Some Things I Don’t Know

Douglas B. West

Department of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of $[n]$ be adjacent if they differ by reversing a prefix. What is the diameter $f(n)$ of the resulting “pancake network”?

Ex. 31452
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. 31452 → 54132
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. 31452 → 54132 → 23145
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. 31452 \(\rightarrow\) 54132 \(\rightarrow\) 23145 \(\rightarrow\) 32145
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. \(31452 \rightarrow 54132 \rightarrow 23145 \rightarrow 32145 \rightarrow 12345\).
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of $[n]$ be adjacent if they differ by reversing a prefix. What is the diameter $f(n)$ of the resulting “pancake network”?

Ex. $31452 \rightarrow 54132 \rightarrow 23145 \rightarrow 32145 \rightarrow 12345$.

Trivial: $n \leq f(n) \leq 2n - c$.
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of $[n]$ be adjacent if they differ by reversing a prefix. What is the diameter $f(n)$ of the resulting “pancake network”?

Ex. 31452 \rightarrow 54132 \rightarrow 23145 \rightarrow 32145 \rightarrow 12345.

Trivial: $n \leq f(n) \leq 2n - c$.

Thm. (Gates–Papadimitriou [1979]; Györi–Turán [1978])

$\frac{17}{16} n - c \leq f(n) \leq \frac{5}{3} n + c.$
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. \(31452 \rightarrow 54132 \rightarrow 23145 \rightarrow 32145 \rightarrow 12345\).

Trivial: \(n \leq f(n) \leq 2n - c\).

Thm. (Gates–Papadimitriou [1979]; Györi–Turán [1978]) \(\frac{17}{16} n - c \leq f(n) \leq \frac{5}{3} n + c\).

Thm. (Heydari–Sudborough [1997]) \(\frac{15}{14} n - c \leq f(n)\).
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. \(31452 \rightarrow 54132 \rightarrow 23145 \rightarrow 32145 \rightarrow 12345\).

Trivial: \(n \leq f(n) \leq 2n - c\).

Thm. (Gates–Papadimitriou [1979]; Györi–Turán [1978]) \(\frac{17}{16}n - c \leq f(n) \leq \frac{5}{3}n + c \approx 1.667n\).

Thm. (Heydari–Sudborough [1997]) \(\frac{15}{14}n - c \leq f(n)\).

Thm. (Chitturi–Fahle–Meng–Morales–Shields–Sudborough–Voit[2009]) \(f(n) \leq \frac{18}{11}n + c \approx 1.636n\).
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. 31452 → 54132 → 23145 → 32145 → 12345.

Trivial: \(n \leq f(n) \leq 2n - c\).

Thm. (Gates–Papadimitriou [1979]; Györi–Turán [1978]) \(\frac{17}{16} n - c \leq f(n) \leq \frac{5}{3} n + c \approx 1.667n\).

Thm. (Heydari–Sudborough [1997]) \(\frac{15}{14} n - c \leq f(n)\).

Thm. (Chitturi–Fahle–Meng–Morales–Shields–Sudborough–Voit[2009]) \(f(n) \leq \frac{18}{11} n + c \approx 1.636n\).

Conj. \(f(n) \sim \frac{3}{2} n\)
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of $[n]$ be adjacent if they differ by reversing a prefix. What is the diameter $f(n)$ of the resulting “pancake network”?

Ex. 31452 \rightarrow 54132 \rightarrow 23145 \rightarrow 32145 \rightarrow 12345.

Trivial: $n \leq f(n) \leq 2n - c$.

Thm. (Gates–Papadimitriou [1979]; Györi–Turán [1978]) $\frac{17}{16}n - c \leq f(n) \leq \frac{5}{3}n + c \approx 1.667n$.

Thm. (Heydari–Sudborough [1997]) $\frac{15}{14}n - c \leq f(n)$.

Thm. (Chitturi–Fahle–Meng–Morales–Shields–Sudborough–Voit[2009]) $f(n) \leq \frac{18}{11}n + c \approx 1.636n$.

Conj. $f(n) \sim \frac{3}{2}n$ or $\frac{1+\sqrt{5}}{2}n$
The Pancake Problem [1975]

Posed by “Harry Dweighter” (Jacob Goodman [1975])

Sorting by prefix reversal: Let permutations of \([n]\) be adjacent if they differ by reversing a prefix. What is the diameter \(f(n)\) of the resulting “pancake network”?

Ex. \(31452 \rightarrow 54132 \rightarrow 23145 \rightarrow 32145 \rightarrow 12345\).

Trivial: \(n \leq f(n) \leq 2n - c\).

Thm. (Gates–Papadimitriou [1979]; Györi–Turán [1978]) \(\frac{17}{16}n - c \leq f(n) \leq \frac{5}{3}n + c \approx 1.667n\).

Thm. (Heydari–Sudborough [1997]) \(\frac{15}{14}n - c \leq f(n)\).

Thm. (Chitturi–Fahle–Meng–Morales–Shields–Sudborough–Voit[2009]) \(f(n) \leq \frac{18}{11}n + c \approx 1.636n\).

** Conj.** \(f(n) \sim \frac{3}{2}n \) or \(\frac{1+\sqrt{5}}{2}n\) or something else?
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down.
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down. ("Signed permutations", genome rearrangements.)
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down. ("Signed permutations", genome rearrangements.)

Thm. (Gates–Papadimitriou [1979]), Cohen–Blum [1995])

\[
\frac{3}{2}n - c \leq g(n) \leq 2n + c.
\]
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down. ("Signed permutations", genome rearrangements.)

Thm. (Gates–Papadimitriou [1979], Cohen–Blum [1995])

\[
\frac{3}{2}n - c \leq g(n) \leq 2n + c.
\]

Head insertion: Move leading element anywhere else.
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down. ("Signed permutations", genome rearrangements.)

