1 Chapter 1: Matrices and Systems of Equations

1.5 Elementary Matrices

1. Elementary matrices, denoted by E, are matrices obtained by performing one elementary row operation on I. There are three types:

- **[Type I]** interchanging two rows:
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0
 \end{pmatrix}
 \]

- **[Type II]** constant multiple of a row:
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & -3 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \]

- **[Type III]** adding a multiple of a row to another row:
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 2 & 1
 \end{pmatrix}
 \]

2. post multiplying a matrix B by an elementary matrix E is equivalent to performing that particular column operation on B

3. pre multiplying a matrix B by an elementary matrix E is equivalent to performing that particular row operation on B

4. that is, every elementary matrix has an inverse which is also an elementary matrix:
 - (a) the inverse of a matrix of type I is also of type I, actually it is its own inverse
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0
 \end{pmatrix}
 \]
 - (b) the inverse of a matrix of type II is also of type II:
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & -1/3 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \]
 - (c) the inverse of a matrix of type III is also of type III:
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & -2 & 1
 \end{pmatrix}
 \]
5. B is row equivalent to A if multiplying A by a series of elementary matrices we get B (note that every multiplication by an elementary matrix can be viewed as a step in Gaussian Elimination method)

6. The following are equivalent:

 (a) A is nonsingular
 (b) $Ax = 0$ has only one solution: $x = 0$
 (c) A is row equivalent to I.

7. $Ax = 0$ has a unique solution (namely 0) $\iff A$ is nonsingular

8. finding A^{-1} using the elementary row operations (page 66).

9. diagonal matrix: if the entries of the diagonal are the only possible nonzero entries of the matrix

10. upper triangular matrix: if the entries below the diagonal are zero (some of the other entries could be zero as well)

11. lower triangular matrix: if the entries above the diagonal are zero (some of the other entries could be zero as well)

12. triangular matrix: if it is either upper or lower triangular matrix (recall strict triangular matrix).

13. skip Triangular Factorization.