4.1 Maximum and Minimum value

1. the local extrema of a functions are the local minimums and local maximums
2. a function \(f(x) \) has an **absolute maximum** at \(x = c \) if \(f(c) \geq f(x) \) for all values \(x \in \text{Domain}(f) \)
3. a function \(f(x) \) has an **absolute minimum** at \(x = c \) if \(f(c) \leq f(x) \) for all values \(x \in \text{Domain}(f) \)
4. a function \(f(x) \) has a **local maximum** at \(x = c \) if \(f(c) \geq f(x) \) for all values \(x \) in some open interval around \(c \)
5. a function \(f(x) \) has a **local minimum** at \(x = c \) if \(f(c) \leq f(x) \) for all values \(x \) in some open interval around \(c \) (open interval around \(c \) means that the immediate values to the left and to the right of \(c \) are in that open interval)

6. **Extreme Value Theorem:**

 \(f \) is continuous on \([a, b]\), then \(f \) has an absolute max at \(c \) and and absolute min at \(d \), where \(c, d \in [a, b] \)

7. **Fermat’s Theorem:** If \(f' \) exists at a local/global maximum or minimum, then \(f' = 0 \) at that point.

8. a **critical number** of a function \(f \) is a number \(c \) in the domain of \(f \) such that either \(f'(c) = 0 \) or \(f'(c) \) does not exist (particularly, local extrema are critical numbers)

9. **Closed interval method:** if \(f \) is continuous on a closed interval \([a, b]\), then the absolute min/max occur at the critical points or at the end points \(a \) or \(b \)

4.2 The Mean Value Theorem

1. Rolle’s Theorem (helps find a root of the derivative on a given interval): If
 \begin{itemize}
 \item[(a)] \(f \) is continuous on \([a, b]\),
 \item[(b)] \(f \) is differentiable on \((a, b)\), and
 \item[(c)] \(f(a) = f(b) \)
 \end{itemize}
 then \(\exists c \in (a, b) \) such that \(f'(c) = 0 \)

2. Mean Value Theorem (shows the existence of a point \(c \) where the slope of the tangent line to the function matches the slope of the secant line joining the end points of the interval): If
 \begin{itemize}
 \item[(a)] \(f \) is continuous on \([a, b]\), and
 \item[(b)] \(f \) is differentiable on \((a, b)\),
 \end{itemize}
 then there is a number \(c \in (a, b) \) such that \(f'(c) = \frac{f(b) - f(a)}{b-a} \)

3. \(f \) is the constant function on \((a, b) \iff f'(x) = 0 \) for all values \(x \in (a, b) \)

4. if \(f(x)' = g(x)' \) then \(f(x)' - g(x)' = 0 \) and so \(f(x) - g(x) = \text{constant} \), say \(f(x) = g(x) + c \)
4.3 How derivatives affect the shape of a graph

In this section we will learn how to use the limits at infinity and the derivatives to sketch the graph of a function

1. **The first derivative** helps find local extrema and it tells if the function is increasing or decreasing.

2. **INCREASING/DECREASING TEST:**
 - if \(f' > 0 \) on an interval, then \(f \) is increasing on that interval
 - if \(f' < 0 \) on an interval, then \(f \) is decreasing on that interval

3. **FRIST DERIVATIVE TEST:**
 - if \(f' \) changes from positive to negative, then \(f \) has a local maximum on that interval
 - if \(f' \) changes from negative to positive, then \(f \) has a local minimum on that interval
 - if \(f' \) does not change sign on an interval, then \(f \) has no local extrema on that interval

4. **The second derivative** gives the concavity of the function

5. **CONCAVITY TEST:**
 - if \(f'' > 0 \) on an interval, then \(f \) is concave up on that interval
 - if \(f'' < 0 \) on an interval, then \(f \) is concave down on that interval

6. an **inflection point** is a point where \(f \) changes concavities.

7. **SECOND DERIVATIVE TEST:**
 - if \(f'(c) = 0 \) and \(f''(c) > 0 \), then \(f \) has a local minimum at \(c \)
 - if \(f'(c) = 0 \) and \(f''(c) < 0 \), then \(f \) has a local maximum at \(c \)
 - if \(f'(c) = 0 \) and \(f''(c) = 0 \), then the test is inconclusive at \(c \)
 - if \(f'' \) changes sign, then \(f \) has an inflection point