Business Statistics

Lecture 6: Polls and Sampling
Goals for this Lecture

- Surveys (polls)
- Types of sampling
- Bias vs. variance
- Power calculations
- Confidence intervals for proportions

✓ Don’t worry about the discussion in Business Statistics about binomial and hypergeometric distributions
An Aside: Demonstrating Randomness

This is a demonstration showing that statistics are random variables too.

(www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html)
What is a Poll?

• A poll (or survey) is a:
 • systematic method for gathering information
 • from a sample of people
 • for the purposes of constructing quantitative descriptors
 • of the attributes of the larger population of which the people are members
• It’s data collection from people for inference!
Proper Sampling is Critical

• If we are to use a sample to infer something about a population, we need to:
 • Have some assurance that the sample is representative of the population (i.e., minimize the chance of bias)
 • Be able to quantify how far off our sample statistic could be from the population statistic (sampling error)
• Using a random sample is protection against (unknowingly) selecting a biased sample
• Classical statistics is all about quantifying uncertainty (i.e., sampling error) and using that information to determine statistical significance
Why Sample?

- E.g., why conduct:
 - Nielson survey a sample of US television viewers
 - Clinical trial of how a drug affects a sample of individuals in the trial
 - Test a sample of “widgets” from a factory production line

- Rather than:
 - Evaluate TV viewing preferences for every individual in the US
 - Test how a drug affects every person in a population
 - Do a quality control check of every “widget” produced

✔ Collecting data for whole populations can be expensive and/or impossible
Major Sampling Categories

• **Random sample**: Choose participants or units randomly
 • Key idea: Surveyor or pollster chooses who can take the survey
 • Statistical inference possible

• **Convenience sample**: Choose sample in some other way—often up to the respondent to choose to participate
 • Examples:
 • 900 number and other call-in polls
 • Internet and e-mail surveys (usually)
 • Shopper and visitor surveys
 • Statistical inference **not** possible
Types of Random Sampling

- **Simple random sample (SRS):** any two samples of the same size are equally likely to be selected.
- **Some other random sampling methods:**
 - **Stratified sampling**
 - Divide population into nonoverlapping, homogeneous groups and then draw a SRS from each group.
 - **Cluster sampling**
 - Data naturally occurs in clusters.
 - Use SRS to select clusters.
Sampling Using Randomization

• “Flip a coin” to decide who gets included
 • Most biases are caused by survey designers taking a convenience sample of units they can get their hands on
 • Units selected for convenience may not look like the units in the larger population
 • Units randomly selected from the population will, on average, look like the population

• Randomization turns bias into variability
 • Just taking larger samples will not fix bias
Bias and Variance

• Poorly constructed data collection methods suffer from bias
 • **Bias**: There is something systematically wrong with the study
 • If you did many studies and averaged the results would you get the right answer?

• Variance is a feature of all methods
 • If you did the study again you’d get a different answer
 • How precise are your estimates?
 • What is the standard error of the sample statistic?
Low bias

Low variance

High bias

High variance

Observed sample statistic (sample mean)

True population value (pop. mean)

Other sample statistics you could have observed
Cures for Bias and Variance

• Possibility of bias minimized by randomization
 • When studying people, can still have bias even after randomization

• Variance is reduced when you add more data
 • Confidence intervals for population mean:

\[
\left(\bar{x} - t \frac{s}{\sqrt{n}}, \bar{x} + t \frac{s}{\sqrt{n}} \right)
\]

- \(s\) determined by variability in data
- \(n\) chosen to make the interval small enough for your practical purposes
- \(t\) determined by desired confidence level \(t \approx 2\) gives 95% confidence
Steps in a Survey (1)

• Define population and sampling unit
 • **Sampling unit**
 • Basic unit of analysis
 • E.g., per capita income or household income?

• Construct **sampling frame**
 • Big list containing “almost” everyone in the population
 • **Frame coverage bias** happens when the sampling frame misses important members of the population
 • Useful sampling frame: US census
Steps in a Survey (2)

• Select sample
 • For an SRS, every unit should have an equal probability of appearing
 • Size bias: “bigger” units are more likely to be represented than “smaller” units

• Collect data
 • Non-response bias: units that do not answer your questions look different than those that do
 • Selection bias: units with a particular trait strong opinions are favored
 • Strong opinion
 • Access to survey mode (telephone, internet, etc.)
Steps in a Survey (3)

- Analyze data
 - Were response patterns as expected?
 - Were there errors in completing the survey?
 - Sensitivity bias: answers to questions of salary/sex/other social taboos might not be truthful

- Report results.
 - Reporting bias:
 - Everything gives you cancer
 - Nobody reports the results from studies that show no link between X and cancer
Ex: 1936 US Presidential Election

• Literary Digest Poll, FDR vs Alfred Landon
 • Sampling frame taken from telephone numbers and club membership lists
 • Only one house in 4 had a phone
 • Rich tend to join clubs more than poor
 • Sampling (frame coverage) bias
 • Sent questionnaires to 10 million people
 • Only 2.4 million people responded
 • Nonresponse bias
Results of the Poll

