
B3. Short Time Fourier Transform 
(STFT) 
Objectives: 

• Understand the concept of a time varying frequency spectrum and the 
spectrogram 

• Understand the effect of different windows on the spectrogram; 
• Understand the effects of the window length on frequency and time resolutions. 

 

1. Introduction 
 

VIDEO: Short Time Fourier Transform (19:24) 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-

transform/videos/b3_01_timeFrequencyAnalysis.mp4 
 
 
 

In a lot of applications, signal carry information and information changes with time. 
Unless we talk about a beacon, or some sort of synchronizing tone, most signals of 
interest present characteristics which change with time. In particular the frequency 
composition (ie the frequency spectrum) most of the time is time varying: just think of a 
piece of music or a sound from a speaker. The very fact that the pitch and the tone 
changes with time makes the signal interesting and suitable to carry information. It 
would be very boring to listen to a recording playing the same notes over and over or 
listening to someone who keeps repeating the same sound. 
 
In this section we address the problem of representing the instantaneous spectrum of a 
signal. This is can be done as a simple extension of the Discrete Fourier Transform (DFT) 
introduced in the previous section, applied to a window “sliding” on the signal. The end 
result is the spectrogram, which shows the evolution of frequencies in time. This 
information is very usefull in the analysis of a signal, since it gives a sort of signature in 
the time and frequency domain. Like a music score, as shown in the figure below, 
describes how the musical notes evolve in time, so the spectrogram shows how the 
various frequency components of a signal evolve with time. 
 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_01_timeFrequencyAnalysis.mp4
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_01_timeFrequencyAnalysis.mp4


 
Music Score as a Time-Frequency plot 

 
In what follows we introduce the Short Time Fourier Transform (STFT) and its 
applications to the analysis of signals. 
 

2. The Short Time Fourier Transform 
Suppose we have a signal ][nx  and we want to determine its time varying frequency 
spectrum. Then, for every time   we multiply it by a window of length N  and we take 
the FFT. This is shown in the figure below. 
 

 
The STFT as the FFT on a sliding window 

In other words, we define the STFT as follows: 
 

[ ]{ } 1,...,0,]1[]1[],...0[][],[ −=−−+= NkNwNxwxDFTkX   
 

where k  is the index denoting frequency and   denotes time. If you recall that, for the 
DFT, the index k  is associated to the frequency NkFs / , with SF  the sampling 
frequency,  we can say that ],[ kX  represents the magnitude and phase of frequency 

NkFF S /=  at time STt = , with SS FT /1=  being the sampling interval. 



 
Most of the time  we are interested in the magnitude ],[ kX  of the STFT. Since 

],[ kX  is a function of two variables (time and frequency indices), its plot is three 
dimensional and often it is represented as an image by associating the value to an 
intensity level or a color. We will be giving several examples in the later part of this 
section. 
 
What is important to understand is what ideally we would like to see in the STFT and 
what in practice we can actually see. Since it is basically an application of the DFT, it 
presents the same issues associated to the artifacts due to the window function, such as 
the main lobe and sidelobes. Ideally we would like to have what is shown in the figure 
below. 
 

 
Ideal Time Frequency Plot 

 
In this example we see a signal with two sinusoids, one of frequency 1ω  for time 0nn ≤  
and one of frequency 2ω  for time 0nn > . The ideal Time Frequency plot should be as 
shown in the figure, zero everywhere part from 21 ,ωωω =  at the respective times. This 
would yield perfect resolution in frequency, since we see only the exact frequency, and 
perfect resolution in time, since we see exactly when the frequency changes. 
 
In practice, as expected, we don’t get this. As we have with the DFT, the fact that we 
take a window of data of length N  affects the frequency resolution: the longer the 
window N , the better we can resolve two adjacent frequencies. However a longer 
window length N  is going to give more uncertainty on the time the signal changes . This 
leads to what is called the “uncertainty principle” in Signal Processing, in the sense that 
we cannot resolve a signal both in time and frequency.  
 



In the next section we address the problem of estimating the Time Frequency evolution 
of a signal and the effects due to finite datalength and the kind of window which we 
use. 
 

3. The Spectrogram 
 

VIDEO: Spectrogram (20:19) 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_03_spectrogram.mp4 

 
The plot of the magnitude of the STFT is called the spectrogram, and that is what we get 
in most Signal Processing packages such as Matlab. 
 
Recall from the previous chapter that the DFT has artifacts due to the finite window 
length. Then the actual (non ideal) spectrogram is as shown in the figure below. 

