6.3 Volumes (Cylindrical Shells)

1. mostly used in trying to find the \(A(x) \) or \(A(y) \) one ends up with the same function is inner and the outer radius – see page 455

2. volume is the the product of the circumference, the height and thickness: \(V = 2\pi rh\Delta r \)

3. since \(r = x \) and \(h = f(x) \), we have that volume is the integral of the product of the circumference and the height:
 \[
 V = \int_{a}^{b} 2\pi xf(x) \, dx
 \]

4. need to “adjust the circumference” when the volume is obtained by rotating an area about any line different than \(x\)-axis/\(y\)-axis (see example 4).

Homework: 1, 3, 5, 11, 15, 21, (set up integral for 38)