- LD Prediction: FDR 43%, Landon 57%
- Election Result: FDR 62%, Landon 38%
- Largest error ever made by a major poll
 - Literary Digest had correctly forecast every election since 1916
 - Literary Digest went bankrupt soon after 1936
- The Gallup organization (just getting started in 1936)
 - Guessed the election more or less correctly
 - Guessed LD’s result using much less data
Ex: Dewey Defeats Truman

- Even a survey chosen on purpose to be representative can suffer from bias
 - 1948 Gallup Poll (others did similar things)
 - Quota sampling: Survey crews interview people matching particular characteristics
- Interview 13 people:
 - 7 men, 6 women
 - Of the men, 3 under 40, 4 over 40
 - etc...
- What’s wrong with quota sampling?
Who Would You Interview?

- Republican
- Democrat

• Survey interviewers showed republican bias
CIs for Proportions

- Observe something with a **binary** outcome
 - Vote for candidate “A” or “B”
 - Agree or disagree with survey question
- Probability individual in population has characteristic is p
 - Take a sample of size n
 - Then X has a **binomial** distribution
- How to calculate a CI for p?

![Diagram]

Population
Proportion p with characteristic

Random sample of size n

With characteristic
Observe x with characteristic

Without characteristic
Observe $n-x$ without characteristic
CI for Population Proportion p

- Estimate p with $\hat{p} = x/n$ then
- When $np > 5$ and $n(1-p) > 5$, binomial can be approximated by the normal
- Calculate a $100(1-\alpha)\%$ CI as

\[
\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
\]

- E.g., a 95% confidence interval is

\[
\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
\]
Example from *Business Stats*

- From a sample of $n=200$, estimate $\hat{p} = 0.62$
 - I.e., 124 respondents agreed to a question
- So,

 \[
 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{0.62(1-0.62)/200} = 0.03432
 \]
- Thus,

 \[
 \hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.62 \pm 1.96 \times 0.03432 \\
 = [55.27\%, 68.73\%]
 \]
What Does “Margin of Error” Mean?

• **Margin of error** \((E)\) is just half the width of a 95 percent confidence interval
 • In a poll, it’s \(\approx 2\sqrt{\hat{p}(1-\hat{p})/n}\)
 • Previous example \(E=6.7\%\)

• Common survey terminology
 • Convention is a 3% margin of error
 • Means 95% CI for survey result is +/- 3%

• To achieve a desired margin of error, must have the right sample size \((n)\)
 • Called power calculations
Power Calculations for p?

- Start with margin of error for a confidence interval:
 \[E = 2\sqrt{\hat{p}(1 - \hat{p})/n} \]

- Estimate using worst case: $\hat{p} = 1/2$

- For 95% CI, solve for n to get required sample size: $n = 1/E^2$

- Example: Want a 3% margin of error
 - $n = 1/0.03^2 = 1,111.1$
 - So, sample 1,112 people
Additional Details

• Previous calculations assume
 • Very large population
 • Simple random sampling
• If sample is large fraction of population (> 5%), should also use finite population correction
 • See textbook
• If sampling scheme is not SRS, power calculations more complicated
 • See a statistician
Case: Survey1.jmp

• Hotel sampled 1,124 guests present on given day
 • Asked, “Do you plan to return?”
 • 97% response rate! (hotel had to work hard to get this rate)

• Can they believe their results?

<table>
<thead>
<tr>
<th>Moments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.630</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.483</td>
</tr>
<tr>
<td>Std Error Mean</td>
<td>0.014</td>
</tr>
<tr>
<td>Upper 95% Mean</td>
<td>0.658</td>
</tr>
<tr>
<td>Lower 95% Mean</td>
<td>0.602</td>
</tr>
<tr>
<td>N</td>
<td>1124.000</td>
</tr>
<tr>
<td>Sum Weights</td>
<td>1124.000</td>
</tr>
</tbody>
</table>
CI Calculations

• We have that out of 1,124 people 63% said they plan to return
 • I.e., \(n=1,124 \) and \(\hat{p} = 0.63 \)
• So,
 \[
 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.63(1-0.63)}{1124}} = 0.0144
 \]
• Thus,
 \[
 \hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.63 \pm 1.96 \times 0.0144
 \]
 \[
 = [60.2\%, 65.8\%]
 \]
• Same as JMP!
But, a Problem…

- People who stay longer say they are more likely to return.
- Size bias: People who stay longer are more likely to be included in the sample.
- Sample proportion for “WillReturn” suffers from upward bias.
- Lesson: Do the right randomization!
What We Covered in this Class

- Surveys
 - Random selection ensures survey is representative
 - Randomized surveys can be generalized to population
- Types of sampling
- Bias vs. variance
- Power calculations
- Confidence intervals for proportions