Assessing the Effectiveness of Cumulative Sum Poisson- and Normal-based Tests for Detecting Rare Diseases

16 November 2010

LCDR Manuel Ganuza
Thesis Research

Prof. Ronald Fricker
Advisor

Graduate School Operations & Information Sciences
Department of Operations Research

Monterey, California
• Motivating Problem: Detecting Tularemia

• Research Question

• Background
 – Normal and Poisson Distributions
 – CUSUM

• Applying the CUSUM
 – Measures of Performance

• Results & Conclusions
Motivating Problem: Detecting Tularemia

- Highly virulent, highly infectious disease[^1]
 - Caused by bacterium *Francisella tularensis*

- Also known as rabbit fever and deer fly fever
 - Primary vectors are ticks and deer flies
 - Primary reservoirs are small to medium-sized mammals

- Extremely rare in the United States[^1]
 - From 1990 to 2000, rate less than 1 per 1,000,000

- Can be weaponized for aerosol release[^2]

- Category A agent by CDC
 - Category A agents have the "potential to pose a severe threat to public health and safety"

Sources:
Motivating Problem: Detecting Tularemia

• **Modes of Transmission**\[^3\]**
 - Bites by infected arthropods
 - Direct contact with infected animals
 - Handling of infectious animal tissues or fluids
 - Ingestion of contaminated food, water, or soil
 - Possibly direct contact with contaminated soil or water
 - Inhalation of infectious aerosols
 - Exposure in laboratory setting

• **Clinical Syndromes**\[^3\]**
 - Glandular and Ulceroglandular tularemia
 - Pneumonic tularemia
 - Oculoglandular tularemia
 - Oropharyngeal tularemia
 - Typhiodial tularemia

Source:
Some Tularemia Outbreaks in US

- **Martha’s Vineyard 2000**\(^4\): One fatality
 - CDC investigated for possibility of aerosolized *F. tularensis*
 - Subsequently documented cases of tularemia resulted from lawn mowing

- **Washington, D.C. 2005**\(^5\): Small amounts of *Francisella tularensis* were detected
 - Morning after an anti-war demonstration, biohazard sensors were triggered at six locations surrounding the Capitol Mall
 - While thousands of people were potentially exposed, no infections were reported

Sources:
\(^5\) Center for Infectious Diseases Research & Policy News. Tularemia agent found in DC air, but no cases seen. University of Minnesota October 2005.
• **Background:**
 – Biosurveillance systems often use Cumulative Sum (CUSUM) detection algorithm
 – CUSUM derived from normal distribution is most commonly used (“normal-based CUSUM”)
 • Rare diseases do not follow normal distribution
 • Poisson distribution more likely and appropriate

• **Research question:**

 How does normal-based CUSUM perform compared to Poisson-based CUSUM for detecting rare diseases?
• **Univariate distribution for **continuous data
 – Applies to many phenomena … but not all!

• **Two parameters:** mean μ and variance σ^2
Background: Poisson Distribution

- Univariate distribution for discrete data
 - Often a good model for rare events

- One parameter: λ
 - Distribution has mean λ and variance λ
• Sequential test for change (increase) in distribution mean (Page, 1954)

• Basic form: \(C_t = \max \left(0, C_{t-1} + \ln \frac{f_1(X)}{f_0(X)} \right) \)

where

– \(C_t \) is the current value of the CUSUM on day \(t \)
– \(X_t \) is the observed number of cases on day \(t \)
– \(C_{t-1} \) is the value of the CUSUM on day \(t-1 \)
– \(\ln[f_1(X)/f_0(X)] \) is the log-likelihood ratio for \(X \) for the outbreak distribution \(f_1 \) and the non-outbreak distribution \(f_0 \)

• Threshold \(h \): CUSUM signals at time \(t \) when \(C_t \geq h \)
Forms of the CUSUM

- The basic form:

\[C_t = \max \left(0, C_{t-1} + \ln \frac{f_1(X)}{f_0(X)} \right) \]

- For \(f_0 = N(\mu_0, \sigma^2) \) and \(f_1 = N(\mu_1, \sigma^2) \):

\[C_t = \max \left(0, C_{t-1} + X_t - \frac{\mu_1 - \mu_0}{2} \right) \]

