th>
</tr>
</thead>
<tbody>
<tr>
<td>swapping two rows</td>
<td>(\det B = -\det A)</td>
</tr>
<tr>
<td>multiplying a row by (\alpha \neq 0)</td>
<td>(\det B = \alpha \det A)</td>
</tr>
<tr>
<td>(B = A^T)</td>
<td>(\det B = \det A)</td>
</tr>
<tr>
<td>triangular</td>
<td>(\det B = \Pi_i a_{i,i})</td>
</tr>
<tr>
<td>diagonal</td>
<td>(\det B = \Pi_i a_{i,i})</td>
</tr>
<tr>
<td>has one row or column of 0</td>
<td>(\det B = 0)</td>
</tr>
<tr>
<td>has two identical rows or columns of 0</td>
<td>(\det B = 0)</td>
</tr>
<tr>
<td>singular</td>
<td>(\det B \neq 0)</td>
</tr>
<tr>
<td>non-singular</td>
<td>(\det B = \det C \cdot \det D)</td>
</tr>
<tr>
<td>(B = C \cdot D)</td>
<td>(\det B = \frac{1}{\det A})</td>
</tr>
<tr>
<td>(B = A^{-1})</td>
<td>(\det B = \alpha^n \det A) (where (A) and (B) are (nn))</td>
</tr>
<tr>
<td>(B = \alpha A)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Caption