Thm. (Gates–Papadimitriou [1979], Cohen–Blum [1995])

\[
\frac{3}{2}n - c \leq g(n) \leq 2n + c.
\]

Head insertion: Move leading element anywhere else. (Aigner–West [1987]) \(n - k \), where \(k = \) size of last run.
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down. ("Signed permutations", genome rearrangements.)

Thm. (Gates–Papadimitriou [1979], Cohen–Blum [1995])

\[
\frac{3}{2}n - c \leq g(n) \leq 2n + c.
\]

Head insertion: Move leading element anywhere else.

(Aigner–West [1987]) \(n - k \), where \(k \) = size of last run.

Cut-and-paste sorting: A segment is cut out and pasted anywhere in the remainder, possibly reversed.
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down. ("Signed permutations", genome rearrangements.)

Thm. (Gates–Papadimitriou [1979]), Cohen–Blum [1995])
\[\frac{3}{2}n - c \leq g(n) \leq 2n + c. \]

Head insertion: Move leading element anywhere else.
(Aigner–West [1987]) \(n - k \), where \(k \) = size of last run.

Cut-and-paste sorting: A segment is cut out and pasted anywhere in the remainder, possibly reversed.

Thm. (Cranston–Sudborough–West [2007])
\[\left\lfloor \frac{1}{2}n \right\rfloor \leq h(n) \leq \left\lfloor \frac{2}{3}n \right\rfloor. \]
Pancake Variations

Burnt pancakes: Each pancake ends burnt-side down. ("Signed permutations", genome rearrangements.)

Thm. (Gates–Papadimitriou [1979]), Cohen–Blum [1995])

\[
\frac{3}{2}n - c \leq g(n) \leq 2n + c.
\]

Head insertion: Move leading element anywhere else.

(Aigner–West [1987]) \(n - k\), where \(k = \text{size of last run}\).

Cut-and-paste sorting: A segment is cut out and pasted anywhere in the remainder, possibly reversed.

Thm. (Cranston–Sudborough–West [2007])

\[
\left\lfloor \frac{1}{2}n \right\rfloor \leq h(n) \leq \left\lceil \frac{2}{3}n \right\rceil.
\]

- Eriksson–Eriksson-Karlander–Svensson–Wástlund [2001] \(\leq \left\lfloor \frac{2}{3}n - \frac{2}{3} \right\rfloor\) for sorting by block transpositions, via longer proof.
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?

Thm. (Turán [1941]) If \(m > \frac{n^2 \binom{r}{2}}{r^2} = \frac{n^2}{2} \left(1 - \frac{1}{r}\right)\) (for \(r \mid n\)), then \(k_{r+1}(G) \geq 1\).
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?

Thm. (Turán [1941]) If \(m > \frac{n^2 \binom{r}{2}}{r^2} = \frac{n^2}{2}(1 - \frac{1}{r})\) (for \(r \mid n\)), then \(k_{r+1}(G) \geq 1\).

For further study of \(\min k_{r+1}(G)\) given \(n\) and \(m\), see Bollobás Extremal GT [1978; reprinted 2004]
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?

Thm. (Turán [1941]) If \(m > \frac{n^2}{r^2} \binom{r}{2} = \frac{n^2}{2} (1 - \frac{1}{r})\) (for \(r \mid n\)), then \(k_{r+1}(G) \geq 1\).

For further study of \(\min k_{r+1}(G)\) given \(n\) and \(m\), see Bollobás Extremal GT [1978; reprinted 2004]

Erdős’ proof of Turán’s Theorem:
Number of \((r+1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?

Thm. (Turán [1941]) If \(m > \frac{n^2}{r^2} \binom{r}{2} = \frac{n^2}{2} \left(1 - \frac{1}{r}\right)\) (for \(r \mid n\)), then \(k_{r+1}(G) \geq 1\).

For further study of \(\min k_{r+1}(G)\) given \(n\) and \(m\), see Bollobás Extremal GT [1978; reprinted 2004]

Erdős’ proof of Turán’s Theorem:
\[K_{r+1} \not\subseteq G \implies \exists r\text{-partite } H \text{ s.t. } d_G(v) \leq d_H(v) \text{ for all } v.\]
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \# p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?

Thm. (Turán [1941]) If \(m > \frac{n^2 \binom{r}{2}}{r^2} = \frac{n^2}{2} \left(1 - \frac{1}{r} \right) \) (for \(r \mid n\)), then \(k_{r+1}(G) \geq 1\).

For further study of \(\min k_{r+1}(G)\) given \(n\) and \(m\), see Bollobás Extremal GT [1978; reprinted 2004]

Erdős’ proof of Turán’s Theorem:

\(K_{r+1} \not\subseteq G \implies \exists r\)-partite \(H\) s.t. \(d_G(v) \leq d_H(v)\) for all \(v\).

This condition is \(H\) majorizes \(G\).
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?

Thm. (Turán [1941]) If \(m > \frac{n^2}{r^2} \binom{r}{2} = \frac{n^2}{2} \left(1 - \frac{1}{r}\right)\) (for \(r \mid n\)), then \(k_{r+1}(G) \geq 1\).

For further study of \(\min k_{r+1}(G)\) given \(n\) and \(m\), see Bollobás Extremal GT [1978; reprinted 2004]

Erdős’ proof of Turán’s Theorem:
\(K_{r+1} \not\subseteq G \implies \exists r\)-partite \(H\) s.t. \(d_G(\nu) \leq d_H(\nu)\) for all \(\nu\).

This condition is \(H\) majorizes \(G\).

\(G\) is not majorized by an \(r\)-partite graph \(\implies K_{r+1} \subseteq G\).
Number of \((r + 1)\)-cliques [1982]

Let \(k_p(G) = \#p\)-cliques in \(G\).

Ques. For \(n\)-vertex graphs \(G\) with \(m\) edges, what is the best lower bound on \(k_{r+1}\)?

Thm. (Turán [1941]) If \(m > \frac{n^2}{r^2} \binom{r}{2} = \frac{n^2}{2}(1 - \frac{1}{r})\) (for \(r | n\)), then \(k_{r+1}(G) \geq 1\).

