Choose exactly 3 of the following problems. Only the first 3 problems will be graded if more than 3 are turned in.

1. Let S be the set of all polynomials of degree 7 such that the constant term is 0 (i.e. $p(0) = 0$ for all such polynomials).
 (a) Is S a subspace?
 (b) If so, what is its dimension?
 (c) What is a basis for S?
 (d) Give an example of 3 linearly independent vectors in S.

2. How many solutions does $Ax = b$ have if:
 (a) $b \notin$ column space of A
 (b) $b = 0$ and $rankA < $ number of columns of A
 (c) $b \in$ column space of A and $rankA < $ number of columns of A
 (d) If A is 10×10 and $rankA = 7$, what is the dim$N(A)$?
 (e) A is an $n \times n$ positive definite and $b \in$ column space of A

3. Do all of the following:
 (a) Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $L\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \left(\begin{bmatrix} -x_2 \\ -x_1 \end{bmatrix} \right)$, $\forall x \in \mathbb{R}^2$. Find the matrix K representing L with respect to the bases $\{e_1, e_2\}$ and $\{b_1, b_2\}$, where $b_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $b_2 = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$.
 (b) Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $L\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = -x_2 b_1 - x_1 b_2$ (or $L(x) = -x_2 b_1 + -x_1 b_2$), $\forall x \in \mathbb{R}^2$, where $b_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $b_2 = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$. Find the matrix D representing L with respect to the ordered bases $\{e_1, e_2\}$ and $\{b_1, b_2\}$.
 (c) find the Kernel of the linear transformation in (a)
 (d) find Image(S), where $S = \left\{ \begin{bmatrix} 0 \\ x \end{bmatrix} : x \in \mathbb{R} \right\}$ and L is defined in (a) above
4. Let \(f(x, y, z) = x^2 + 3y^2 - z^2 - 4xy + 4yz \).
 (a) find the matrix \(A \) corresponding to \(f \)
 (b) find the \(N(A) \)
 (c) find a basis for \(R(A) \)
 (d) what is the dimension of \(N(ATA) \)?
 (e) is \(A \) positive definite?
 (f) is \(A \) diagonalizable?

5. Let \(f, g \) be two functions in \(C[-1, 1] \), and define an inner product on \(C[-1, 1] \) by \(\langle f, g \rangle = \int_{-1}^{1} fg \, dx \).
 (a) find \(\langle e^{-x}, e^x \rangle \)
 (b) find \(||\cos(\frac{x}{2})|| \)
 (c) find two functions that are orthogonal in the set \(\{1, e^{-x}, e^x, \cos(\frac{x}{2}), x\} \). Are the two functions you chose orthonormal? Why?
 (d) Give an example of a \(4 \times 4 \) orthogonal matrix and explain why it is orthogonal (this part is not related to the inner product defined above, use the standard inner product in \(\mathbb{R}^4 \))

6. Let \(f(x, y, z) = x^3 + xyz + y^2 - 3x \).
 (a) Find the Hessian \(H \) of \(f \) at \(x_0 = (1, 0, 0)^T \) and, along the way, verify that \((1, 0, 0) \) is a stationary point for \(f \).
 (b) Is the matrix from (a) positive definite? Explain.
 (c) Does \(f \) have a maximum, a minimum, or a saddle point at \((1, 0, 0) \)?
 (d) find the Frobenius norm of \(H \) at \((1, 0, 0) \), i.e. find \(||H||_F((1,0,0)) \)

7. Let \(A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 2 & 4 \end{bmatrix} \).
 (a) Find the singular value decomposition of \(A \).
 (b) Produce orthonormal bases for \(R(A) \), \(R(ATA) \), \(N(A) \), and \(N(ATA) \).
 (c) Construct the best rank-one approximation of \(A \).

8. Let \(f(x, y) = 2x^3 + x^2 + 2y^2 - 4xy + 2 \).
 (a) Verify that \((0, 0) \) and \((1/3, 1/3) \) are stationary points for \(f \).
 (b) Construct the Hessian of \(f \) for each stationary point.
 (c) Does \(f \) have a maximum, a minimum, or a saddle point at \((0,0) \)? At \((1/3,1/3) \)?

9. Suppose that \(A \) is a real \(5 \times 4 \) matrix with singular value decomposition given by

\[
A = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & u_5 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1^T \\ v_2^T \\ v_3^T \\ v_4^T \end{bmatrix}.
\]

Assume that \(\sigma_1 \geq \sigma_2 \geq \sigma_3 > 0 \).
(a) What is the rank of A?
(b) How is v_1 computed?
(c) How is u_1 computed?
(d) Show that $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \sigma_3 u_3 v_3^T$, and that we can therefore obtain a more compact SVD for A by discarding columns 4 and 5 of U, rows 4 and 5 and column 4 of Σ, and column 4 of V.
(e) What matrix B is the best rank-one approximation to A?

10. Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \\ 0 & 0 \end{bmatrix}$. In the singular value decomposition of A, we have $\Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$, and can use $V = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$.

(a) Find U such that $A = U\Sigma V^T$.
(b) From the columns of U and V, produce orthonormal bases for $R(A)$, $R(A^T)$, $N(A)$, and $N(A^T)$.
(c) Use the singular value decomposition of A to construct the best (in terms of $\| \cdot \|_F$) rank-one approximation of A.
(d) Based on (c), write A as a sum $A = \sigma_1 A_1 + \sigma_2 A_2$, where A_1 and A_2 are rank 1 matrices.

Solution:

(a) We easily find $u_1 = \frac{1}{4} A v_1 = (1/\sqrt{2}, 1/\sqrt{2}, 0)^T$ and $u_2 = \frac{1}{2} A v_2 = (-1/\sqrt{2}, 1/\sqrt{2}, 0)^T$. We may take $u_3 = (0, 0, 1)^T$.
(b) The bases in question are
 i. $\{u_1, u_2\}$, for $R(A)$
 ii. $\{u_3\}$, for $N(A^T)$
 iii. $\{v_1, v_2\}$, for $R(A^T)$
 iv. A has the trivial nullspace.
(c) To obtain the best rank-one approximation, say A', we zero the smaller singular value, obtaining

$$A' = \begin{bmatrix} 2 & 2 \\ 2 & 2 \\ 0 & 0 \end{bmatrix}.$$
(d) From (c), we can see that $\sigma_2 A_2 = A - A' = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}$, so the expression we want is

$$A = \sigma_1 A_1 + \sigma_2 A_2 = 4 \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \\ 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \\ 0 & 0 \end{bmatrix}.$$

11. Let L be the operator on P^3 defined by $L(p(x)) = p'(x) + x^2 p''(x)$.

(a) Describe the kernel and the range of L.

(b) Construct the matrix representation A of L with respect to the basis $[1, x, x^2]$.
(c) Construct the matrix representation B of L with respect to the basis $[1, x, x^2]$.
(d) Find the matrix S such that $B = S^{-1}AS$. (To verify, show that $SB = AS$.)

Solution:

(a) By applying L to an arbitrary element $p(x) = ax^2 + bx + c$, we find $L(p(x)) = 2ax^2 + 2ax + b = 2a(x^2 + x) + b$. It follows that the kernel of L is P_1 and the range is $Span(x^2 + x, 1)$.

(b) The matrix representation of L with respect to $[1, x, x^2]$ is $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix}$.

(c) The matrix representation of L with respect to $[1, x, x^2 + x]$ is $B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

(d) The matrix S such that $B = S^{-1}AS$ is $S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Verification is straightforward.