1. (10 points) Suppose that the vertex set of a graph G is the set $V(G) = \{x_1, x_2, x_3, \ldots, x_{10,000}\}$. Two vertices x_i and x_j are adjacent if $i + j$ is odd. What is the graph G? (identify the class and/or name of the graph).

Solution The graph is the complete bipartite graph $K_{5000,5000}$, whose bipartite sets are $V_1 = \{x_{2k-1} : 1 \leq k \leq 5000\}$ and $V_2 = \{x_{2k} : 1 \leq k \leq 5000\}$, i.e. V_1 contains all the vertices with odd subscript, and V_2 contains all vertices with even subscript.

2. (10 points) Consider the three graphs F, G, H below. Find two graphs in $\{F, G, H\}$ that are isomorphic, and two that are NOT isomorphic [explanations required].

Solution: $F \cong H$

$G \not\cong F$ since (each one of the reasoning below would suffice):

(1) G has the vertices of degree 3 on the 5-cycle and F doesn’t, or

(2) F has three vertices of degree two that form a path on three vertices, and G doesn’t, or

(3) F has a cycle of length 6 and H doesn’t.

3. (10 points) Find W_7^c, the complement of the wheel W_7. Is W_7^c regular? Is it Eulerian?

Solution: W_7^c is not regular since the degree sequence is 4, 4, 4, 4, 4, 4, 0. It is also not Eulerian since it is disconnected so no Eulerian circuit will traverse the center vertex of W_7.
4. (10 points) Give an example of a graph that has an Eulerian circuit but not a Hamiltonian circuit.

Solution:

5. (10 points) Let G_n be the complement of the cycle C_n ($n \geq 3$). What is the degree sequence of G_n ($n \geq 3$)?

Solution: Since each vertex in C_n has degree 2, it follows that every vertex in G_n has degree $(n - 1) - 2$. Thus the degree sequence is $n - 3, n - 3, \ldots, n - 3$.

6. (10 points) Let G_n be the complement of the cycle C_n ($n \geq 3$). Determine with justifications, which graphs G_n ($n \geq 3$) have an Eulerian circuit.

Solution: Since G_3 and G_4 are not even connected, they will not have an Eulerian circuit. For $G_n, n \geq 5$, note that deg $v = n - 3$, which is even if n is odd and G connected. And so G_n has an Eulerian circuit for odd values of $n \geq 5$.
7. (10 points) Let R be a relation defined on the positive integers by xRy if $x|y$. Prove that R is transitive.

Solution: Let xRy and yRz. Then $x|y$ and $y|z$, so $y = xk$, $\exists k \in \mathbb{Z}^+$ and $z = y\ell$, $\exists \ell \in \mathbb{Z}^+$. Therefore $z = xk\ell$, $\exists k\ell \in \mathbb{Z}^+$, and so xRz.

8. (10 points) Let S be the relation on a set of 4 elements given by the matrix below.

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Solution: Yes, it is reflexive since the matrix has only 1s on the diagonal. Yes, the relation is symmetric since $A = A^T$.

9. (10 points) Find the equivalence classes of the equivalence relation T on \mathbb{Z}, where $(x, y) \in T$ if $x + y$ is even, $\forall x, y \in \mathbb{Z}$. (You do not need to prove that it is an equivalence relation.)

Solution: There are two equivalence classes, $[0] = \{2k : k \in \mathbb{Z}\}$ and $[1] = \{2k+1 : k \in \mathbb{Z}\}$.

10. (10 points) CHROMATIC NUMBER WILL BE COVERED ON MONDAY’S LECTURE (The chromatic number is the minimum number of colors assigned to the vertices so that adjacent vertices have different colors): Find (and prove) the chromatic number for the graph below.
Solution: The $\chi(G) \leq 4$ since it is planar (by the 4 color Thm.), or you could find a coloring using 4 colors. Then also $\chi(G) \geq 4$ since it contains a wheel W_5 whose chromatic number is 4. Therefore $\chi(G) = 4$.

Extra Credit (5 points) Find a self-complementary graph (other than the path on four vertices from problem 50 Section 9.4).

Solution: C_5

MA 3025 Sample Take Home Exam #3

December 5, 2011 Name _________________________________

Please use you notes and books only, and organize your work nicely. You may replace one problem on the exam with the following:

Let $G_1, G_2,$ and G_3 be pairwise disjoint connected regular graphs and let $G = G_1 + G_2 + G_3$ be the graph obtained from $G_1, G_2,$ and G_3 by adding edges between every two vertices belonging to two of $G_1, G_2,$ and G_3 (that is, there is an edge between each vertex of G_1 and each vertex of $G_2,$ there is an edge between each vertex of G_1 and each vertex of $G_3,$ and there is an edge between each vertex of G_2 and each vertex of G_3). Recall that $\overline{G_1}$ is the complement of $G_1,$ that has the same vertices of $G_1,$ and all the edges that G_1 is missing to be a complete graph. Prove that if G_1 and $\overline{G_1}$ are eulerian, but G_2 and G_3 are not eulerian, then G is eulerian.

Proof. Let G_i be r_i - regular of order n_i ($i = 1, 2, 3$). Since G_1 is eulerian, r_1 is even. Since $\overline{G_1}$ is eulerian, $n_1 - r_1 - 1$ is even. Thus n_1 is odd. Since G_2 is not eulerian, r_2 is odd and so n_2 is even (a graph must have an even number of odd degree vertices). Similarly, r_3 is odd and so n_3 even. Hence:

1. every vertex of G in G_1 has degree $r_1 + n_2 + n_3$, which is even,
2. every vertex of G in G_2 has degree $r_2 + n_1 + n_3$, which is even,
3. every vertex of G in G_3 has degree $r_3 + n_1 + n_2$, which is even.

Since G is connected and every vertex has even degree, G is eulerian. $F \cong H \cong K_{3,3}$