For further study of \(\min k_{r+1}(G)\) given \(n\) and \(m\), see Bollobás Extremal GT [1978; reprinted 2004]

Erdős’ proof of Turán’s Theorem:

\(K_{r+1} \not\subseteq G \Rightarrow \exists r\)-partite \(H\) s.t. \(d_G(\nu) \leq d_H(\nu)\) for all \(\nu\).

This condition is \(H\) majorizes \(G\).

\(G\) is not majorized by an \(r\)-partite graph \(\Rightarrow K_{r+1} \subseteq G\).

Ques. How many \((r + 1)\)-cliques must occur?
A Structural Variation

Conj. (West [1982]) If G has n vertices, maxdeg D, not r-majorizable, then $k_{r+1}(G) \geq (n - D)^t$,
A Structural Variation

Conj. (West [1982]) If G has n vertices, maxdeg D, not r-majorizable, then $k_{r+1}(G) \geq (n - D)^t$, where t is the least integer such that $n - 1 \geq (n - D)r + \binom{r-t}{2}$.
A Structural Variation

Conj. (West [1982]) If G has n vertices, maxdeg D, not r-majorizable, then $k_{r+1}(G) \geq (n - D)^t$, where t is the least integer such that $n - 1 \geq (n - D)r + \binom{r-t}{2}$.

Sharp: $G_{n,r,D}-z$ is r-partite: $t+1$ parts of size $n-D$, then strict increasing. All $(r+1)$-cliques use z, which neighbors all in the first t parts and one in the others.

$$G_{19,5,16}$$

$$18 = 3 \cdot 5 + \binom{5-2}{2}$$
A Structural Variation

Conj. (West [1982]) If G has n vertices, maxdeg D, not r-majorizable, then $k_{r+1}(G) \geq (n - D)^t$, where t is the least integer such that $n - 1 \geq (n - D)r + \binom{r-t}{2}$.

Sharp: $G_{n,r,D-z}$ is r-partite: $t+1$ parts of size $n-D$, then strict increasing. All $(r+1)$-cliques use z, which neighbors all in the first t parts and one in the others.

\[
G_{19,5,16} = 3 \cdot 5 + \binom{5-2}{2} = 18
\]

True: for $r = 2$, for $t = 0$, and for $(r, n, D) = (3, 7, 5)$.
Def. (Bernhart–Kainen [1979]) book embedding: Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. \textit{pagenumber} = min \#pages.
Def. (Bernhart–Kainen [1979]) book embedding: Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. \(\text{pagenumber} = \min \#\text{pages.}\)

\[
\rho(K_n) = \lfloor n/2 \rfloor.
\]
Def. (Bernhart–Kainen [1979]) book embedding: Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. **pagenumber** = min #pages.

Ex. \(p(K_n) = \lfloor n/2 \rfloor \).

Thm. (Yannakakis [1986]) \(p(G) \leq 4 \) when \(G \) is planar.
Def. (Bernhart–Kainen [1979]) **book embedding:** Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. \textit{pagenumber} = min \#pages.

\begin{center}
\begin{tikzpicture}

 \node[circle, draw, inner sep=2pt] (A) at (0,0) {};
 \node[circle, draw, inner sep=2pt] (B) at (1,0) {};
 \node[circle, draw, inner sep=2pt] (C) at (2,0) {};
 \node[circle, draw, inner sep=2pt] (D) at (3,0) {};
 \node[circle, draw, inner sep=2pt] (E) at (4,0) {};
 \node[circle, draw, inner sep=2pt] (F) at (5,0) {};

 \draw (A) -- (B);
 \draw (B) -- (C);
 \draw (C) -- (D);
 \draw (D) -- (E);
 \draw (E) -- (F);
\end{tikzpicture}
\end{center}

Ex. \(p(K_n) = \lfloor n/2 \rfloor\).

Thm. (Yannakakis [1986]) \(p(G) \leq 4\) when \(G\) is planar.

Thm. (Muder–Weaver–West [1988]) For \(m \geq n\),
\[p(K_{m,n}) \leq \left\lceil \frac{m+2n}{4} \right\rceil. \]
Def. (Bernhart–Kainen [1979]) book embedding: Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. \(\text{pagenumber} = \min \# \text{pages}. \)

Ex. \(p(K_n) = \lfloor n/2 \rfloor. \)

Thm. (Yannakakis [1986]) \(p(G) \leq 4 \) when \(G \) is planar.

Thm. (Muder–Weaver–West [1988]) For \(m \geq n \),
\[
p(K_{m,n}) \leq \left\lfloor \frac{m+2n}{4} \right\rfloor.
\]

Thm. (Enomoto–Nakamigawa–Ota [1997]) For \(m \geq n \),
\[
p(K_{m,n}) \leq \left\lfloor \frac{m+n}{3} \right\rfloor.
\]
Pagenumber [1988]

Def. (Bernhart–Kainen [1979]) **book embedding:** Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. **pagenumber** = min # pages.

Ex. $p(K_n) = \lfloor n/2 \rfloor$.

Thm. (Yannakakis [1986]) $p(G) \leq 4$ when G is planar.

Thm. (Muder–Weaver–West [1988]) For $m \geq n$, $p(K_{m,n}) \leq \left\lceil \frac{m+2n}{4} \right\rceil$.

Thm. (Enomoto–Nakamigawa–Ota [1997]) For $m \geq n$, $p(K_{m,n}) \leq \left\lfloor \frac{m+n}{3} \right\rfloor$. Improves MWW for $m < 2n$.
Pagename [1988]

Def. (Bernhart–Kainen [1979]) book embedding: Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. \(\text{pagenumber} = \min \# \text{pages}. \)

\[
\bullet \bullet \bullet \bullet \bullet \bullet \bullet
\]

Ex. \(p(K_n) = \lfloor n/2 \rfloor. \)

Thm. (Yannakakis [1986]) \(p(G) \leq 4 \) when \(G \) is planar.

