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Abstract

In this paper, we give some heuristics suggesting that if (un)n≥0

is the Lucas sequence given by un = (an − 1)/(a− 1), where a > 1 is
an integer, then ω(un) ≥ (1 + o(1)) log n log log n holds for almost all
positive integers n.

1 Introduction

If n is a positive integer, we write ω(n) and Ω(n) for the number of distinct
prime factors of n and total prime factors of n; i.e, including multiplicities,
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in the latter case. In what follows, for a real number x > 1 we write log x for
the natural logarithm of x.

Hasse proved in [5] that the set of primes p dividing 2n + 1 for some
positive integer n has relative density 17/24. Inspired by Hasse’s result,
Ska lba proved the following results in [7].

Theorem 1. Let p be a prime. If ordp(2) ≥ p0.8, then p divides a number of
the form 2a + 2b + 1 for some positive integers a and b. Here, ordp(2) stands
for the multiplicative order of 2 modulo p.

Theorem 2. If Ω(2m− 1) < log m/ log 3, then there exists a prime divisor q
of 2m − 1 such that q is not a divisor of 2a + 2b + 1 for any positive integers
a and b.

We point out that the inequality in Theorem 2 in Ska lba’s paper [7] should
be strict, since otherwise the assertion is not true. Moreover, he proposed
two conjectures:

Conjecture 1.1. (i) The number of primes p ≤ x that are divisors of
some number of the form 2a + 2b + 1 is (1 + o(1))x/log x as x →∞.

(ii) There are infinitely many primes q such that q does not divide any
number of the form 2a + 2b + 1.

Regarding (i) above, we point out that a result of Pappalardi (see Theo-
rem 2.3 in [6]) implies that ordp(2) > p0.8 holds for almost all primes p under
the Generalized Riemann Hypothesis, which, via Theorem 1, supports (i)
above.

We cannot comment on (ii) above, but in this paper we look at the
condition Ω(2m − 1) < log m/ log 3, which, via Theorem 2, would support
(ii) above.

In [2], Bugeaud et al., proved that for the Fibonacci sequence (Fn)n≥0

given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0, if ω(Fn) ≤
2, then either n = 1, 2, 4, 8, 12, or n = `, 2`, `2 for some odd prime
`. Clearly, these are only necessary conditions for Fn to have at most two
distinct prime factors but not sufficient. They also showed that the inequality
ω(Fn) ≥ (log n)log 2+o(1) holds for almost all positive integers n, and offered an
heuristic to support that the inequality ω(Fn) � log n holds for all composite
positive integers n. Here and in what follows, we use the Vinogradov symbols
�, � and � and the Landau symbols O and o with their usual meanings.
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We recall that A � B, B � A and A = O(B) are all equivalent and mean
that |A| < cB holds with some constant c, while A � B means that both
A � B and B � A hold. The constants implied by such symbols may
depend on our data a, ε, etc. Throughout, a property holds for “almost all”
natural numbers if it holds for a set of asymptotic density 1.
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2 The Results

Let a > 1 be an integer. Put un =
an − 1

a− 1
for n = 0, 1, . . .. In this paper, we

offer the following conjecture, which complements the heuristics made in [2]
and, if true, suggests that the positive integers m which fulfill the hypothesis
of Theorem 2 are not typical ones.

Conjecture 2.1. The inequality

ω(un) ≥ (1 + o(1)) log n log log n

holds for almost all positive integers n.

The same conjecture can be made for the sequence (un)n≥0 replaced by
any nondegenerate Lucas sequence.

In what follows, we offer an heuristic in support of the above conjecture.
Let ε > 0 be fixed. Let n be a positive integer from a set of asymptotic

density one. Let p1 > p2 > ... > pt be all the prime factors of n in the interval

In =

[
log n, exp

(
log n

log log n

)]
. (1)

We shall assume that n fulfills various conditions such as:

(i) If p > log n is a prime factor of n, then p ‖ n.

