Title: Groebner Bases and Their Applications

Abstract: One of the most important theorems in commutative algebra is the Hilbert Basis Theorem, which says that every ideal I in a polynomial ring R (with any finite number of variables) over a field k is finitely generated. In other words, there exist finitely many polynomials f_1, f_2, \ldots, f_n in I such that any polynomial f in I can be written as a linear combination of f_1, f_2, \ldots, f_n (with polynomial coefficients). This basis need not be unique, and in this talk, we will discuss a special type of basis called a Groebner basis, which simplifies many computations in the polynomial ring R, and hence in related objects such as algebraic varieties and algebraic groups.