Thm. (Muder–Weaver–West [1988]) For \(m \geq n \),
\[p(K_{m,n}) \leq \left\lceil \frac{m+2n}{4} \right\rceil. \]

Thm. (Enomoto–Nakamigawa–Ota [1997]) For \(m \geq n \),
\[p(K_{m,n}) \leq \left\lfloor \frac{m+n}{3} \right\rfloor. \] **Improves MWW for** \(m < 2n. \)

So, \(n/2 \leq p(K_{n,n}) \leq 2n/3. \)
Def. (Bernhart–Kainen [1979]) book embedding: Order the vertices along the spine of a book, embed edges on pages. Each edge is on one page; edges on a page do not cross. \(\text{pagenumber} = \min \# \text{pages} \).

Ex. \(p(K_n) = \lfloor n/2 \rfloor \).

Thm. (Yannakakis [1986]) \(p(G) \leq 4 \) when \(G \) is planar.

Thm. (Muder–Weaver–West [1988]) For \(m \geq n \),
\[
p(K_{m,n}) \leq \left\lfloor \frac{m+2n}{4} \right\rfloor.
\]

Thm. (Enomoto–Nakamigawa–Ota [1997]) For \(m \geq n \),
\[
p(K_{m,n}) \leq \left\lfloor \frac{m+n}{3} \right\rfloor.
\]

Improves MWW for \(m < 2n \).

So, \(n/2 \leq p(K_{n,n}) \leq 2n/3 \).

Ques. (Leighton) What is \(p(K_n \square K_n) \)?
Acyclic Orientations [1995]

Def. An edge in an acyclic orientation is dependent if reversing it creates a cycle. Let $d_{\min}(G)$ and $d_{\max}(G)$ be the min & max #dependent edges in orientations of G.
Acyclic Orientations [1995]

Def. An edge in an acyclic orientation is dependent if reversing it creates a cycle. Let $d_{\text{min}}(G)$ and $d_{\text{max}}(G)$ be the min & max #dependent edges in orientations of G.

- $d_{\text{min}}(G) = 0 \iff G$ is the cover graph of a poset.
Acyclic Orientations [1995]

Def. An edge in an acyclic orientation is **dependent** if reversing it creates a cycle. Let $d_{\text{min}}(G)$ and $d_{\text{max}}(G)$ be the min & max #dependent edges in orientations of G.

- $d_{\text{min}}(G) = 0 \iff G$ is the cover graph of a poset.
- $d_{\text{max}}(G) = |E(G)| - |V(G)| + \#\text{components}$ (Edelman)
Acyclic Orientations [1995]

Def. An edge in an acyclic orientation is dependent if reversing it creates a cycle. Let $d_{\text{min}}(G)$ and $d_{\text{max}}(G)$ be the min \& max \#dependent edges in orientations of G.

- $d_{\text{min}}(G) = 0$ \iff G is the cover graph of a poset.
- $d_{\text{max}}(G) = |E(G)| - |V(G)| + \#\text{components}$ (Edelman)

Def. G is fully orientable if \exists acyclic orientation with k dependent edges whenever $d_{\text{min}}(G) \leq k \leq d_{\text{max}}(G)$.
Acyclic Orientations [1995]

Def. An edge in an acyclic orientation is **dependent** if reversing it creates a cycle. Let $d_{\text{min}}(G)$ and $d_{\text{max}}(G)$ be the min & max # dependent edges in orientations of G.

- $d_{\text{min}}(G) = 0 \iff G$ is the cover graph of a poset.
- $d_{\text{max}}(G) = |E(G)| - |V(G)| + \#\text{components}$ (Edelman)

Def. G is **fully orientable** if \exists acyclic orientation with k dependent edges whenever $d_{\text{min}}(G) \leq k \leq d_{\text{max}}(G)$.

Ques. Which graphs are fully orientable? Bipartite?
Acyclic Orientations [1995]

Def. An edge in an acyclic orientation is dependent if reversing it creates a cycle. Let $d_{\text{min}}(G)$ and $d_{\text{max}}(G)$ be the min & max #dependent edges in orientations of G.

- $d_{\text{min}}(G) = 0 \iff G$ is the cover graph of a poset.
- $d_{\text{max}}(G) = |E(G)| - |V(G)| + \#\text{components}$ (Edelman)

Def. G is fully orientable if \exists acyclic orientation with k dependent edges whenever $d_{\text{min}}(G) \leq k \leq d_{\text{max}}(G)$.

Ques. Which graphs are fully orientable? Bipartite?

Yes: Complete bipartite graphs (West [1995]), cover graphs (Fisher–Fraughnaugh–Langley–West [1997]), graphs with $d_{\text{min}}(G) \leq 1$ (Lai–Lih–Tong [2009]), outerplanar graphs (Lih–Lin–Tong [2006]), 2-degenerate graphs (Lai–Chang–Lih [2008]), etc.
Acyclic Orientations [1995]

Def. An edge in an acyclic orientation is dependent if reversing it creates a cycle. Let $d_{\text{min}}(G)$ and $d_{\text{max}}(G)$ be the min & max #dependent edges in orientations of G.

- $d_{\text{min}}(G) = 0$ \iff G is the cover graph of a poset.
- $d_{\text{max}}(G) = |E(G)| - |V(G)| + \#\text{components}$ (Edelman)

Def. G is fully orientable if \exists acyclic orientation with k dependent edges whenever $d_{\text{min}}(G) \leq k \leq d_{\text{max}}(G)$.

Ques. Which graphs are fully orientable?

Yes: Complete bipartite graphs (West [1995]), cover graphs (Fisher–Fraughnaugh–Langley–West [1997]), graphs with $d_{\text{min}}(G) \leq 1$ (Lai–Lih–Tong [2009]), outerplanar graphs (Lih–Lin–Tong [2006]), 2-degenerate graphs (Lai–Chang–Lih [2008]), etc.