- For \(f_0 = \text{Poisson}(\lambda_0) \) and \(f_1 = \text{Poisson}(\lambda_1) \):

\[C_t = \max \left(0, C_{t-1} + X_t - \frac{\lambda_1 - \lambda_0}{\ln(\lambda_1) - \ln(\lambda_0)} \right) \]
Comparing the Forms

• Normal-based and Poisson-based CUSUMs are exactly the same when the reference values match:

\[\frac{\mu_1 - \mu_0}{2} \equiv \frac{\lambda_1 - \lambda_0}{2} = \frac{\lambda_1 - \lambda_0}{\ln(\lambda_1) - \ln(\lambda_0)} \]

• So, the CUSUMs are the same when

\[\ln(\lambda_1) - \ln(\lambda_0) = 2 \]

which is the same as when

\[\lambda_1 / \lambda_0 = e^2 \approx 7.3891 \]

and which is also the same as when

\[\lambda_1 \approx 7.40 \lambda_0 \]
Three cases of interest

- Case #1: $\lambda_1 = 7.40\lambda_0$
- Case #2: $\lambda_1 \ll 7.40\lambda_0$
- Case #3: $\lambda_1 \gg 7.40\lambda_0$
• **Average Time to False/First Signal (ATFS)**
 – When there is no outbreak, it is the average time between (false) signals
 – When there is an outbreak, it is the average delay from start of outbreak to first (real) signal

• **The ideal algorithm:**
 – Has large time between false signals when there is no outbreak
 – Has a small delay to first real signal when there is an outbreak

• **Comparison methodology**
 – Match time between false signals for a given λ_0
 – Assess ATFS across variety of outbreaks ($\lambda^* > \lambda_0$)
 • Method with smaller ATFS values is preferred
Scenario

- **Disease: Tularemia**
 - Incubation period from 3 to 5 days (range 1 to 14 days)
 - Cases occur according to Poisson(\(\lambda^*\)) distribution

- **Biosurveillance Systems**
 - **System A**
 - Uses normal-based CUSUM
 - Assume disease distribution is approximate normal
 exempli gratia, for \(X \sim \text{Poisson}(\lambda)\) it assumes \(X \sim \text{N}(\lambda, \lambda)\)
 - Set threshold \(h_A\), so ATFS is large when no outbreak
 - **System B**
 - Uses Poisson-based CUSUM
 - Set threshold \(h_B\), so ATFS is large when no outbreak
Results: Case #1 ($\lambda_1 \approx 7.40\lambda_0$)

Biosurveillance Systems
- System A
- System B

User set parameters:
- No outbreak, mean $\lambda_0 = 0.100$
- Outbreak, mean $\lambda_1 = 0.740$
- Threshold, $h_A = 0.64$
- Threshold, $h_B = 1.36$

Actual occurrence:
- Data Poisson
- Outbreak, mean λ^*
Results: Case #1 ($\lambda_1 \approx 7.40\lambda_0$)

User set parameters:
- No outbreak, mean $\lambda_0 = 0.100$
- Outbreak, mean $\lambda_1 = 0.740$
- Threshold, $h_A = 0.64$
 $h_B = 1.36$
 $h_A' = 1.08$

Actual occurrence:
- Data Poisson
- Outbreak, mean λ^*

Biosurveillance Systems
- System A
- System B
- System A'
Results: Case #2 \((\lambda_1 \ll 7.40\lambda_0) \)

Biosurveillance Systems

- System A
- System B

User set parameters:
- No outbreak, mean \(\lambda_0 = 0.100 \)
- Outbreak, mean \(\lambda_1 = 0.105 \)
- Threshold, \(h_A = 8.11 \) \(h_B = 2.39 \)

Actual occurrence:
- Data Poisson
- Outbreak, mean \(\lambda^* \)

\[\text{for } \lambda^* = \lambda_0, \text{ ATFS is too high} \]
Results: Case #2 \((\lambda_1 \ll 7.40\lambda_0)\)

- User set parameters:
 - No outbreak, mean \(\lambda_0 = 0.100\)
 - Outbreak, mean \(\lambda_1 = 0.105\)
 - Threshold, \(h_A = 8.11\), \(h_B = 2.39\), \(h_A' = 7.73\)

- Actual occurrence:
 - Data Poisson
 - Outbreak, mean \(\lambda^*\)