(ii) There do not exist primes q > p > log n dividing n such that q ≡ 1
(mod p).
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In particular, pi || n (pi | n and p2
i 6 |n) for all i = 1, 2, . . . , t, and there

do not exist i < j such that pi ≡ 1 (mod pj). For a positive integer m we
write P (m) for the largest prime factor of m. Let d(n) be the largest divisor
of n such that P (d(n)) < log n, and put n = n/d(n).

Define m0 = n and mi = n/(p1...pi) for i = 1, . . . , t.

Consider the following finite sequence:

vi = umi−1
/umi

, i = 1, 2, . . . , t. (2)

We observe that vi = (api

i −1)/(ai−1), where ai = an/p1...pi . We also observe
that vi and vj are coprime if i 6= j. Indeed, assume that i < j and that
there exists a prime q dividing vi and vj. Since j > i, we have that vj | umi

,
therefore

q
∣∣∣ (umi−1

umi

, umi

)
.

It is well-known that the above greatest common divisor divides mi. Thus,
q | mi | n. However, since q | umi−1

, it follows that there exists a unique
minimal divisor d of n such that q | ud. If d = 1, we then get q | (a − 1),
which is impossible if log n > a − 1, because q | n and n is free of primes
≤ log n (the case log n ≤ a− 1 need not be treated as there are only finitely
many positive integers n satisfying that inequality). Thus, d > 1 is a divisor
of mi, and q is a primitive prime factor of ud. It is then well-known that
q ≡ 1 (mod d) (see [3]). Since d > 1, there exists a prime factor p of d.
Clearly, p | n. Hence, p | (q − 1), contradicting (ii).

It is known that the probability that a typical positive integer m is prime
is 1/ log m, and that a typical positive integer m has k distinct prime factors
is

(log log m)k−1

(k − 1)! log m
.

We now make the following heuristic:

Heuristic 2.2. With the above notations, we suppose that ω(vi) = ki happens
with the probability

(log log vi)
ki−1

(ki − 1)! log vi

, (3)

that this is uniform in the ki’s, and that these probabilities are independent
for i = 1, . . . , t and uniformly in our range for t.
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Under all these assumptions, the probability that un has at most K prime
factors will be

≤ S(K) =
∑
n≥1

∑
k1+...+kt≤K

t∏
i=1

(log log vi)
ki−1

(ki − 1)! log vi

. (4)

We will also assume that

(iii) t > (1− ε/2) log log n.

(iv) d(n) < nε/4;

(v)
∏t

i=1 pi < nε/4;

Under these assumptions, we shall show that:

Theorem 2.3. If K < (1− ε)t log n, then the series S(K) converges.

Theorem 2.3 has the following corollary.

Corollary 2.4. Heuristic 2.2 implies that the inequality

ω(un) ≥ (1− 2ε) log n log log n

holds for all n satisfying (i)–(v).

To end, we prove the following proposition.

Proposition 2.5. Let ε > 0 be fixed. Then the set of positive integers n
satisfying (i)–(v) has asymptotic density one.

Clearly, letting ε to tend to zero, we get that Corollary 2.4 and Proposition
2.5 lead to the conclusion that Heuristic 2.2 implies Conjecture 2.1.

3 Proofs

Proof of Theorem 2.3. Fix k1, . . . , kt, with
∑t

i=1 ki = k. Obviously, ki ≥ 1.
Since api−1

i ≤ vi ≤ api

i , one sees immediately that

log vi � pi log ai � mi−1 �
n

p1 · · · pi−1

. (5)
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Thus,

t∏
i=1

(log log vi)
ki−1

(ki − 1)! log vi

�
t∏

i=1

1

(ki − 1)!

(log (n/(p1 · · · pi−1)))
ki−1

n/(p1 · · · pi−1)

=

∏t
i=1(p1 · · · pi−1)

nt

t∏
i=1

(log mi−1)
ki−1

(ki − 1)!
.

Using the above inequality, we obtain

∑
k1+···+kt=k

t∏
i=1

(log log vi)
ki−1

(ki − 1)! log vi

�
∑

k1+···+kt=k

∏t
i=1(p1 · · · pi−1)

nt

t∏
i=1

(log mi−1)
ki−1

(ki − 1)!

≤ 1

(k − t)!