 
Actual Time Frequency Plot 

 
In this figure we show two cross sections of the three dimensional plot. Each one 
displays the magnitude of the DFT in terms of the mainlobe and the sidelobes, for each 
frequency component.  
 
In particular we see that the width of the mainlobe defines the resolution in digital 
frequency, as 
 

N
m πω 2

=∆  

with the coefficient m  depending on the window used. A rectangular window yields 
2=m  while the hamming, hanning, Bartlett windows have 4=m . This yields a 

resolution  in frequency as 
 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_03_spectrogram.mp4


N
F

mF S=∆  

With SF  the sampling frequency. The resolution in time is given by the window length 
N  and therefore is given by 
 

STNt =∆  
A list of three of  the most commonly used windows is given in the figure below. 
 

 
Three commonly used windows and their frequency spectra. 

 
The rectangular window is just what we have when we just truncate the data, while the 
other windows provide some data weighting. From their effects on the frequency 
spectra, we see that the advantage of using a window other than rectangular is to have 
lower sidelobes. However the disadvantage is a loss in frequency resolution, from 

N/4πω =∆  for the rectangular window to N/8πω =∆  and N/16π  for Hamming and 
Blackman windows respectively.  
 
In the next section we will be showing some applications and the effects of different 
choices of window length and type. 
 



 

 

 

4. Examples of Applications. 
4.1 Chirp signal (click here) 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/chirp.wav 
 

 
VIDEO: Example: Chirp (12:35)  

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_04_exampleChirp.mp4 
 
 

A chirp is a sinusoid with time varying frequency. In particular a linear chirp has a 
frequency which varies linearly with time  between two frequencies. The expression is 
given by 
 

( )απ += ttFAtx )(2cos)(  
where the frequency )(tF  varies as shown in the figure below. 
 

 
 

Time varying frequency for the Chirp signal 
 
For example in matlab, the following code generates a chirp with frequency varying 
between 100Hz and 4,000Hz in 1/10 sec: 
 
Fs=10000;   % sampling frequency in Hz 
Ts=1/Fs;   % sampling interval in seconds 
t=(0:999)*Ts; % time axis 
y=chirp(t, 100, t(1000), 4000);   % chirp signal 
plot(t(1:300), y(1:300))  % plot of first 300 samples 
 
The result is shown in the figure below. 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/chirp.wav
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_04_exampleChirp.mp4


 
A Chirp signal 

 
We can see that the signal starts at a lower frequency (100 Hz in this case) and it ends at 
a higher frequency (4000Hz).  
 
A file containing three repetitions of this pulse is given in chirp.wav, in the “wave” 
file standard. The signal can be listened by clicking here. By listening to the signal we see 
immediately why it is called a “chirp”, since it resembles the chirp of a bird. It can be 
imported into matlab using the command 
 
[y,fs]=wavread(‘chirp’); 
 
with y containing the data and fs the sampling frequency in Hz. A plot is given in the 
figure below. 
 



 
 

Four repetitions of a chirp signal 
 
In order to see the spectrogram we use the following matlab commands 
 
spectrogram(y, rectwin(256), 250, 256,fs,'yaxis'); 
 
where rectwin(256) refers to the window used (rectangular with length 256 
samples, in this case), “250” refers to the amount of overlap between two successive 
windows, “256” is the FFT size (usually the same as the window length), fs the sampling 
frequency. The last term ‘yaxis’ is needed so that the frequency axis is the “y” axis. If 
we omit it the graph is the same but with the frequency being in the horizontal (“x”) 
axis. 
The result is shown in the figure below. 
 



 
Spectrogram of chirp with rectangular window of length N=256 

 
It is fairly clear from the second repetition that the frequency starts at around 100Hz, as 
expected and it ends at 4000Hz. In this plot we can see that, outside the actual 
frequencies of the signal there is quite a large amount of artifacts due to the sidelobes 
of the rectangular window. 
 
As expected, the use of a better window, such as the hamming window, yields a better 
solution. The code (just replace the window) 
 
spectrogram(y, hamming(256), 250, 256,fs,'yaxis'); 
 
yields the spectrogram shown below. 
 



 
Spectrogram of chirp with hamming window of length N=256 

 
The lower sidelobes are evident. They can be made even lower by the use of the 
Blackman window as 
 
spectrogram(y, blackman(256), 250, 256,fs,'yaxis'); 
 
which yields the result shown below, with even lower sidelobes. 
 



 
Spectrogram of chirp with Blackman window of length N=256 

 
The result with a shorter window, of length N=64, shows the loss in frequency 
resolution, but an improvement in time resolution. In fact let’s try 
 
spectrogram(y, hamming(64), 60, 64,fs,'yaxis'); 
 
 
and the result is shown below. 
 