For \(\lambda^* = \lambda_0\), ATFS match

Biosurveillance Systems

- System A
- System B
- System A'

Graph showing the relationship between average time to signal and \(\text{lambda}^{\text{star}}\).
Results: Case #3 (\(\lambda_1 \gg 7.40 \lambda_0 \))

Biosurveillance Systems
- System A
- System B

User set parameters:
- No outbreak, mean \(\lambda_0 = 0.100 \)
- Outbreak, mean \(\lambda_1 = 1.480 \)
- Threshold, \(h_A = 0.12 \) \(h_B = 0.49 \)

Actual occurrence:
- Data Poisson
- Outbreak, mean \(\lambda^* \)
Results: Case #3 ($\lambda_1 \gg 7.40\lambda_0$)

Biosurveillance Systems
- System A
- System B
- System A'

User set parameters:
- No outbreak, mean $\lambda_0 = 0.100$
- Outbreak, mean $\lambda_1 = 1.480$
- Threshold, $h_A = 0.12$, $h_B = 0.49$, $h_A' = 0.31$

Actual occurrence:
- Data Poisson
- Outbreak, mean λ^*
• When
 – Rate of disease, \(\lambda_0 \), is very low,
 – Occurrence counts are Poisson distributed, \(X \sim \text{Pois}(\lambda_0) \),
 – Outbreak, \(\lambda_1 \), manifests as only a small increase in the rate of disease, \(\lambda_1 \ll 7.40\lambda_0 \)

• Then *incorrect use of normal-based CUSUM can result in unacceptable delay in detection*

• To monitor rare diseases, such as Tularemia, include Poisson-based CUSUM in biosurveillance systems
 – Example here shows potential delays in signaling on the order of weeks
• **When**
 – Rate of disease, λ_0, is very low,
 – Occurrence counts are Poisson distributed, $X \sim \text{Pois}(\lambda_0)$,
 – Outbreak rate, λ_1, is significantly larger than rate of disease, $\lambda_1 \geq 7.40\lambda_0$

• **Then** *the normal-based CUSUM performs as well as Poisson-based CUSUM*
 – **If** threshold h, is set appropriately to achieve equivalent ATFS performance at $\lambda^* = \lambda_0$
 – With threshold h, set incorrectly, Normal-based CUSUM has excessively high false alarm rate
 • A real problem with existing biosurveillance systems
Assessing the Effectiveness of Cumulative Sum Poisson- and Normal-based Tests for Detecting Rare Diseases

Photo Source:
Francisella tularensis

- **Subspecies**[3]
 - *F. tularensis subsp. tularensis* (type A)
 - Highly infectious, more virulent, more genetically diverse
 - Found in North America
 - *F. tularensis subsp. holarctica* (type B)
 - Found in North America, Europe, Siberia, Far East, and Kazakhstan
 - *F. tularensis subsp. mediaasiatica*
 - Found in Central Asia

Source:
Background: Normal Distribution

- Probability density function (pdf)

\[f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) \]
Background: Poisson Distribution

- Probability mass function (pmf)

\[
\Pr(X = x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}
\]

\(\lambda = 5\)
Applying the CUSUM: Normal Data

• For $f_0 = N(\mu_0, \sigma^2)$ and $f_1 = N(\mu_1, \sigma^2)$

$$C_t = \max \left(0, C_{t-1} + X_t - \frac{\mu_1 - \mu_0}{2} \right)$$

• In words, at each time period add the observed data minus one-half the difference between μ_1 and μ_0 to the cumulative total
 – If the cumulative total is negative, set to zero

• This is the most common form of the CUSUM
 – Often applied to data without realizing that the underlying assumption is normality
Applying the CUSUM: Poisson Data

• For $f_0 = \text{Poisson}(\lambda_0)$ and $f_1 = \text{Poisson}(\lambda_1)$

$$C_t = \max \left(0, C_{t-1} + X_t - \frac{\lambda_1 - \lambda_0}{\ln(\lambda_1) - \ln(\lambda_0)} \right)$$

• Similar idea, at each time period add the observed data minus a quantity based on a function of λ_1 and λ_0 to the cumulative total
 – If the cumulative total is negative, set to zero

• Much less commonly known form
 – But it is the correct form for Poisson data