CH 6: Applications of Integration

6.4 Work

1. total amount of effort required to perform a task.

2. notice the difference when given mass versus weight (multiply by \(g = 9.8 \text{m/s}^2 \)).

3. Newton’s second law of motion: \(F = m \cdot a \) (where \(m \) is the mass of the object, and \(a \) is the acceleration), or mass times the second derivative of the distance.

4. if the force is constant, then \(W = F \cdot d \) (where \(F \) is the force that acts on the object, and \(d \) is the displacement), or \(W = \int F(x) \, dx \), where \(F(x) \) is the constant force.

5. if force is not constant and it given as a function of \(x \), say \(f(x) \), then \(W = \int f(x) \, dx \).

6. Hooke’s law: \(F = k \cdot d \), where \(k \) is Hooke’s constant that depends on each spring, and \(d \) is the displacement. Thus \(W = \int k \cdot d \, dx \), where \(d \) must be expressed in meters (since the unit for force is 1J = 1N \cdot 1\text{m}) or in feet (since the unit for work is ft-lb), but not in cm or inches.

7. gravitational force: \(G = m \cdot g \), where \(g = 9.8 \text{m/s}^2 \) is the gravitational acceleration, and \(m = \rho \cdot V \) is the mass of the object as the product of density and the unit volume.

Homework: 3, 5, 7, 13

6.5 Average Value of a Function

1. the average value function is the function that will give you the average value for each respective function:

\[
 f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) \, dx.
\]

This makes sense since you can think of \(\int_a^b f(x) \, dx = f_{\text{ave}} \cdot (b - a) \).

2. MVT for Integrals gives a value \(c \) at which \(f(c) \) is the average value of \(f \) over the interval: If \(f \) is continuous on \([a, b]\), then there is

\[
 c \in [a, b] \text{ such that } f(c) = f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) \, dx
\]

3. compare MVT for integrals with MVT for derivatives

Homework: 1, 5, 7