
B3. Short Time Fourier Transform
(STFT)
Objectives:

• Understand the concept of a time varying frequency spectrum and the
spectrogram

• Understand the effect of different windows on the spectrogram;
• Understand the effects of the window length on frequency and time resolutions.

1. Introduction

VIDEO: Short Time Fourier Transform (19:24)
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-

transform/videos/b3_01_timeFrequencyAnalysis.mp4

In a lot of applications, signal carry information and information changes with time.
Unless we talk about a beacon, or some sort of synchronizing tone, most signals of
interest present characteristics which change with time. In particular the frequency
composition (ie the frequency spectrum) most of the time is time varying: just think of a
piece of music or a sound from a speaker. The very fact that the pitch and the tone
changes with time makes the signal interesting and suitable to carry information. It
would be very boring to listen to a recording playing the same notes over and over or
listening to someone who keeps repeating the same sound.

In this section we address the problem of representing the instantaneous spectrum of a
signal. This is can be done as a simple extension of the Discrete Fourier Transform (DFT)
introduced in the previous section, applied to a window “sliding” on the signal. The end
result is the spectrogram, which shows the evolution of frequencies in time. This
information is very usefull in the analysis of a signal, since it gives a sort of signature in
the time and frequency domain. Like a music score, as shown in the figure below,
describes how the musical notes evolve in time, so the spectrogram shows how the
various frequency components of a signal evolve with time.

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_01_timeFrequencyAnalysis.mp4
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_01_timeFrequencyAnalysis.mp4

Music Score as a Time-Frequency plot

In what follows we introduce the Short Time Fourier Transform (STFT) and its
applications to the analysis of signals.

2. The Short Time Fourier Transform
Suppose we have a signal][nx and we want to determine its time varying frequency
spectrum. Then, for every time we multiply it by a window of length N and we take
the FFT. This is shown in the figure below.

The STFT as the FFT on a sliding window

In other words, we define the STFT as follows:

[]{ } 1,...,0,]1[]1[],...0[][],[−=−−+= NkNwNxwxDFTkX

where k is the index denoting frequency and denotes time. If you recall that, for the
DFT, the index k is associated to the frequency NkFs / , with SF the sampling
frequency, we can say that],[kX represents the magnitude and phase of frequency

NkFF S /= at time STt = , with SS FT /1= being the sampling interval.

Most of the time we are interested in the magnitude],[kX of the STFT. Since

],[kX is a function of two variables (time and frequency indices), its plot is three
dimensional and often it is represented as an image by associating the value to an
intensity level or a color. We will be giving several examples in the later part of this
section.

What is important to understand is what ideally we would like to see in the STFT and
what in practice we can actually see. Since it is basically an application of the DFT, it
presents the same issues associated to the artifacts due to the window function, such as
the main lobe and sidelobes. Ideally we would like to have what is shown in the figure
below.

Ideal Time Frequency Plot

In this example we see a signal with two sinusoids, one of frequency 1ω for time 0nn ≤
and one of frequency 2ω for time 0nn > . The ideal Time Frequency plot should be as
shown in the figure, zero everywhere part from 21 ,ωωω = at the respective times. This
would yield perfect resolution in frequency, since we see only the exact frequency, and
perfect resolution in time, since we see exactly when the frequency changes.

In practice, as expected, we don’t get this. As we have with the DFT, the fact that we
take a window of data of length N affects the frequency resolution: the longer the
window N , the better we can resolve two adjacent frequencies. However a longer
window length N is going to give more uncertainty on the time the signal changes . This
leads to what is called the “uncertainty principle” in Signal Processing, in the sense that
we cannot resolve a signal both in time and frequency.

In the next section we address the problem of estimating the Time Frequency evolution
of a signal and the effects due to finite datalength and the kind of window which we
use.

3. The Spectrogram

VIDEO: Spectrogram (20:19)
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_03_spectrogram.mp4

The plot of the magnitude of the STFT is called the spectrogram, and that is what we get
in most Signal Processing packages such as Matlab.

Recall from the previous chapter that the DFT has artifacts due to the finite window
length. Then the actual (non ideal) spectrogram is as shown in the figure below.

