3.4 Basis and Dimension

1. A set of vectors \(\{v_1, v_2, \ldots, v_k\} \) forms a basis for a vector space \(V \) iff:
 (a) \(v_1, v_2, \ldots, v_k \) are linearly independent, and
 (b) \(v_1, v_2, \ldots, v_k \) span \(V \).
 We then call \(k \) the dimension of the basis (see Cor 3.4.2.)

2. In order to show that a particular property holds for a vector space, one would have to show it for every vector in the vector space, or better: show that the property holds true for the elements of the basis. Since every vector in the vector space can be written as a linear combination of the basis elements, the property then holds true for every element of that vector space.

3. A basis is not unique.

4. If a basis for a vector space has \(k \) vectors, then any collection of \(m \) \((m > k)\) vectors is linearly dependent (see #3(b) page 150.) However not every collection of at most \(k \) vectors is linearly independent (see #4 page 150.)

5. A vector \(v \) spans a one-dimensional sub-space (in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) for example this subspace would be a line through the origin). Note that the origin belongs to the subspace since \(0 \) belongs to every subspace.

6. Two linearly independent vectors \(v, u \) span a two-dimensional sub-space (in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) for example this subspace would be a plane through the origin). If the vectors are linearly dependent, then they span a one-dimensional space.

7. Three linearly independent vectors \(u, v, w \) span a three-dimensional sub-space (in \(\mathbb{R}^3 \) for example this subspace is \(\mathbb{R}^3 \) itself).

8. Generally it is tricky to prove that a set of vectors is a minimal spanning set. See #5(c) page 150 for a good example. And so the best case scenario is this: Let \(V \) be a space of dimension \(k > 0 \) (like \(\mathbb{R}^k \)), and let \(S \) be a set of \(k \) vectors. Then

 \[\text{the vectors in } S \text{ are linearly independent } \iff \text{ } S \text{ spans } V. \]

And so, if we can show that a set of the same cardinality as the dimension of the vector space is lin. indep., then it is a maximal lin. indep. set. Similarly, if we can show that a set of the same cardinality as the dimension of the vector space spans \(V \), then it is a minimal spanning set. That is to say that the \(k \times k \) matrix whose columns are the \(k \) vectors must have \(\det \neq 0 \). If the set of vectors has more than \(k \) vectors, then find \(k \) of them whose matrix will have a nonzero determinant, and these \(k \) vectors will form a basis (like #3(a)). If the set of
vectors has fewer than \(k \) vectors, then find the largest submatrix whose matrix that will have a nonzero determinant, and the columns in this matrix tells you which vectors will form a basis (like \(\#8(a) \)).

9. Moreover, no set with less than \(k \) vectors can span \(V \), and no set with more than \(k \) vectors is linearly independent. However, each of them can be adjusted to a set with linearly indep. vectors or that spans \(V \) (See Thm 3.4.4).

10. a standard basis for a vector space is the most natural basis for that space:

(i) for \(\mathbb{R}^n \) this is \(\{ e_1, e_2, \ldots, e_n \} \), where \(e_i = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{bmatrix} \), where 1 is in the \(i^{th} \) row.

For \(\mathbb{R}^4 \), we have \(e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, e_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \).

(ii) for the space \(\mathbb{R}^{2 \times 2} \) this is \(\{ E_{11}, E_{12}, E_{21}, E_{22} \} \) given in example 2. page 146: \(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \).

(iii) for the space of polynomials \(P_n \) this is \(\{ 1, x, x^2, x^3, \ldots, x^{n-1} \} \),

(iv) the space of continuous or differentiable functions cannot be finitely generated as the ones above.