No: Turán graph $T_{n,r}$ when $r \mid n$ (Chang–Lin–Tong [’09]).
Def. Let $l(n, k)$ be the largest t such that every connected n-vertex graph with minimum degree at least k has a spanning tree with at least t leaves (and hence connected domination number $\leq n - t$).
Def. Let $l(n, k)$ be the largest t such that every connected n-vertex graph with minimum degree at least k has a spanning tree with at least t leaves (and hence connected domination number $\leq n - t$).

- $l(n, k) \leq \frac{k-2}{k+1} n + 2$:

```
  \[ \frac{k-2}{k+1} n + 2 \]
```
Spanning Trees with Many Leaves [2000]

Def. Let $l(n, k)$ be the largest t such that every connected n-vertex graph with minimum degree at least k has a spanning tree with at least t leaves (and hence connected domination number $\leq n - t$).

- $l(n, k) \leq \frac{k-2}{k+1} n + 2$:

- $l(n, k) \geq \frac{k-2}{k+1} n + c$ for $k \leq 4$ (Kleitman–West [1991]) and $k \in \{4, 5\}$ (Griggs–Wu [1992]).
Spanning Trees with Many Leaves [2000]

Def. Let \(l(n, k) \) be the largest \(t \) such that every connected \(n \)-vertex graph with minimum degree at least \(k \) has a spanning tree with at least \(t \) leaves (and hence connected domination number \(\leq n - t \)).

- \(l(n, k) \leq \frac{k-2}{k+1} n + 2 \):

- \(l(n, k) \geq \frac{k-2}{k+1} n + c \) for \(k \leq 4 \) (Kleitman–West [1991]) and \(k \in \{4, 5\} \) (Griggs–Wu [1992]). Large \(k \)?
Spanning Trees with Many Leaves [2000]

Def. Let \(l(n, k) \) be the largest \(t \) such that every connected \(n \)-vertex graph with minimum degree at least \(k \) has a spanning tree with at least \(t \) leaves (and hence connected domination number \(\leq n - t \)).

- \(l(n, k) \leq \frac{k-2}{k+1} n + 2 \):

\[\begin{array}{c}
 k+1 \quad k+1 \quad k+1 \quad k+1 \\
 \end{array} \]

- \(l(n, k) \geq \frac{k-2}{k+1} n + c \) for \(k \leq 4 \) (Kleitman–West [1991]) and \(k \in \{4, 5\} \) (Griggs–Wu [1992]). Large \(k \)?

Thm. (Caro–West–Yuster [2000]) \(l(n, k) \sim n \frac{k-\ln(k+1)}{k+1} \).
Spanning Trees with Many Leaves [2000]

Def. Let $l(n, k)$ be the largest t such that every connected n-vertex graph with minimum degree at least k has a spanning tree with at least t leaves (and hence connected domination number $\leq n - t$).

- $l(n, k) \leq \frac{k-2}{k+1} n + 2$:

- $l(n, k) \geq \frac{k-2}{k+1} n + c$ for $k \leq 4$ (Kleitman–West [1991]) and $k \in \{4, 5\}$ (Griggs–Wu [1992]). Large k?

Thm. (Caro–West–Yuster [2000]) $l(n, k) \sim n^{\frac{k-\ln(k+1)}{k+1}}$.

Ques. How does $\frac{l(n,k)}{n}$ decline from $\frac{k-2}{k+1}$ to $\frac{k-\ln(k+1)}{k+1}$?
Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color.
Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color. It is **strong (spec)** if this holds also for open walks.
Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color. It is strong (spec) if this holds also for open walks. #colors needed is $p(G)$ or $\hat{p}(G)$, respectively.
Parity Edge-Coloring [2008]

Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color. It is strong (spec) if this holds also for open walks. #colors needed is $p(G)$ or $\hat{p}(G)$, respectively.

- Incident edges form path, so $\hat{p}(G) \geq p(G) \geq \chi'(G)$.
Parity Edge-Coloring [2008]

Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color. It is **strong** if this holds also for open walks. #colors needed is $p(G)$ or $\hat{p}(G)$, respectively.

- Incident edges form path, so $\hat{p}(G) \geq p(G) \geq \chi'(G)$.

Ex. $p(P_n) = \lceil \lg n \rceil$.
Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color. It is **strong** (spec) if this holds also for open walks. #colors needed is $p(G)$ or $\hat{p}(G)$, respectively.

- Incident edges form path, so $\hat{p}(G) \geq p(G) \geq \chi'(G)$.

Ex. $p(P_n) = \lceil \log n \rceil$.
Parity Edge-Coloring [2008]

Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color. It is strong (spec) if this holds also for open walks.

colors needed is \(p(G) \) or \(\hat{p}(G) \), respectively.

- Incident edges form path, so \(\hat{p}(G) \geq p(G) \geq \chi'(G) \).

Ex. \(p(P_n) = \lceil \lg n \rceil \).

\[
\begin{align*}
G & \quad p(G) \leq 4 \\
\quad & \quad \text{not spec} \\
\quad & \quad \hat{p}(G) = 5 \\
P_{18} & \quad p(P_{18}) = 5
\end{align*}
\]
Def. A parity edge-coloring (pec) assigns colors to edges so no path has an even number of each color. It is strong (spec) if this holds also for open walks.

#colors needed is \(p(G) \) or \(\hat{p}(G) \), respectively.

- Incident edges form path, so \(\hat{p}(G) \geq p(G) \geq \chi'(G) \).

Ex. \(p(P_n) = \lceil \lg n \rceil \).

Conj. \(\hat{p}(G) = p(G) \) for every bipartite \(G \).
$p(G)$ when G is dense

Ex. Give the vertices of K_{2^k} distinct k-tuple binary codes. Color $E(K_{2^k})$ by giving uv the color $u \oplus v$.

\[
\begin{array}{c c c}
01 & & 11 \\
00 & & 10 \\
\end{array}
\]

\[
\begin{array}{c c}
\text{-purple} & = 01 \\
\text{blue} & = 11 \\
\text{red} & = 10 \\
\end{array}
\]
\(p(G) \) when \(G \) is dense

Ex. Give the vertices of \(K_{2^k} \) distinct \(k \)-tuple binary codes. Color \(E(K_{2^k}) \) by giving \(uv \) the color \(u \oplus v \).