 
Spectrogram of chirp with hamming window of length 64 and fft size of the 

same length N=64 samples 
 

The result looks very “blocky” since we compute nly 64 frequencies. In this case it would 
beneficial to use a larger fft size, say N=256, as follows: 
 
spectrogram(y, hamming(64), 60, 256,fs,'yaxis'); 
 
The result is shown below, where we see the effect of using more frequencies. The 
window is the same, hamming of length 64 points, but in the fft it is padded with zeros 
up to a length N=256 to increase the number of frequencies. 
 



 
Spectrogram of chirp signal with hamming window of length 64 and fft size 

of length 256 samples. 
 
Now we can better compare the effect of using a smaller window size. The time 
resolution is better, in the sense that in the last spectrogramwe better estimate the 
time separation between two different events (two different chirps).  
 
Since the frequency changes continuously with time, the benefit of using a longer 
window to improve frequency resolution is not evident, since within a longer window 
there is more frequency variability. This will be more evident in the following two 
examples. 
 
 

 4.1 Sea Lion (click here) 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/sealion.wav 

 
 

Video: Example: Sealion (04:22) 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_05_exampleSealion.mp4 

 
 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/sealion.wav
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_05_exampleSealion.mp4


In this example we use the recording of a sealion in Monterey Bay. The data file is called 
sealion.wav and it can be listened to by cliking here. We can import it into matlab and 
plot it, as 
 
[y,fs]=wavread(‘sealion’);  % import data 
t=(0:length(y)-1)/fs;   % time axis 
plot(t,y), xlabel(‘time(sec)’)  % plot it 
 

The signal is shown below. 

 

Plot of signal from a Sea Lion 
 
As we have done before, let us see the effects of different window types and window 
lengths. Again the idea is to attenuate the effects of frequency artifacts so we can see 
better the frequencies of the actual signal.  
 
The sampling frequency of this signal is fs=11025 Hz. If we compute the spectrogram as 
 
spectrogram(y, hamming(256), 250, 256,fs,'yaxis'); 
 
 
we can see the result as shown below. 
 



 
Spectrogram of “sealion” with hamming window of length N=256 

 
For simplicity we used only two “barks” just to illustrate the spectrum. Notice that the 
maximum frequency is fs/2=5012.5 Hz, as expected. Also every “bark” has a 
fundamental frequency (the lowest with significant amplitude) and a number of 
harmonics at integer multiples of the fundamental. Also the variation in time of the 
frequencies can be clearly associated to what we hear in the sound. 
 
Just for comparison, if we omit the window and use a rectangular window, we see a lot 
of artifacts as shown below (just replace “hamming” with “rectwin” in the matlab 
command). 
 



 
Spectrogram of “sealion” with rectangular window of length 256 

 
The presence of sidelobes is evident in this plot. 
Going back to using a blackman window with an increased length of N=512 samples, 
yields a better definition of the frequencies. This is done by the matlab command 
 
 
spectrogram(y, Blackman(512), 500, 512,fs,'yaxis'); 
 
 
which yields the figure below. 
 



 
Spectrogram of “selion” with Blackman window of length N=512. 

 
The frequencies are better defined and the sidelobes are lower. 
 

4.3 Music Signal (click here) 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/jh.wav 
 

 
VIDEO: Example: Music (15:36) 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_06_exampleMusic.mp4 
 
 

In this final example we analyze a music signal. In particular we use the signal JH.wav , 
the opening of “Hey Joe” of Jimmy Hendrix. It can be played by clicing here. 
 
We can import it again in matlab by the wavread command and plot it as 
 
[y,fs]=wavread(‘JH’); 
t=(0:length(y)-1)/fs; 
plot(t,y), xlabel(‘time (sec)’) 
 
The sampling frequency is fs=8000 Hz, and the signal is shown below. 
 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/jh.wav
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_06_exampleMusic.mp4


 
Plot of the signal “JH” with respect to time. 

 
In this example we want to address the issue of frequency resolution and the choice of 
window length. It is clear already from the previous example that we need to use either 
a hamming or a Blackman window. The Blackman window yields lower sidelobes but the 
price paid is a lower frequency resolution (ie wider mainlobe), so that a hamming 
window usually is a good compromise between low sidelobes and good frequency 
resolution. 
 