∏t
i=1(p1 · · · pi−1)

nt

∑
k1+···+kt=k

(
k − t

k1 − 1, . . . , kt − 1

) t∏
i=1

(log mi−1)
ki−1

=
1

(k − t)!

∏t
i=1(p1 · · · pi−1)

nt

(
t∑

i=1

log mi−1

)k−t

=
1

(k − t)!

∏t
i=1(p1 · · · pi−1)

nt

(
log

(
t∏

i=1

mi−1

))k−t

=
1

(k − t)!

∏t
i=1(p1 · · · pi−1)

nt

(
log

(
nt∏t

i=1(p1 · · · pi−1)

))k−t

.

Moreover, from Stirling’s formula and the fact that ki ≥ 1, we obtain

s(n,K) =
∑

k1+...+kt≤K

t∏
i=1

(log log vi)
ki−1

(ki − 1)! log vi

�
∑
k≤K

1

(k − t)!

∏t
i=1(p1 · · · pi−1)

nt

(
log

(
nt∏t

i=1(p1 · · · pi−1)

))k−t

≤
∏t

i=1(p1 · · · pi−1)

nt

∑
0≤j≤K−t

e log
(

ntQt
i=1(p1···pi−1)

)
j

j

.

(6)

6



As in [2], if y is fixed, then the function x 7−→ (ey/x)x is increasing for
x < y. Thus, if we assume that

K ≤ t + c0 log

(
nt∏t

i=1(p1 · · · pi−1)

)
, (7)

where c0 = c0(ε) < 1 is a positive constant to be chosen later depending on
ε, then estimate (6) leads to

s(n, K) �
∏t

i=1(p1 · · · pi−1)

nt log

(
nt∏t

i=1 p1 · · · pi−1

)(
e

c0

)c0 log

�
nt

Qt
i=1

p1···pi−1

�

.

(8)

Furthermore, denoting

m(n) =
nt∏t

i=1(p1 · · · pi−1)
,

we get

S(K) =
∞∑

n=1

s(n, k) �
∞∑

n=1

log m(n)

m(n)

(
e

c0

)c0 log m(n)

=
∞∑

n=1

log m(n)

m(n)1−c0 log(e/c0)
.

(9)
Now note that, by (iv) and (v),

m(n) ≥
(

n

p1 . . . pt

)t

≥ n(1−ε/2)t.

It now follows easily that if

(1− ε/2)(1− c0 log(e/c0))t > 1, (10)

then the series (9) converges, and by (iii) it is clear that for fixed ε and c0, the
above inequality (10) holds for all but finitely many n. Finally, to conclude,
it remains to check that if K satisfies the inequality from the hypothesis of
Theorem 2.3, it then satisfies inequality (7), as well. But clearly, the double
inequality

t + c0 log(m(n)) > t(1− ε/2)c0 log n > t(1− ε) log n
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holds if we choose c0(ε) to be in the interval(
1− ε

1− ε/2
, 1

)
.

Proof of Corollary 2.4. Theorem 2.3 together with (v) shows that if

K < (1− ε)t log n < (1− ε)(1− ε/2) log n log log n,

then the series S(K) converges. Since

(1− ε)(1− ε/2) > 1− 2ε,

it follows that the series S(K) converges when K < (1− 2ε) log n log log n as
well. Heuristic 2.2 now completes the proof.

Proof of Proposition 2.5. Let A be the set of positive integers satisfying (i)–
(v). For a positive real number x, we let A(x) = A ∩ [1, x]. It suffices to
show that #A(x) = (1 + o(1))x.

Let B1(x) = {n ≤ x : p2 | n for some p > log x}. Let n ∈ B1(x). There
exists a prime p > log x such that p2 | n. For fixed p, the number of such
positive integers n is ≤ x/p2. Hence,

#B1(x) ≤
∑

p≥log x

x

p2
� x

log x
= o(x). (11)

Let B2(x) = {n ≤ x : pq | n for some primes q > p > log x with p | q−1}.
Let n ∈ B2(x). There exist primes q > p > log x such that pq | n and
p | (q − 1). For fixed p and q, the number of such positive integers n is
≤ x/pq. Hence,

#B2(x) ≤
∑

p≥log x

∑
q<x

q≡1 (mod p)

x

pq

� x
∑

p>log x

1

p

∑
q<x

q≡1 (mod p)

1

q

� x log log x
∑

p>log x

1

pφ(p)

� x log log x

log x
= o(x), (12)
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where in the above estimates we used the known fact that∑
q<x

q≡1 (mod p)

1

q
� log log x

φ(p)
,

and that this estimate is uniform in 2 ≤ p ≤ x (see, for example, Lemma 1
in [1] or bound (3.1) in [4]).

