Are Almost All Graphs Determined by their Spectrum?

Chris Godsil

16 January, 2014
Outline

1 Against
 - Graphs and Matrices
 - Many Problems

2 For
 - Walk Matrices
 - Wang & Xu
Two graphs, two matrices

\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\quad \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\]
Isomorphic implies cospectral

If graphs X and Y are isomorphic, there is a permutation matrix P such that

$$A(Y) = PA(X)P^T$$

Since permutation matrices are orthogonal, this means that $A(X)$ and $A(Y)$ are similar.

Definition

Graphs X and Y are *cospectral* if the characteristic polynomials of their adjacency matrices are equal.
Willem Haemers proposes:

Conjecture

The proportion of graphs on \(n \) vertices that are determined by their spectrum goes to 1 as \(n \to \infty \).
The Origin of our Difficulty

Chris Godsil

Are Almost All Graphs Determined by their Spectrum?
Outline

1. Against
 - Graphs and Matrices
 - Many Problems

2. For
 - Walk Matrices
 - Wang & Xu
There’s a problem...

\[\phi(X, t) = t^5 - 4t^3. \]
If $m, n \geq 1$ then the graphs

$$K_{1,mn}, \quad K_{m,n} \cup (m - 1)(n - 1)K_1$$

are cospectral.
Did we forget to say connected?
Did we forget to say connected?
<table>
<thead>
<tr>
<th>Against</th>
<th>For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs and Matrices</td>
<td>Many Problems</td>
</tr>
</tbody>
</table>

We have forgotten complements, but...
The two graphs are cospectral, and so are their complements.
Latin square graphs: regularity is no help

16 squares as vertices; adjacent if in same row, same column, or same color. Cospectral.
Latin square graphs: regularity is no help

16 squares as vertices; adjacent if in same row, same column, or same color. Cospectral. (And there are lots of Latin squares.)
If we denote this tree by S, then $S \setminus u$ and $S \setminus v$ are cospectral. We say they are cospectral vertices in S.
Schwenk’s Pairs of Cospectral Trees

Chris Godsil

Are Almost All Graphs Determined by their Spectrum?
The bad news for trees

Theorem (Schwenk)

The proportion of trees on n vertices that are determined by their spectrum goes to 0 as $n \to \infty$.
Well, what does the computer tell us?

<table>
<thead>
<tr>
<th>n</th>
<th># graphs</th>
<th>A</th>
<th>A & \overline{A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>34</td>
<td>0.059</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>156</td>
<td>0.064</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1044</td>
<td>0.105</td>
<td>0.038</td>
</tr>
<tr>
<td>8</td>
<td>12346</td>
<td>0.139</td>
<td>0.094</td>
</tr>
<tr>
<td>9</td>
<td>274668</td>
<td>0.186</td>
<td>0.160</td>
</tr>
<tr>
<td>10</td>
<td>12005158</td>
<td>0.213</td>
<td>0.201</td>
</tr>
</tbody>
</table>

Source: Godsil and McKay, Haemers and Spence
Local Switching: regular and all, half, none

Chris Godsil
Are Almost All Graphs Determined by their Spectrum?
We’ve seen it before

Chris Godsil
Are Almost All Graphs Determined by their Spectrum?
Features of local switching

- Graphs related by local switching are cospectral, and their complements are too.
- The proportion of graphs on n vertices that we can usefully apply local switching to goes to 0 as $n \to \infty$.
Asymptotically useless, but good in the short run

<table>
<thead>
<tr>
<th>n</th>
<th># graphs</th>
<th>A</th>
<th>A & \overline{A}</th>
<th>l_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>34</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>156</td>
<td>0.064</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1044</td>
<td>0.105</td>
<td>0.038</td>
<td>0.038</td>
</tr>
<tr>
<td>8</td>
<td>12346</td>
<td>0.139</td>
<td>0.094</td>
<td>0.085</td>
</tr>
<tr>
<td>9</td>
<td>274668</td>
<td>0.186</td>
<td>0.160</td>
<td>0.139</td>
</tr>
<tr>
<td>10</td>
<td>12005158</td>
<td>0.213</td>
<td>0.201</td>
<td>0.171</td>
</tr>
</tbody>
</table>

Source: Godsil and McKay, Haemers and Spence, Brouwer and Spence
Outline

1 Against
 - Graphs and Matrices
 - Many Problems

2 For
 - Walk Matrices
 - Wang & Xu
And if we look at graphs on 11 and 12 vertices...

<table>
<thead>
<tr>
<th>n</th>
<th># graphs</th>
<th>A</th>
<th>$A & \bar{A}$</th>
<th>ls</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>34</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>156</td>
<td>0.064</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1044</td>
<td>0.105</td>
<td>0.038</td>
<td>0.038</td>
</tr>
<tr>
<td>8</td>
<td>12346</td>
<td>0.139</td>
<td>0.094</td>
<td>0.085</td>
</tr>
<tr>
<td>9</td>
<td>274668</td>
<td>0.186</td>
<td>0.160</td>
<td>0.139</td>
</tr>
<tr>
<td>10</td>
<td>12005158</td>
<td>0.213</td>
<td>0.201</td>
<td>0.171</td>
</tr>
<tr>
<td>11</td>
<td>1018997864</td>
<td>0.211</td>
<td>0.208</td>
<td>0.174</td>
</tr>
<tr>
<td>12</td>
<td>165091172592</td>
<td>0.188</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Walk matrices

Definition

If X is a graph on n vertices and $\mathbf{1}$ is the all-ones vector, the walk matrix \mathcal{W} of X is the matrix with columns $A^r \mathbf{1}$ for $r = 0, \ldots, n - 1$.

Definition

A graph is **controllable** if its walk matrix is invertible.
My Conjecture

Conjecture

The proportion of graphs on n vertices that are controllable goes to 1 as $n \to \infty$.

Chris Godsil
Are Almost All Graphs Determined by their Spectrum?
Outline

1 Against
 - Graphs and Matrices
 - Many Problems

2 For
 - Walk Matrices
 - Wang & Xu
Theorem

Suppose X and Y are cospectral graphs with cospectral complements. If X is controllable there is a unique orthogonal matrix Q such that $Q^T A(X) Q = A(Y)$. The matrix Q is rational and $Q1 = 1$.

Theorem

Suppose X is controllable. If Q is an orthogonal matrix such that $Q1 = 1$ and $Q^T A Q$ is an integer matrix, then Q is rational.

Further, if $\ell \mathcal{W}^{-1}$ is an integer matrix, so is ℓQ.
Our level best

Definition

The level of a rational matrix M is the least integer ℓ such that ℓM is an integer matrix.

Wang and Xu provide considerable evidence that if X is controllable and $Q^T A(X) Q$ is an integer matrix then the level of Q is two for a positive fraction of the graphs on n vertices. They prove that orthogonal matrices of index two are essentially local switchings and that asymptotically these are negligible.

This provides evidence that a positive fraction of the graphs on n vertices are determined by their spectrum.
We know very little about what happens when we use the Laplacian in place of the adjacency matrix.

What proportion of trees on n vertices contain a pair of cospectral vertices?
The End(s)