Actual Time Frequency Plot

In this figure we show two cross sections of the three dimensional plot. Each one
displays the magnitude of the DFT in terms of the mainlobe and the sidelobes, for each
frequency component.

In particular we see that the width of the mainlobe defines the resolution in digital
frequency, as

N
m πω 2

=∆

with the coefficient m depending on the window used. A rectangular window yields
2=m while the hamming, hanning, Bartlett windows have 4=m . This yields a

resolution in frequency as

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_03_spectrogram.mp4

N
F

mF S=∆

With SF the sampling frequency. The resolution in time is given by the window length
N and therefore is given by

STNt =∆
A list of three of the most commonly used windows is given in the figure below.

Three commonly used windows and their frequency spectra.

The rectangular window is just what we have when we just truncate the data, while the
other windows provide some data weighting. From their effects on the frequency
spectra, we see that the advantage of using a window other than rectangular is to have
lower sidelobes. However the disadvantage is a loss in frequency resolution, from

N/4πω =∆ for the rectangular window to N/8πω =∆ and N/16π for Hamming and
Blackman windows respectively.

In the next section we will be showing some applications and the effects of different
choices of window length and type.

4. Examples of Applications.
4.1 Chirp signal (click here)

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/chirp.wav

VIDEO: Example: Chirp (12:35)

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_04_exampleChirp.mp4

A chirp is a sinusoid with time varying frequency. In particular a linear chirp has a
frequency which varies linearly with time between two frequencies. The expression is
given by

()απ += ttFAtx)(2cos)(
where the frequency)(tF varies as shown in the figure below.

Time varying frequency for the Chirp signal

For example in matlab, the following code generates a chirp with frequency varying
between 100Hz and 4,000Hz in 1/10 sec:

Fs=10000; % sampling frequency in Hz
Ts=1/Fs; % sampling interval in seconds
t=(0:999)*Ts; % time axis
y=chirp(t, 100, t(1000), 4000); % chirp signal
plot(t(1:300), y(1:300)) % plot of first 300 samples

The result is shown in the figure below.

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/chirp.wav
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_04_exampleChirp.mp4

A Chirp signal

We can see that the signal starts at a lower frequency (100 Hz in this case) and it ends at
a higher frequency (4000Hz).

A file containing three repetitions of this pulse is given in chirp.wav, in the “wave”
file standard. The signal can be listened by clicking here. By listening to the signal we see
immediately why it is called a “chirp”, since it resembles the chirp of a bird. It can be
imported into matlab using the command

[y,fs]=wavread(‘chirp’);

with y containing the data and fs the sampling frequency in Hz. A plot is given in the
figure below.

Four repetitions of a chirp signal

In order to see the spectrogram we use the following matlab commands

spectrogram(y, rectwin(256), 250, 256,fs,'yaxis');

where rectwin(256) refers to the window used (rectangular with length 256
samples, in this case), “250” refers to the amount of overlap between two successive
windows, “256” is the FFT size (usually the same as the window length), fs the sampling
frequency. The last term ‘yaxis’ is needed so that the frequency axis is the “y” axis. If
we omit it the graph is the same but with the frequency being in the horizontal (“x”)
axis.
The result is shown in the figure below.

Spectrogram of chirp with rectangular window of length N=256

It is fairly clear from the second repetition that the frequency starts at around 100Hz, as
expected and it ends at 4000Hz. In this plot we can see that, outside the actual
frequencies of the signal there is quite a large amount of artifacts due to the sidelobes
of the rectangular window.

As expected, the use of a better window, such as the hamming window, yields a better
solution. The code (just replace the window)

spectrogram(y, hamming(256), 250, 256,fs,'yaxis');

yields the spectrogram shown below.

Spectrogram of chirp with hamming window of length N=256

The lower sidelobes are evident. They can be made even lower by the use of the
Blackman window as

spectrogram(y, blackman(256), 250, 256,fs,'yaxis');

which yields the result shown below, with even lower sidelobes.

Spectrogram of chirp with Blackman window of length N=256

The result with a shorter window, of length N=64, shows the loss in frequency
resolution, but an improvement in time resolution. In fact let’s try

spectrogram(y, hamming(64), 60, 64,fs,'yaxis');

and the result is shown below.

