Groups of vertices and Core-periphery structure

Prof. Raluca Gera,
Applied Mathematics Dept.
Naval Postgraduate School
Monterey, California
rgera@nps.edu
• Understand and contrast the different k-clique relaxation definitions:
 1. k-dense
 2. k-core
 3. k-plex

• Contrast macro-scale to meso-scale to micro-scale structure analysis.
Most observed real networks have:

- Heavy tail (powerlaw most probably, exponential)
- High clustering (high number of triangles especially in social networks, lower count otherwise)
- Small average path (usually small diameter)
- Communities/periphery/hierarchy
- Homophily and assortative mixing (similar nodes tend to be adjacent)

Where does the structure come from? How do we model it?
• Macro Scale properties (using all the interactions):
 – Small world (small average path, high clustering)
 – Powerlaw degree distr. (generally pref. attachment)
• Meso Scale properties applying to groups (using k-clique, k-core, k-dense):
 – Community structure
 – Core-periphery structure
• Micro Scale properties applying to small units:
 – Edge properties (such as who it connects, being a bridge)
 – Node properties (such as degree, cut-vertex)
Some local and global metrics pertaining to structure of networks

<table>
<thead>
<tr>
<th>Structure they capture</th>
<th>Local Statistics</th>
<th>Global statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct influence</td>
<td>Vertex degree, in and out degree</td>
<td>Degree distribution</td>
</tr>
<tr>
<td>General feel for the distribution of the edges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closeness, distance between nodes</td>
<td>Geodesic (shortest path between two nodes)</td>
<td>Diameter, radius, average path length</td>
</tr>
<tr>
<td></td>
<td>Distance (numerical value – length of a geodesic)</td>
<td></td>
</tr>
<tr>
<td>Connectedness of the network</td>
<td>Existence of a bridge (cut-edge)</td>
<td>Cut sets</td>
</tr>
<tr>
<td>How critical are vertices to the connectedness of the graph?</td>
<td>Existence of a cut vertex</td>
<td>Degree distribution</td>
</tr>
<tr>
<td>How much damage can a network take before disconnecting?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tight node/edge neighborhoods, important nodes as a group</td>
<td>Clique, plex, core, community, k-dense (for edges)</td>
<td>Community detection</td>
</tr>
</tbody>
</table>
In a very clustered graph, the adjacency matrix can be put in a block form (identifying communities).
• Newman’s book uses k-component, k-cliques, k-plexes and k-cores to refer to a set of vertices with some properties.

• In graph theory (and research papers) we use a clique to be the set of vertices and edges, so a clique is actually a graph (or subgraph).

• Either way it works, the graph captures more information, and I will refer them as graphs (induced by the nodes in the sets).
Some common approaches to subgroup identification and analysis:

- K-cliques
- K-cores (k-shell)
- K-denseness
- Components (and k-components)
- Community detection

They are used to explore how large networks can be built up out of small and tight groups.
Components and k-components
Components

- Recall that a **graph is k-connected/k-component** if it can be disconnected by removal of k vertices, and no k-1 vertices can disconnect it.
- **Component** is a maximal size connected subgraph
- A **k-component (k-connected component)** is a connected maximal subgraph that can be disconnected (or we’re left with a K_1) by removal of k vertices, and no k-1 vertices can disconnect it.
- Alternatively: A **k-component** is a connected maximal subgraph such that there are k-vertex-independent paths between any two vertices.
In class exercise

- The k-component tells how robust a graph or subgraph is.
- Identify a subgraph that is either a:
 - 1-connected
 - 2-connected
 - 3-connected
 - 4-connected
k-clique
k-clique

- A clique of size k: a complete subgraph on k nodes (i.e. a subset S of k nodes such that $\deg_G[S] v = k - 1$).
- We usually search for the maximum cliques, or the node count in a maximum cliques (the clique number).
- Is it realistic and useful in large graphs?
- Why is it hard to use this concept on real networks?
 - Because one might not infer/know all the edges of the true network, so clique may exist but it may not be captured in the data to be analyzed.
 - Hard to find the largest clique in the network (decision problem for the clique number is NP-Complete).
 - A relaxed version of a clique might be just as useful in large networks.
In class exercise

- A clique of size k: a complete subgraph on k nodes (i.e. a subset S of k nodes such that $\deg_{G[S]} v = k - 1$).

- Identify a:
 - 1-clique
 - 2-clique
 - 3-clique
 - 4-clique

- Relaxed versions of a k-clique are k-dense and k-core
k-core
• **A k-core** of size n: maximal subset of $\alpha \geq k + 1$ nodes, each with $\operatorname{deg}_{G[S]} v \geq k$, where $G[S]$ is the subgraph induced by S

• Idea for a k-core: enough edges are present between the group of α nodes to make a group strong even if it is not a clique.