<table>
<thead>
<tr>
<th>01</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>10</td>
</tr>
</tbody>
</table>

\[= 01 \]
\[= 11 \]
\[= 10 \]

Thm. (Bunde–Milans–Wu–West [2008]) \(\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1 \).
\(p(G) \) when \(G \) is dense

Ex. Give the vertices of \(K_{2^k} \) distinct \(k \)-tuple binary codes. Color \(E(K_{2^k}) \) by giving \(uv \) the color \(u \oplus v \).

\[
\begin{array}{c c c c}
01 & 10 & 00 & 11 \\
\end{array}
\]

\[
\begin{array}{c c c}
\text{= 01} & \text{= 11} & \text{= 10} \\
\end{array}
\]

Thm. (Bunde–Milans–Wu–West [2008]) \(\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1 \).

Conj. \(p(K_n) = \hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1 \).
When G is dense

Ex. Give the vertices of K_{2^k} distinct k-tuple binary codes. Color $E(K_{2^k})$ by giving uv the color $u \oplus v$.

![Diagram showing vertex coloring]

Thm. (Bunde–Milans–Wu–West [2008]) $\hat{p}(K_n) = 2^\lceil \lg n \rceil - 1$.

Conj. $p(K_n) = \hat{p}(K_n) = 2^\lceil \lg n \rceil - 1$. True for $n \leq 16$.
$p(G)$ when G is dense

Ex. Give the vertices of K_{2^k} distinct k-tuple binary codes. Color $E(K_{2^k})$ by giving uv the color $u \oplus v$.

\[
\begin{array}{c}
01 & 11 \\
00 & 10
\end{array}
\]

\[
\begin{array}{c}
\text{= 01} \\
= 11 \\
= 10
\end{array}
\]

Thm. (Bunde–Milans–Wu–West [2008]) $\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$.

Conj. $p(K_n) = \hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$. True for $n \leq 16$.

Analogous construction yields $\hat{p}(K_{n,n}) \leq 2^{\lceil \lg n \rceil}$.
Ex. Give the vertices of K_{2^k} distinct k-tuple binary codes. Color $E(K_{2^k})$ by giving uv the color $u \oplus v$.

\[\begin{array}{c|c|c|c}
01 & 11 & 01 \\
00 & 10 & 11 \\
\end{array}\]

\[00 \quad 01 \quad 10 \quad 11\]

\[\begin{array}{c|c|c|c}
00 & 10 & 00 \\
01 & 11 & 11 \\
\end{array}\]

Thm. (Bunde–Milans–Wu–West [2008]) $\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$.

 Conj. $p(K_n) = \hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$. True for $n \leq 16$.

Analogous construction yields $\hat{p}(K_{n,n}) \leq 2^{\lceil \lg n \rceil}$.

 Conj. $p(K_{n,n}) = \hat{p}(K_{n,n}) = 2^{\lceil \lg n \rceil} - 1$.

$p(G)$ when G is dense
\(p(G) \) when \(G \) is dense

Ex. Give the vertices of \(K_{2^k} \) distinct \(k \)-tuple binary codes. Color \(E(K_{2^k}) \) by giving \(uv \) the color \(u \oplus v \).

\[
\begin{array}{c|c|c}
01 & 11 & = 01 \\
00 & 10 & = 11 \\
\end{array}
\]

Thm. (Bunde–Milans–Wu–West [2008]) \(\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1 \).

Conj. \(p(K_n) = \hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1 \). True for \(n \leq 16 \).

Analogous construction yields \(\hat{p}(K_{n,n}) \leq 2^{\lceil \lg n \rceil} \).

Conj. \(p(K_{n,n}) = \hat{p}(K_{n,n}) = 2^{\lceil \lg n \rceil} - 1 \).

A more detailed conjecture for \(\hat{p}(K_{r,s}) \) would strengthen "Yuzvinsky’s Theorem" on sums of subsets of \(\mathbb{F}_2^k \).
The Reconstruction Problem

Def. The deck of a graph G is the multiset of cards of the form $G - v$ for $v \in V(G)$.
The Reconstruction Problem

Def. The deck of a graph G is the multiset of cards of the form $G - v$ for $v \in V(G)$.
The Reconstruction Problem

Def. The deck of a graph G is the multiset of cards of the form $G - v$ for $v \in V(G)$.

Conj. (Kelly [1957], Ulam [1960]) Every graph with at least three vertices is reconstructible.
The Reconstruction Problem

Def. The deck of a graph G is the multiset of cards of the form $G - v$ for $v \in V(G)$.

![Graphs with different decks](image)

Conj. (Kelly [1957], Ulam [1960]) Every graph with at least three vertices is reconstructible.

Def. (Harary–Plantholt [1985]) The reconstruction number $\text{rn}(G)$ of G is the minimum number of cards from the deck in a multiset that determines G.
The Reconstruction Problem

Def. The **deck** of a graph G is the multiset of **cards** of the form $G - v$ for $v \in V(G)$.

Def. (Harary–Plantholt [1985]) The **reconstruction number** $rn(G)$ of G is the minimum #cards from the deck in a multiset that determines G.

Obs. $|E(G)| = \frac{\sum_v |E(G-v)|}{n-2}$ when G has n vertices.

This info is lost when keeping only some cards.
Degree-Associated Reconstruction [2010]

Def. (Ramachandran [1981]) the dacards are the pairs $(G - v, d_G(v))$ for $v \in V(G)$. The degree-associated reconstruction number $drn(G)$ is the minimum number of dacards in a multiset that determines G.
Degree-Associated Reconstruction [2010]

Def. (Ramachandran [1981]) the dacards are the pairs \((G - v, d_G(v))\) for \(v \in V(G)\). The degree-associated reconstruction number \(\text{drn}(G)\) is the minimum number of dacards in a multiset that determines \(G\).

