6.6 Quadratic Forms

1. A quadratic equation in two variables x and y is an equation of the form

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

which is equivalent to

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + f = 0.$$

2. The graph of the above equation is called a conic section.

3. Standard form for conics (2 variables):

 (a) Circle: $x^2 + y^2 = r^2$ with radius $r \neq 0$

 (b) Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with vertices $(\pm a, 0)$ and $(0, \pm b)$

 (c) Hyperbola: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with vertices $(\pm a, 0)$; or $\frac{y^2}{b^2} - \frac{x^2}{ba^2} = 1$ with vertices $(0, \pm b)$ $a \neq 0, b \neq 0$

 (d) Parabola: $x^2 = ay$ (or $y^2 = ax$, $a \neq 0$) or $x^2 = ay$ (or $x = ay^2$, $a \neq 0$)

4. If the coefficient of xy is nonzero, then the conic had a rotation.

5. See graphs on page 353.

6. If a quadratic is not in standard form, then the conic had a translation along the x-axis (if there is an x term along with the x^2 term) or y-axis (if there is a y term along with the y^2 term). A combination of the 2 is also possible on a conic.

7. The 3-variable quadratics are called quadratic surfaces (see page 357).

8. Principal Axes Theorem: If $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix, then there is a change of variable $u = Q^T x$ such that $x^T A x = u^T D u$, where D is a diagonal matrix.

9. Finding max/min, both local and global for quadratics:

 If $F(x) \in \mathbb{R}^n$ is a real-valued function such that $\partial F(x_0) = 0$ (i.e. all partial derivatives exist and they are zero), then x_0 is a stationary point (or critical point).

10. If $F(x) = x^T A x$ and A is nonsingular, then $x_0 = (0, 0)$ is the only solution, and so it is a global max, min or saddle point. Particularly, if we only consider the pure quadratics $ax^2 + 2bxy + cy^2$ (or its variant in 3 or more variables) then

$$x_0 = (0, 0)$$

is the only stationary point \iff A is nonsingular \iff the eigenvalues are nonzero.

Why? See next page with positive/negative definite.
11. note that if \(\lambda \) is an eigenvalue of \(A \), then
\[
x^T A x = x^T \lambda x = \lambda x^T x = \lambda ||x||^2.
\]
And so
\[
x^T A x > 0 \iff \text{its eigenvalues are all positive}
\]
\[
x^T A x < 0 \iff \text{its eigenvalues are all negative}
\]
12. a quadratic \(F(x) = x^T A x \) is \textit{definite} if \(x^T A x \) doesn’t change sign \(\forall x \in \mathbb{R}^n \). If so, then \(F(x) \) (and also \(A \)) can be
(a) \textit{positive definite} if \(x^T A x > 0, \forall x \in \mathbb{R}^n \), i.e. \(\lambda_i > 0, \forall i \)
(b) \textit{negative definite} if \(x^T A x < 0, \forall x \in \mathbb{R}^n \), i.e. \(\lambda_i < 0, \forall i \)
13. a quadratic \(F(x) = x^T A x \) is \textit{semidefinite} if \(x^T A x \) equals zero for some values of \(x \), and it has the same sign otherwise. If so, then \(F(x) \) (and also \(A \)) can be
(a) \textit{positive semidefinite} if \(x^T A x \geq 0, \forall x \in \mathbb{R}^n \), i.e. \(\lambda_i \geq 0, \forall i \)
(b) \textit{negative semidefinite} if \(x^T A x \leq 0, \forall x \in \mathbb{R}^n \), i.e. \(\lambda_i \leq 0, \forall i \)
14. a quadratic \(F(x) = x^T A x \) (and also \(A \)) is \textit{indefinite} if \(x^T A x \) changes sign for different values of \(x \in \mathbb{R}^n \) (it may but it doesn’t have to have a zero eigenvalue).
15. Now, how do we know if \(x_0 = (0,0) \) is a maximum, minimum or saddle point for a quadratic in \textit{standard form} (i.e. \(x^T A x = 0 \))? The same way we checked in \(\mathbb{R} \):
(a) if \(A \) is \textit{positive definite} (i.e. if \(x^T A x > 0, \forall x \neq x_0 \)), then \(x_0 \) is a \textbf{min}
(b) if \(A \) is \textit{negative definite} (i.e. if \(x^T A x < 0, \forall x \neq x_0 \)), then \(x_0 \) is a \textbf{max}
(c) if \(x^T A x \) changes sign and no zero eigenvalues, then \(x_0 \) is a \textbf{saddle point}
(d) if some eigenvalues are 0, then test is inconclusive
16. let \(F \) be \textit{any smooth function} around \(x_0 \), where \(x_0 \) is a stationary point (non necessarily zero) for \(F \). We can locally approximate \(F \) by a quadratic (using Taylor series), and determine if \(x_0 \) is a local min/max/saddle point \((F \) may have more than one min/max/saddle point, so we check each \(x_0 \) at the time). We define \(H(x_0) \), the matrix \((h_{ij}) \), where \(h_{i,j} = \frac{\partial^2 F}{\partial x_i \partial x_j} (x_0) \), to be the \textit{Hessian} of \(F \) at \(x_0 \). Then
(a) if \(H(x_0) \) is \textit{positive definite}, then \(x_0 \) is a min
(b) if \(H(x_0) \) is \textit{negative definite}, then \(x_0 \) is a max
(c) if \(H(x_0) \) changes sign, then \(x_0 \) is a saddle point
(d) if \(H(x_0) \) is \textit{semidefinite}, then test is inconclusive