References:

A k-core of size n: maximal subset of \(\alpha \geq k + 1 \) nodes, each with \(\text{deg}_{G[S]} \nu \geq k \), where \(G[S] \) is the subgraph induced by \(S \).

Finding the core:
- eliminate lower order k-cores
- the set of nodes in the highest k-core
• **A k-core** of size n: maximal subset of $\alpha \geq k + 1$ nodes, each with $\text{deg}_{G[S]} v \geq k$, where $G[S]$ is the subgraph induced by S.

• Identify the:
 – 1-core
 – 2-core
 – 3-core
 – 4-core
 – the core.
k-dense
A \textit{k-dense} sub-graph is a group of some $\alpha \geq k$ vertices, in which each pair of vertices $\{i, j\}$ has at least $k-2$ common neighbors.

Idea: friends of pairwise friends (k–dense looks at neighbors of edges rather than vertices, in making the α nodes part of the α group)
A *k*-dense sub-graph is a group of some $\alpha \geq k$ vertices, in which each pair of vertices \{i, j\} has at least $k-2$ common neighbors.

- k-clique \subseteq k-dense \subseteq k-core
In class exercise

- A **k-dense** sub-graph is a group of some \(\alpha \geq k \) vertices, in which each pair of vertices \(\{i, j\} \) has at least \(k-2 \) common neighbors.

- Identify a:
 - 2-dense
 - 3-dense
 - 4-dense
 - 5-dense
Other extensions

Table 1.

Definition of (locally) dense network structures

<table>
<thead>
<tr>
<th>Name of dense network structure</th>
<th>Definition</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>A complete subgraph of size k, where complete means that any two of the k elements are connected with each other</td>
<td>[36,37]</td>
</tr>
<tr>
<td>k-clan</td>
<td>A maximal connected subgraph having a subgraph-diameter $\leq k$, where the subgraph-diameter is the maximal number of links amongst the shortest paths inside the subgraph connecting any two elements of the subgraph</td>
<td>[37,38,39]</td>
</tr>
<tr>
<td>k-club</td>
<td>A connected subgraph, where the distance between elements of the subgraph $\leq k$, and where no further elements can be added that have a distance $\leq k$ from all the existing elements of the subgraph</td>
<td>[37,38,39]</td>
</tr>
<tr>
<td>k-clique</td>
<td>A maximal connected subgraph having a diameter $\leq k$, where the diameter is the maximal number of links amongst the shortest paths (including those outside the subgraph), which connect any two elements of the subgraph</td>
<td>[37,38,39,40]</td>
</tr>
<tr>
<td>k-clique community</td>
<td>A union of all cliques with k elements that can be reached from each other through a series of adjacent cliques with k elements, where two adjacent cliques with k elements share $k - 1$ elements (note that in this definition the term k-clique is also often used, which means a clique with k elements, and not the k-clique as defined in this set of definitions; the definition may be extended to include variable overlap between cliques)</td>
<td>[41,42]</td>
</tr>
<tr>
<td>k-component</td>
<td>A maximal connected subgraph, where all possible partitions of the subgraph must cut at least k edges</td>
<td>[43]</td>
</tr>
<tr>
<td>k-plex</td>
<td>A maximal connected subgraph, where each of the n elements of the subgraph is linked to at least $n - k$ other elements in the same subgraph</td>
<td>[37,44]</td>
</tr>
<tr>
<td>Strong LS-set</td>
<td>A maximal connected subgraph, where each subset of elements of the subgraph (including the individual elements themselves) have more connections with other elements of the subgraph than with elements outside the subgraph</td>
<td>[37,45]</td>
</tr>
<tr>
<td>LS-set</td>
<td>A maximal connected subgraph, where each element of the subgraph has more connections with other elements of the subgraph than with elements outside of the subgraph</td>
<td>[37,45,46]</td>
</tr>
<tr>
<td>lambda-set</td>
<td>A maximal connected subgraph, where each element of the subgraph has a larger element-connectivity with other elements of the subgraph than with elements outside of the subgraph (where element-connectivity means the minimum number of elements that must be removed from the network in order to leave no path between the two elements)</td>
<td>[37,47]</td>
</tr>
<tr>
<td>weak (modified) LS-set</td>
<td>A maximal connected subgraph, where the sum of the inter-modular links of the subgraph is smaller than the sum of the intra-modular edges</td>
<td>[37,45]</td>
</tr>
<tr>
<td>k-truss</td>
<td>The largest subgraph, where every edge is contained in at least $(k - 2)$ triangles within the subgraph</td>
<td>[48,49,50,51]</td>
</tr>
<tr>
<td>ork k-dense subgraph</td>
<td>A maximal connected subgraph, where the elements of the subgraph are connected to at least k other elements of the same subgraph; alternatively: the union of all k-shells with indices greater or equal k, where the k-shell is defined as the set of consecutively removed nodes and belonging links having a degree $\leq k$</td>
<td>[37,45,52]</td>
</tr>
</tbody>
</table>