- Always \(\text{drn}(G) \leq \text{rn}(G)\).
Degree-Associated Reconstruction [2010]

Def. (Ramachandran [1981]) the dacards are the pairs $(G - v, d_G(v))$ for $v \in V(G)$. The degree-associated reconstruction number $\text{drn}(G)$ is the minimum number of dacards in a multiset that determines G.

- Always $\text{drn}(G) \leq \text{rn}(G)$.
- Almost always $\text{drn}(G) = 2$ (Barrus–West [2010]).
 Almost always $\text{rn}(G) = 3$ (Myrvold [1988]).
Def. (Ramachandran [1981]) the dacards are the pairs \((G - \nu, d_G(\nu))\) for \(\nu \in V(G)\). The degree-associated reconstruction number \(drn(G)\) is the minimum number of dacards in a multiset that determines \(G\).

- Always \(drn(G) \leq rn(G)\).

- Almost always \(drn(G) = 2\) (Barrus–West [2010]). Almost always \(rn(G) = 3\) (Myrvold [1988]).

- \(drn(G) \leq \min\{k+2, n-k+1\}\) for \(k\)-regular \(G\) [BW’10].
Degree-Associated Reconstruction [2010]

Def. (Ramachandran [1981]) the dacards are the pairs \((G - \nu, d_G(\nu))\) for \(\nu \in V(G)\). The degree-associated reconstruction number \(\text{drn}(G)\) is the minimum number of dacards in a multiset that determines \(G\).

- Always \(\text{drn}(G) \leq \text{rn}(G)\).
- Almost always \(\text{drn}(G) = 2\) (Barrus–West [2010]).
 Almost always \(\text{rn}(G) = 3\) (Myrvold [1988]).
- \(\text{drn}(G) \leq \min\{k+2, n-k+1\}\) for \(k\)-regular \(G\) [BW’10].
 Equality for \(tK_{m,m}\) with \(t > 1\) (Ramachandran [2006]).
Degree-Associated Reconstruction [2010]

Def. (Ramachandran [1981]) the dacards are the pairs $(G - ν, d_G(ν))$ for $ν ∈ V(G)$. The degree-associated reconstruction number $drn(G)$ is the minimum #dacards in a multiset that determines G.

- Always $drn(G) ≤ rn(G)$.

- Almost always $drn(G) = 2$ (Barrus–West [2010]).
 Almost always $rn(G) = 3$ (Myrvold [1988]).

- $drn(G) ≤ \min\{k+2, n−k+1\}$ for k-regular G [BW’10].

 Equality for $tK_{m,m}$ with $t > 1$ (Ramachandran [2006]).

** Conj. ** $drn(G) ≤ \frac{n}{4} + 2$ when G has n vertices.
Degree-Associated Reconstruction [2010]

Def. (Ramachandran [1981]) the dacards are the pairs $(G - v, d_G(v))$ for $v \in V(G)$. The degree-associated reconstruction number $drn(G)$ is the minimum #dacards in a multiset that determines G.

- Always $drn(G) \leq rn(G)$.

- Almost always $drn(G) = 2$ (Barrus–West [2010]).
 Almost always $rn(G) = 3$ (Myrvold [1988]).

- $drn(G) \leq \min\{k+2, n-k+1\}$ for k-regular G [BW’10].
 Equality for $tK_{m,m}$ with $t > 1$ (Ramachandran [2006]).

Conj. $drn(G) \leq \frac{n}{4} + 2$ when G has n vertices.

- $drn(G) \geq 3$ when G is vertex-transitive [BW’10].
Degree-Associated Reconstruction [2010]

Def. (Ramachandran [1981]) the dacards are the pairs \((G - \nu, d_G(\nu))\) for \(\nu \in V(G)\). The degree-associated reconstruction number \(\text{drn}(G)\) is the minimum number of dacards in a multiset that determines \(G\).

- Always \(\text{drn}(G) \leq \text{rn}(G)\).
- Almost always \(\text{drn}(G) = 2\) (Barrus–West [2010]).
 Almost always \(\text{rn}(G) = 3\) (Myrvold [1988]).

- \(\text{drn}(G) \leq \min\{k+2, n-k+1\}\) for \(k\)-regular \(G\) [BW’10].
 Equality for \(tK_{m,m}\) with \(t > 1\) (Ramachandran [2006]).

Conj. \(\text{drn}(G) \leq \frac{n}{4} + 2\) when \(G\) has \(n\) vertices.

- \(\text{drn}(G) \geq 3\) when \(G\) is vertex-transitive [BW’10].

Ques. Must equality hold when \(G\) has no “twins”?
More on $\text{drn}(G)$

- $\text{drn}(tK_m) = 3$ (Ramachandran [2006]) but $\text{rn}(tK_m) = m + 2$ (Myrvold [1989]).
More on $\text{drn}(G)$

- $\text{drn}(tK_m) = 3$ (Ramachandran [2006]) but $\text{rn}(tK_m) = m + 2$ (Myrvold [1989]).

Ques. What other graphs satisfy $\text{rn}(G) - \text{drn}(G) > 1$?
More on $\drn(G)$

- $\drn(tK_m) = 3$ (Ramachandran [2006]) but $\rn(tK_m) = m + 2$ (Myrvold [1989]).

Ques. What other graphs satisfy $\rn(G) - \drn(G) > 1$?

Thm. (Myrvold [1990]) If T is a tree with at least five vertices, then $\rn(T) = 3$.
More on \(\text{drn}(G) \)

- \(\text{drn}(tK_m) = 3 \) (Ramachandran [2006]) but \(\text{rn}(tK_m) = m + 2 \) (Myrvold [1989]).

Ques. What other graphs satisfy \(\text{rn}(G) - \text{drn}(G) > 1 \)?

Thm. (Myrvold [1990]) If \(T \) is a tree with at least five vertices, then \(\text{rn}(T) = 3 \).

Ex. The trees below satisfy \(\text{drn}(H_1) = \text{drn}(H_2) = 3 \).
More on $\text{drn}(G)$

- $\text{drn}(tK_m) = 3$ (Ramachandran [2006]) but $\text{rn}(tK_m) = m + 2$ (Myrvold [1989]).

