1. (15 points) For the two matrices \(A = \begin{bmatrix} -2 & 3 & 2 \\ 2 & -2 & -1 \\ -4 & 5 & 3 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 3 & 2 \\ -1 & -2 & -1 \\ 2 & 5 & 3 \end{bmatrix} \).

\((a) \) find \(A^T = \begin{bmatrix} -2 & 2 & -4 \\ 3 & -2 & 5 \\ 2 & -1 & 3 \end{bmatrix} \)

\((b) \) find \(A - B = \begin{bmatrix} -3 & 0 & 0 \\ 3 & 0 & 0 \\ -6 & 0 & 0 \end{bmatrix} \).

\((c) \) find \(AB = \begin{bmatrix} -1 & -2 & -1 \\ 2 & 5 & 3 \\ -3 & -7 & -4 \end{bmatrix} \).
2. (15 points) Find the Row Echelon Form of the coefficient matrix of the following system

\[
\begin{align*}
 x_1 + x_2 - x_3 &= 0 \\
-2x_1 - 2x_2 + 5x_3 &= 1 \\
8x_1 + 2x_2 - 13x_3 &= -3
\end{align*}
\]

Solution:

\[
\begin{bmatrix}
 1 & 1 & -1 \\
-2 & -2 & 5 \\
 8 & 2 & -13
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 1 & -1 \\
 0 & 0 & 3 \\
 0 & -6 & -5
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 1 & -1 \\
 0 & 1 & \frac{5}{6} \\
 0 & 0 & 3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 1 & -1 \\
 0 & 1 & \frac{5}{6} \\
 0 & 0 & 1
\end{bmatrix}
\]
3. (20 points) **Choose one of the two systems below.** Use Gaussian (or Gauss-Jordan elimination if you want) to find the solution of the system. Indicate whether the system is: inconsistent, consistent, underdetermined, overdetermined, determined, homogeneous.

(a)

\[-x_1 - 5x_2 = 2\]
\[2x_1 - 3x_2 = 1\]
\[-5x_1 + x_2 = -3\]

\[
\begin{bmatrix}
-1 & -5 & 2 \\
2 & -3 & 1 \\
-5 & 1 & -3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 5 & -2 \\
0 & -13 & 5 \\
0 & 26 & -13
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 5 & -2 \\
0 & 1 & \frac{5}{13} \\
0 & 0 & -3
\end{bmatrix}
\]

Inconsistent, overdetermined system.

(b)

\[x_1 - x_2 + x_3 = 0\]
\[2x_1 - 4x_2 + x_3 = 0\]
\[-4x_1 - 2x_2 = 0\]

\[
\begin{bmatrix}
1 & -1 & 1 & 0 \\
2 & -4 & 1 & 0 \\
-4 & -2 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & -2 & -1 & 0 \\
0 & -6 & 4 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

System is consistent, determined, and homogeneous with solution \(x_1 = x_2 = x_3 = 0\).
4. (15 points) Let \(A \) and \(B \) be the two matrices below

\[
A = \begin{bmatrix}
-2 & 3 & 2 \\
-4 & 5 & 2
\end{bmatrix},
B = \begin{bmatrix}
1 & 3 & 2 \\
-1 & -2 & -1 \\
2 & 5 & 3
\end{bmatrix}, \text{ and } I_3 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

Without performing the operations, decide whether the following operations can be performed or not. If they can, provide the size of the expected resulting matrix (the size of \(A \) is \(2 \times 3 \) and \(B \) is \(3 \times 3 \)):

1. \(A - B \)
 not possible

2. \(-B \)
 yes, and the matrix is a 3 by 3 matrix

3. \(A \cdot I_3 \)
 yes, and the matrix is a 2 by 3 matrix

4. \(B \cdot A \)
 not possible

5. \(A - I_3 \)
 not possible

5. (15 points) Consider a linear system whose augmented matrix can be reduced to

\[
\begin{bmatrix}
1 & -\frac{3}{2} & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha + 2 & 0
\end{bmatrix}
\]

For what values of \(\alpha \) will the system have infinitely many solutions?

Soln: If \(\alpha = -2 \) then we get the solution \((0, 0, a)\) where \(a \in R \), which is a set of infinitely many solutions.
6. For the two matrices below $A = \begin{bmatrix} -2 & 3 & 2 \\ 2 & -2 & 1 \\ -4 & 5 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 & 2 \\ -1 & -2 & -1 \\ 2 & 5 & 3 \end{bmatrix}$.

(a) (20 points) Find A^{-1} using the elementary row operations (show your work, not just the final answer)

$$A^{-1} = \begin{bmatrix} \frac{-2}{3} & \frac{3}{2} & \frac{2}{3} \\ 2 & -2 & 1 \\ -4 & 5 & 2 \end{bmatrix} \xrightarrow{R_2 + R_1; R_3 - 2R_1} \begin{bmatrix} \frac{-2}{3} & 3 & \frac{2}{3} \\ 0 & 1 & \frac{3}{2} \\ 0 & -1 & -2 \end{bmatrix} \xrightarrow{R_2; R_3 + R_2} \begin{bmatrix} 1 & 0 & 0 \\ \frac{-3}{3} & \frac{1}{2} & \frac{1}{3} \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 - 3R_3; R_1 + R_3} \left[\begin{array}{ccc} 1 & \frac{-2}{3} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \xrightarrow{R_1 + \frac{3}{2}R_2} \left[\begin{array}{ccc} 1 & 0 & 0 \\ \frac{9}{2} & -2 & \frac{-7}{2} \\ 0 & 1 & 0 \end{array} \right] \xrightarrow{R_3 - \frac{7}{2}R_2} \left[\begin{array}{ccc} 1 & 0 & 0 \\ \frac{9}{2} & -2 & \frac{-7}{2} \\ 0 & 1 & 0 \end{array} \right]$$

Thus $A^{-1} = \begin{bmatrix} \frac{9}{2} & -2 & \frac{-7}{2} \\ 4 & -2 & -3 \\ -1 & 1 & 1 \end{bmatrix}$.
CREDIT(5 points) solve $A \cdot X = B$ by using part (a) above

$$X = A^{-1}B = \begin{bmatrix} \frac{9}{2} & -2 & \frac{-7}{2} \\ 4 & -2 & -3 \\ -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 2 \\ -1 & -2 & -1 \\ 2 & 5 & 3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$