Now put B3(x) = {n ≤ x/ log x}. Obviously,

#B3(x) ≤ x

log x
= o(x). (13)

From now on, we consider only those n ≤ x not in ∪3
i=1Bi(x). It is

clear that such integers satisfy (i) and (ii). Put y = log x. Let f(s) =
exp (log s/ log log s) and put z1 = f(x/ log x) and z2 = f(x). The function
f(s) is increasing for s > s0 = ee. Thus, if x > x0 is sufficiently large, then
the inequalities

log n ≤ y < z1 < f(n) < z2 (14)

hold for all our n. Thus, by (14), we get

[y, z1] ⊂ In = [log n, f(n)] ⊂ [1, z2]. (15)

For any s > 1 and positive integer m, we write ωs(m) and Ωs(m) for the
number of distinct prime factors of m which are ≤ s, and the total number
of prime factors of m which are ≤ s, respectively. By the well-known Turán-
Kubilius estimates (see [9], for example), we have∑

n≤x

|gs(n)− log log s|2 = O(x log log s), (16)

where g ∈ {Ω, ω}. Further, the above estimates are uniform in ee < s ≤ x.

We now put

B4(x) = {n ≤ x : Ωy(n) ≥ (ε/4) log log x},

and
B5(x) = {n ≤ x : ωz1(n) ≤ (1− ε/4) log log x}.
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Using estimates (16) with (g, s) = (Ω, y) and (ω, z1), together with the fact
that log log z1 = (1 + o(1)) log log x, we immediately get that

#B4(x) � x log log log x

(log log x)2
= o(x), (17)

and
#B5(x) � x

log log x
= o(x). (18)

Assume now that n 6∈ ∪5
i=1Bi(x). Then,

t ≥ ωz1(n)− Ωy(n) > (1− ε/2) log log x ≥ (1− ε/2) log log n,

so n satisfies (iii) (here, t is the number of distinct prime factors of n in In,
where In is given as in (1)). Furthermore, for large x we also have

d(n) ≤ (log n)Ωy(n) ≤ exp
(
(ε/4)(log log x)2

)
<

(
x

log x

)ε

< nε,

therefore n satisfies (iv) as well.

It remains to deal with condition (v). For this, we note that if n does not
fulfill condition (v), then n has a divisor

t∏
i=1

pi ≥ nε/4 >

(
x

log x

)ε/4

> xε/8

whose largest prime factor is ≤ z2, by (1) and (15). Fix such a divisor d.
Then the number of positive integers n ≤ x which are multiples of d is ≤ x/d.
Thus, writing B6(x) for the set of n 6∈ ∪5

i=1Bi(x) which do not fulfill (v), we
get that

#B6(x) ≤
∑

xε/8<d<x
P (d)<z2

x

d
. (19)

Let
u = log(xε/8)/ log z2 = (ε/8) log log x.

It is known (see, for example, Chapter III of [8]), that∑
xε/8<d<x
P (d)<z2

1

d
� ρ(u) log x, (20)
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where ρ is the Dickman function. Since ρ(u) = u−(1+o(1))u as u →∞, we get,
by estimates (19) and (20), that

#B6(x) � xρ(u) log x

= x log x exp (−(1 + o(1))(ε/8) log log x log log log x)

= o(x). (21)

Thus, we conclude that the complement of ∪6
i=1Bi(x) consists of positive

integers n ≤ x satisfying (i)–(v), and since by (11), (12), (13), (17), (18) and
(21), we have that

#
(
∪6

i=1Bi(x)
)
≤

6∑
i=1

#Bi(x) = o(x),

the conclusion of the proposition follows.
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