Ques. What other graphs satisfy $\text{rn}(G) - \text{drn}(G) > 1$?

Thm. (Myrvold [1990]) If T is a tree with at least five vertices, then $\text{rn}(T) = 3$.

Ex. The trees below satisfy $\text{drn}(H_1) = \text{drn}(H_2) = 3$.

```
    H_1
       /
      /  \
     /    \
H_2
```

Thm. For caterpillars, $\text{drn}(T) = 2$ unless T is a star or H_1.
More on $\text{drn}(G)$

- $\text{drn}(tK_m) = 3$ (Ramachandran [2006]) but $\text{rn}(tK_m) = m + 2$ (Myrvold [1989]).

Ques. What other graphs satisfy $\text{rn}(G) - \text{drn}(G) > 1$?

Thm. (Myrvold [1990]) If T is a tree with at least five vertices, then $\text{rn}(T) = 3$.

Ex. The trees below satisfy $\text{drn}(H_1) = \text{drn}(H_2) = 3$.

![Diagram of trees](attachment:diagram.png)

Thm. For caterpillars, $\text{drn}(T) = 2$ unless T is a star or H_1.

Conj. $\text{drn}(T) \leq 2$ except for finitely many trees (maybe only H_1 and H_2).
More on \(\text{drn}(G) \)

- \(\text{drn}(tK_m) = 3 \) (Ramachandran [2006]) but \(\text{rn}(tK_m) = m + 2 \) (Myrvold [1989]).

Ques. What other graphs satisfy \(\text{rn}(G) - \text{drn}(G) > 1 \)?

Thm. (Myrvold [1990]) If \(T \) is a tree with at least five vertices, then \(\text{rn}(T) = 3 \).

Ex. The trees below satisfy \(\text{drn}(H_1) = \text{drn}(H_2) = 3 \).

\[
\begin{align*}
\text{H}_1 & \quad \text{H}_2
\end{align*}
\]

Thm. For caterpillars, \(\text{drn}(T) = 2 \) unless \(T \) is a star or \(H_1 \).

Conj. \(\text{drn}(T) \leq 2 \) except for finitely many trees (maybe only \(H_1 \) and \(H_2 \)).

- Hannah Spinoza has extended the upper bound to “subdivided caterpillars with toes”.

\[
\begin{align*}
\text{H}_1 & \quad \text{H}_2
\end{align*}
\]
Nine Dragon Tree Conjecture [2010]

Aim: Common generalization of Nash-Williams’ Formula and decomposition results for planar graphs.
Nine Dragon Tree Conjecture [2010]

Aim: Common generalization of Nash-Williams’ Formula and decomposition results for planar graphs.

Thm. (Nash-Williams [1965]) G decomposes into k forests $\iff |E(H)| \leq k(|V(H)|−1)$ for every subgraph H.
Nine Dragon Tree Conjecture [2010]

Aim: Common generalization of Nash-Williams’ Formula and decomposition results for planar graphs.

Thm. (Nash-Williams [1965]) G decomposes into k forests $\iff |E(H)| \leq k(|V(H)| - 1)$ for every subgraph H.

Def. Fractional arboricity $\text{Arb}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1}$.

(Payan [1986])
Nine Dragon Tree Conjecture [2010]

Aim: Common generalization of Nash-Williams’ Formula and decomposition results for planar graphs.

Thm. (Nash-Williams [1965]) G decomposes into k forests $\iff |E(H)| \leq k(|V(H)|−1)$ for every subgraph H.

Def. fractional arboricity $\text{Arb}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|−1}$.

(Payan [1986]) N-W: arboricity $\gamma(G) = \lceil \text{Arb}(G) \rceil$.
Nine Dragon Tree Conjecture [2010]

Aim: Common generalization of Nash-Williams’ Formula and decomposition results for planar graphs.

Thm. (Nash-Williams [1965]) \(G \) decomposes into \(k \) forests \(\iff |E(H)| \leq k(|V(H)|−1) \) for every subgraph \(H \).

Def. fractional arboricity \(\text{Arb}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|−1} \).

(Payan [1986]) \(\text{N-W}: \) arboricity \(\Upsilon(G) = \lceil \text{Arb}(G) \rceil \).

Idea: Three forests are needed when \(\text{Arb}(G) = 2 + \varepsilon \); can we restrict the third forest?
Nine Dragon Tree Conjecture [2010]

Aim: Common generalization of Nash-Williams’ Formula and decomposition results for planar graphs.

Thm. (Nash-Williams [1965]) G decomposes into k forests $⇔ |E(H)| ≤ k(|V(H)|−1)$ for every subgraph H.

Def. fractional arboricity $\text{Arb}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|−1}$.

(Payan [1986]) N-W: arboricity $\gamma(G) = \lceil \text{Arb}(G) \rceil$.

Idea: Three forests are needed when $\text{Arb}(G) = 2 + \varepsilon$; can we restrict the third forest?

Def. G is d-bounded if $\Delta(G) ≤ d$.
Nine Dragon Tree Conjecture [2010]

Aim: Common generalization of Nash-Williams’ Formula and decomposition results for planar graphs.

Thm. (Nash-Williams [1965]) G decomposes into k forests $\iff |E(H)| \leq k(|V(H)|-1)$ for every subgraph H.

Def. fractional arboricity $\text{Arb}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|-1}$.

(Payan [1986]) N-W: arboricity $\Upsilon(G) = \lceil \text{Arb}(G) \rceil$.

Idea: Three forests are needed when $\text{Arb}(G) = 2 + \epsilon$; can we restrict the third forest?

Def. G is d-bounded if $\Delta(G) \leq d$.

Nine Dragon Tree (NDT) Conjecture:
(Montassier, Ossona de Mendez, Raspaud, Zhu [2010]) $\text{Arb}(G) \leq k + \frac{d}{k+d+1} \Rightarrow G$ decomposes into $k+1$ forests, with the last being d-bounded.