Using them globally
k-cliques, k-cores and k-dense

- A clique of size k: a complete subgraph on k nodes (i.e. s subset S of k nodes such that $\text{deg}_{G[S]} v = k - 1$).
- A k-core of size n: maximal subset of $\alpha \geq k + 1$ nodes, each with $\text{deg}_{G[S]} v \geq k$, where $G[S]$ is the subgraph induced by S.
- A k-dense sub-graph is a group of some $\alpha \geq k$ vertices, in which each pair of vertices $\{i, j\}$ has at least $k-2$ common neighbors.
Communities vs. core/dense/clique

- **K-core/dense/clique**: look at the connections inside the group of nodes
- **Communities** look both at internal and external ties (high internal and low external ties)
- **Core-periphery** decomposition also looking at internal and ext. to the core (doesn’t have to be a clique)
The decomposition identifies the shells for different k-values.

Generally (but not well defined): the core of the network (the k-core for the largest k) and the outer periphery (last layer: 1-core taking away the 2-core). There are modifications where several top values of k make the core.
Figure 3: Correlations between shell index and degree. On the left, we report a graph with strong correlation: the size of the nodes grows from the periphery to the center, in correspondence with the shell index. In the right-hand case, the degree-index correlations are blurred by large fluctuations, as stressed by the presence of hubs in the external shells.

Corporate ownership network of countries. It is constructed from a database obtained from the EON database, which is weighted, and its weights represent the number of joint ventures between companies. The collaboration network contains the co-authorship network of the papers considered in an experiment, as compiled by the scientific community. The neural network of the brain is a weighted representation of the connectivity between neurons. The US air transportation network is considered as a network of airports and flights.

The degree is highly (and nonlinearly) correlated with the position of the node in the k-shell. The average degree of all nodes in each shell, obtained using the $W_{k-shell}$ decomposition method. The shaded area highlights the full range of the degree values in each shell. The shells are ranked according to their distance from the core, and the error bars are showing the standard deviation. Insets: zoom to distances closer to the core for networks with a large number of shells.
Core-periphery
The core-periphery decomposition captures the notion that many networks decompose into:
- a densely connected core, and
- a sparsely connected periphery (see Ref [6] & [12]).

The core-periphery structure is a pervasive and crucial characteristic of large networks [13], [14], [15].

If overlapping communities are considered:
the network core forms as a result of many overlapping communities
Core-periphery adjacency matrix

dark blue = 1 (adjacent)
white = 0 (nonadjacent)

SHL, M. Cucuringu, and M. A. Porter, Phys. Rev. E 89, 032810 (2014);
P. Csermely, A. London, L.-Y. Wu, and B. Uzzi, J. Complex Networks 1, 93 (2013);
Deciding on core-periphery

How to decide if a network has core-periphery structure?
• Not well defined either, but generally the density of the k-core must be high:
 • Checked by the high correlation, ρ, where
 $$\rho = \sum_{i,j} a_{ij} \delta_{ij},$$
 where a_{ij} is the (i,j) adjacency matrix entry, and
 $$\delta_{ij} = \begin{cases} 1, & \text{if node } i \text{ or } j \text{ is in the core} \\ 0, & \text{otherwise} \end{cases}$$

Extensions of core-periphery?!

Limitation:

• There are just two classes of nodes: core and periphery.
• Is a three-class partition consisting of core, semiperiphery, and periphery more realistic?
• Or even partitioning with more classes?
• The problem becomes more difficult as the number of classes is increased, and good justification is needed.

Before displaying the networks, note that:

dark shade = 0 (nonadjacent)
light shade = 1 (adjacent)
Core and communities

• The network core was traditionally viewed as a single giant community (lacking internal communities references [7], [8], [9], [10]).

• Yang and Leskovec (2014, reference [11]) showed that dense cores form as a result of many overlapping communities. Moreover,
 – foodweb, social, and web networks exhibit a single dominant core, while
 – protein-protein interaction and product co-purchasing networks contain many local cores formed around the central core
Finding the Core in Gephi

Under “Statistics” run “average degree” and then use “Filters”
1-core
4-core
Bring back the whole network
For this network the core is the 22-core, since the 23-core vanishes.