Spectrogram of chirp with hamming window of length 64 and fft size of the

same length N=64 samples

The result looks very “blocky” since we compute nly 64 frequencies. In this case it would
beneficial to use a larger fft size, say N=256, as follows:

spectrogram(y, hamming(64), 60, 256,fs,'yaxis');

The result is shown below, where we see the effect of using more frequencies. The
window is the same, hamming of length 64 points, but in the fft it is padded with zeros
up to a length N=256 to increase the number of frequencies.

Spectrogram of chirp signal with hamming window of length 64 and fft size

of length 256 samples.

Now we can better compare the effect of using a smaller window size. The time
resolution is better, in the sense that in the last spectrogramwe better estimate the
time separation between two different events (two different chirps).

Since the frequency changes continuously with time, the benefit of using a longer
window to improve frequency resolution is not evident, since within a longer window
there is more frequency variability. This will be more evident in the following two
examples.

 4.1 Sea Lion (click here)
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/sealion.wav

Video: Example: Sealion (04:22)
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_05_exampleSealion.mp4

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/sealion.wav
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_05_exampleSealion.mp4

In this example we use the recording of a sealion in Monterey Bay. The data file is called
sealion.wav and it can be listened to by cliking here. We can import it into matlab and
plot it, as

[y,fs]=wavread(‘sealion’); % import data
t=(0:length(y)-1)/fs; % time axis
plot(t,y), xlabel(‘time(sec)’) % plot it

The signal is shown below.

Plot of signal from a Sea Lion

As we have done before, let us see the effects of different window types and window
lengths. Again the idea is to attenuate the effects of frequency artifacts so we can see
better the frequencies of the actual signal.

The sampling frequency of this signal is fs=11025 Hz. If we compute the spectrogram as

spectrogram(y, hamming(256), 250, 256,fs,'yaxis');

we can see the result as shown below.

Spectrogram of “sealion” with hamming window of length N=256

For simplicity we used only two “barks” just to illustrate the spectrum. Notice that the
maximum frequency is fs/2=5012.5 Hz, as expected. Also every “bark” has a
fundamental frequency (the lowest with significant amplitude) and a number of
harmonics at integer multiples of the fundamental. Also the variation in time of the
frequencies can be clearly associated to what we hear in the sound.

Just for comparison, if we omit the window and use a rectangular window, we see a lot
of artifacts as shown below (just replace “hamming” with “rectwin” in the matlab
command).

Spectrogram of “sealion” with rectangular window of length 256

The presence of sidelobes is evident in this plot.
Going back to using a blackman window with an increased length of N=512 samples,
yields a better definition of the frequencies. This is done by the matlab command

spectrogram(y, Blackman(512), 500, 512,fs,'yaxis');

which yields the figure below.

Spectrogram of “selion” with Blackman window of length N=512.

The frequencies are better defined and the sidelobes are lower.

4.3 Music Signal (click here)
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/jh.wav

VIDEO: Example: Music (15:36)

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_06_exampleMusic.mp4

In this final example we analyze a music signal. In particular we use the signal JH.wav ,
the opening of “Hey Joe” of Jimmy Hendrix. It can be played by clicing here.

We can import it again in matlab by the wavread command and plot it as

[y,fs]=wavread(‘JH’);
t=(0:length(y)-1)/fs;
plot(t,y), xlabel(‘time (sec)’)

The sampling frequency is fs=8000 Hz, and the signal is shown below.

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/slides/jh.wav
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_06_exampleMusic.mp4

Plot of the signal “JH” with respect to time.

In this example we want to address the issue of frequency resolution and the choice of
window length. It is clear already from the previous example that we need to use either
a hamming or a Blackman window. The Blackman window yields lower sidelobes but the
price paid is a lower frequency resolution (ie wider mainlobe), so that a hamming
window usually is a good compromise between low sidelobes and good frequency
resolution.

In the case of music we want to be able to recognize different musical notes, so to
associate the musical score with the notes played by the artist. Whether you are musical
or not, you can still follow the arguments in terms of signal processing. If, in addition,
you have a musical talent, I am sure this example wil enable you to explore how matlab
and a bit of signal rocessng can help you in discovering the “secrets” of great
performances.

