Show all necessary work in each problem to receive credit.

1. (5 points) A relation is defined on \(\mathbb{Z} \) by \(xRy \) if \(3 \mid (4x - y) \). Show that \(R \) is transitive.

Proof: Let \(x, y, z \in \mathbb{Z} \) such that \(xRy \) and \(yRz \). Then \(3 \mid (4x - y) \) and \(3 \mid (4y - z) \), which implies that \(4x - y = 3k \) and \(4y - z = 3\ell \), for some \(k, \ell \in \mathbb{Z} \). We wish to show that \(3 \mid (4x - z) \).

Consider \(4x - z = (4x - y) + (4y - z) + (-3y) = 3k + 3\ell - 3y = 3(k + \ell - y) \). Since \(k + \ell - y \in \mathbb{Z} \), it follows that \(3 \mid (4x - z) \).

2. (4 points) Let the relation \(R \) be an equivalence relation on \(\mathbb{Z} \), where \(xRy \) if \(x^2 = y^2 \). Find the equivalence classes (note that you don’t have to prove that \(R \) is an equivalence relation anymore.)

Solution:

\[
[0] = \{0\} \\
[1] = \{\pm 1\} \\
[2] = \{\pm 2\} \\
\vdots
\]

This generalizes to \([x] = \{\pm x\} \), for all \(x \in \mathbb{Z} \), with \([0] = \{0\} \).
3. (5 points) Let $f : \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(x) = 2x + 1$.

1. What is the range of f?

2. Is $f(x)$ one-to-one.? (If it is, then prove it, if it isn’t, then provide a counterexample)

Solution:

1. Range of f is $\text{Range} = \{2k + 1 : k \in \mathbb{Z}\}$, i.e. all the odd integers.

2. The function is one-to-one.

 Proof: Let $a, b \in \mathbb{Z}$. Assume that $f(a) = f(b)$, so $5a - 7 = 5b - 7$. Adding 7 to both sides we get $5a = 5b$ and so $a = b$. Therefore, f is one-to-one.

3. (6 points) Let the relation R be defined on \{a, b, c, d\} by $R = \{(a, a), (a, d), (d, a)\}$.

1. Is R a function? Why?

2. Is R an equivalence relation? Why?

Solution:

1. R is not a function since the element a gets mapped to two different elements (or also, since d does not get mapped to any element).

2. R is not an equivalence relation since it is not reflexive (there is no pair (b, b)). Also, it is not transitive (since we have the pairs (d, a) and (a, d), we should have the pair (d, d)).