In the case of music we want to be able to recognize different musical notes, so to 
associate the musical score with the notes played by the artist. Whether you are musical 
or not, you can still follow the arguments in terms of signal processing. If, in addition, 
you have a musical talent, I am sure this example wil enable you to explore how matlab 
and a bit of signal rocessng can help  you in discovering the “secrets” of great 
performances. 
 
Each musical note is associated to a frequency. In an octave there are seven notes and 
five half notes for a total of twelve equally frequencies. In the “A4” standard (just look 
at “Wikipedia” under “musical notes”) the note A in the 4th octave has a frequency of 
440Hz. The note A in a different octave is obtained by dividing or multiplying the 
frequency by 2. So that A in the third octave has a frequency of 220 Hz.  The notes of 
interest in this example are the ones given in the table below: 
 
 
 
 



C Db D Eb E F Gb G Ab A Bb B 

262 277 294 311 330 349 370 392 415 440 466 494 

 
 
The first row indicates the notes and the second row the respective values of the 
frequencies, rounded to the closest integer, in Hz. The ratio of the frequencies of two 
adjacent notes is constant, given by 0595.12 12/1 = .  
 
In order not to have too many data points, let’s take the spectrogram of a portion of the 
data, between (say) samples 12,001 and 25,000, as 
 
spectrogram(y(12001:25000), hamming(1024), 1000, 
1024,fs,'yaxis'); 
 
 
The figure below shows a portion of the spectrogram, after zooming in (use the button 
with “+” on top of the figure and move the cursor accordingly). 
 

 
Spectrogram of “JH” after zooming on the range of frequencies of interest. 

The window used  is a hamming window of length N=256 samples. 
 
It is “clear”  (so to speak!) from this figure that we do not have sufficient frequency 
resolution to distinguish between dfferent notes. In fact we can see immediately from a 
simple calculation what should be a minimum window length so that we can distinguish 
between different notes. From the list of frequencies in the table above we see that the 
minimum spacing between two frequencies for the given notes is about 15 Hz. Since we 
use a hamming window, the frequency resolution (ie the closest frequensies we can 
separate)  has to be smaller than 15Hz and  is given by 



 

2 15SFF Hz
N

∆ = ≤  

Since the sampling frequency is HzFS 8000=  and we want  the window length N  to be 
a power of 2, we see that a choice 1024=N  is barely satisfactory (as a matter of fact it 
should be slightly longer, but the power of 2 is important). With this value we have the 
spectrogram shown below. 
 

 
Spectrogram of ‘JH’ with hamming window of length N=1024 samples. 

 
In this case we see the frequencies better defined. First notice that the fundamentals 
are up to about 500Hz and anything above this range is a harmonic.  
 
In what follows, let us try to see what are the frequencies so that we can compare the 
spectrogram with the actual score of the music. Again, you do not need to be a 
professional musician to follow te arguments, but just recall maybe from a lower school 
education some rudimentary music notation. 
 
If we zoom in again we see the spectrogram below, where we display also some 
significant values. 
 



 
Zoom in on the spectrogram of ‘JH’ and show some of the frequency 

values. 
 
 
We can see two notes at two different times. The “X,Y,Z” refer to the coordinates of the 
three dimensional plot, so that “X” is time, “Y” frequency and “Z” intensity.  What is 
significant here is the value of the frequencies “Y” . 
 
The left most values are 335.9Hz and 664.1 Hz. These are the fundamental and the first 
harmonic. From the table of notes, we see that the closest one is an “E”. The one next 
has fundamental and first harmonic as 296.9Hz and 593.8Hz respectively. Again we can 
check the table of frequencies and see that the note is a “D”. 
 
By checking a number of notes, we can compare it with the music score as in the figure 
below. 
 



 
Music score and spectrogram of “JH”. Compare the three groops of notes 

with the respective frequencies. 
 
In the first group we see a short  (grace) “D” (there is  a “natural” sign in the music score 
which can be missed) and an “E”. In the second we see a “D” and an “E” together, while 
in the third we see a short (grace note) “B” and an “A”. In all three cases note how the 
first harmonics follow as expected. 
 
 

5. Matlab Implementation of the Spectrogram 
 

Video:  Matlab Implementation of the SSpectrogram 
 
In this section we address the matlab implementation of the spectrogram. This is on 
video only and the subjects presented as the following: 
 

• WAV files  
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_wav_files.mp4 
  

• Spectrogram: Chirp 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_chirp.mp4 
 
  
 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_wav_files.mp4
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_chirp.mp4


• Spectrogram: Sealion 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_sealion.mp4 
 
  

• Spectrogram: Music 
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_music.mp4 
  
 

 
 

 

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_sealion.mp4
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_music.mp4
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