Each musical note is associated to a frequency. In an octave there are seven notes and
five half notes for a total of twelve equally frequencies. In the “A4” standard (just look
at “Wikipedia” under “musical notes”) the note A in the 4th octave has a frequency of
440Hz. The note A in a different octave is obtained by dividing or multiplying the
frequency by 2. So that A in the third octave has a frequency of 220 Hz. The notes of
interest in this example are the ones given in the table below:

C Db D Eb E F Gb G Ab A Bb B

262 277 294 311 330 349 370 392 415 440 466 494

The first row indicates the notes and the second row the respective values of the
frequencies, rounded to the closest integer, in Hz. The ratio of the frequencies of two
adjacent notes is constant, given by 0595.12 12/1 = .

In order not to have too many data points, let’s take the spectrogram of a portion of the
data, between (say) samples 12,001 and 25,000, as

spectrogram(y(12001:25000), hamming(1024), 1000,
1024,fs,'yaxis');

The figure below shows a portion of the spectrogram, after zooming in (use the button
with “+” on top of the figure and move the cursor accordingly).

Spectrogram of “JH” after zooming on the range of frequencies of interest.

The window used is a hamming window of length N=256 samples.

It is “clear” (so to speak!) from this figure that we do not have sufficient frequency
resolution to distinguish between dfferent notes. In fact we can see immediately from a
simple calculation what should be a minimum window length so that we can distinguish
between different notes. From the list of frequencies in the table above we see that the
minimum spacing between two frequencies for the given notes is about 15 Hz. Since we
use a hamming window, the frequency resolution (ie the closest frequensies we can
separate) has to be smaller than 15Hz and is given by

2 15SFF Hz
N

∆ = ≤

Since the sampling frequency is HzFS 8000= and we want the window length N to be
a power of 2, we see that a choice 1024=N is barely satisfactory (as a matter of fact it
should be slightly longer, but the power of 2 is important). With this value we have the
spectrogram shown below.

Spectrogram of ‘JH’ with hamming window of length N=1024 samples.

In this case we see the frequencies better defined. First notice that the fundamentals
are up to about 500Hz and anything above this range is a harmonic.

In what follows, let us try to see what are the frequencies so that we can compare the
spectrogram with the actual score of the music. Again, you do not need to be a
professional musician to follow te arguments, but just recall maybe from a lower school
education some rudimentary music notation.

If we zoom in again we see the spectrogram below, where we display also some
significant values.

Zoom in on the spectrogram of ‘JH’ and show some of the frequency

values.

We can see two notes at two different times. The “X,Y,Z” refer to the coordinates of the
three dimensional plot, so that “X” is time, “Y” frequency and “Z” intensity. What is
significant here is the value of the frequencies “Y” .

The left most values are 335.9Hz and 664.1 Hz. These are the fundamental and the first
harmonic. From the table of notes, we see that the closest one is an “E”. The one next
has fundamental and first harmonic as 296.9Hz and 593.8Hz respectively. Again we can
check the table of frequencies and see that the note is a “D”.

By checking a number of notes, we can compare it with the music score as in the figure
below.

Music score and spectrogram of “JH”. Compare the three groops of notes

with the respective frequencies.

In the first group we see a short (grace) “D” (there is a “natural” sign in the music score
which can be missed) and an “E”. In the second we see a “D” and an “E” together, while
in the third we see a short (grace note) “B” and an “A”. In all three cases note how the
first harmonics follow as expected.

5. Matlab Implementation of the Spectrogram

Video: Matlab Implementation of the SSpectrogram

In this section we address the matlab implementation of the spectrogram. This is on
video only and the subjects presented as the following:

• WAV files
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_wav_files.mp4

• Spectrogram: Chirp
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_chirp.mp4

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_wav_files.mp4
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_chirp.mp4

• Spectrogram: Sealion
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_sealion.mp4

• Spectrogram: Music
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_music.mp4

http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_sealion.mp4
http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b3_music.mp4

	Objectives:
	1. Introduction
	2. The Short Time Fourier Transform
	3. The Spectrogram
	4. Examples of Applications.
	4.1 Chirp signal (click here)
	4.1 Sea Lion (click here)
	4.3 Music Signal (click here)

	5. Matlab Implementation of the Spectrogram

