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Abstract

In this paper, we construct an infinite arithmetic progression A of positive integers n such
that if n ∈ A, then the nth Fibonacci number is not a sum of two prime powers.

1 Introduction

In 1849, A. de Polignac [7] asked if every odd positive integer can be represented as the sum of a
power of 2 and a prime (or 1). Euler did note that 959 was not of this form. Romanoff [8] used
the Brun sieve to show that a positive proportion of integers are representable in this way. Later,
van der Corput [2] showed that a positive proportion of integers are not representable in this way
by using covering congruences. With the same method as van der Corput’s, Erdős [3] constructed
a residue class of odd numbers which contains no integers of the above form. Extending Erdős’s
argument, Cohen and Selfridge [1] constructed a 26 digit number which is neither the sum nor the
difference of two prime powers. Inspired by their work, Z.W. Sun (see [9]) constructed a residue
class of odd integers consisting exclusively of numbers not of the form ±pa±qb with some primes p
and q and some nonnegative integers a and b. We mention that Erdős asked if there exist infinitely
many positive integers which are not representable as a sum or difference of two powers (see [5])
and a partial result can be found in [6].

In this paper, we show that there exist infinitely many positive integers which are not of the
form pa +qb with primes p and q and nonnegative integers a and b and which further can be chosen
to be members of the Fibonacci sequence (Fn)n≥0 given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn

for n ≥ 0.

In what follows, we use the Vinogradov symbols � and � with their usual meanings. We
recall that given two functions A and B of the real variable x, the notations A � B and B � A
are equivalent to the fact that the inequality |A(x)| ≤ cB(x) holds with some positive constant c
and for all sufficiently large real numbers x.
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2 The Result

Our main result is the following.

Theorem 1. There exists a positive integer n0 such that if n > n0 and

n ≡ 1807873 (mod 3543120)

then Fn 6= pa + qb with p, q prime numbers and a, b nonnegative integers.

We use the same method employed in [2, 3, 9]. However, there are additional difficulties which
arise because we want our numbers to belong to the Fibonacci sequence.

Let us quickly recall how one can create a residue class of odd integers most of which are not
sums of two powers. Well, assume that n is odd and a sum of two powers, say pa + qb. Since n is
odd, it follows that one of p and q, say p equals 2. Suppose now that we are given a finite set of
triples (ai, bi, pi)s

i=1 where ai and bi are nonnegative integers and pi are distinct primes such that
the following hold:

(i) For every a ∈ ZZ there exists i ∈ {1, . . . , s} such that a ≡ ai (mod bi).

(ii) pi | (2bi − 1) holds for all i = 1, . . . , s.

We may then choose n to belong to the arithmetic progression given by n ≡ 2ai (mod pi).
Since the pi’s are distinct primes, the above system admits a unique solution modulo p1 . . . ps by
the Chinese Remainder Lemma. Let A be this progression. Assume that n is sufficiently large in
the above progression A and that n = 2a + qb holds with some prime number q. By (i) above,
there exists i ∈ {1, . . . , s} such that a ≡ ai (mod bi). By (ii) above, 2a ≡ 2ai (mod pi). However,
n ≡ 2ai (mod pi), and therefore n ≡ 2a (mod pi). Hence, pi | (n − 2a). However, n − 2a = qb.
Since q is prime, it follows that pi = q. Now let X be a very large positive real number. The
number of positive integers n ≤ X which belong to A is � X. However, the number of positive
integers of the form 2a + qb with q ∈ {p1, . . . , ps} and which are ≤ X is � log2 X. This shows that
most numbers in A are not of the form pa + qb.

We now modify the above construction in order to insure that our numbers can be chosen from
the Fibonacci sequence. Let k be a positive integer. It is known that (Fn)n≥0 is periodic modulo
k. We write h(k) to denote this period. Moreover, for integers f and k we write A(f, k) for the
set of residue classes n modulo h(k) such that Fn ≡ f (mod k).

Assume now that (ai, bi, pi)s
i=1 is a finite set of triples of nonnegative integers ai and bi and

distinct odd primes pi for i = 1, . . . , s which fulfill the following conditions:

(i) For every a ∈ ZZ there exists i ∈ {1, . . . , s} such that a ≡ ai (mod bi).

(ii) pi | (2bi − 1) holds for all i = 1, . . . , s.

(iii) The set
s⋂

i=1

A(2ai , pi) 6= ∅.

Moreover, if there exists i ∈ {1, . . . , s} such that 3 | h(pi), then we shall assume that the
above intersection contains a class coprime to 3.
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Let x be an element of the set
⋂s

i=1A(2ai , pi). Note that x is defined only modulo M =
lcm[h(p1), . . . , h(ps)]. Moreover, if 3 | M , then x is not a multiple of 3. If M is not a multiple
of 3 we replace M by 3M and x by the solution of the system of congruences x (mod M) and 1
(mod 3). Assume now that n ≡ x (mod M) and that Fn = pa + qb holds with some primes p and
q and nonnegative integers a and b. It then follows that Fn is an odd integer, because the only
even Fibonacci numbers are those whose indices are multiples of 3. Since Fn is odd, it follows that
one of p and q, say p is 2. By (i) above, there exists i ∈ {1, . . . , s} such that a ≡ ai (mod bi). By
(ii) above, it follows that 2a ≡ 2ai (mod pi). By the choice of n, we have that Fn ≡ 2ai (mod pi).
Thus, Fn ≡ 2a (mod pi). In particular, pi | (Fn − 2a). However, since Fn − 2a = qb, it follows
that q = pi. Thus, q ∈ {p1, . . . , ps}. We now get that Fn = 2a + pb

i for some i = 1, . . . , s. Since
Fn = 1√

5
(αn − βn), where α = 1+

√
5

2 and β = 1−
√

5
2 , we may apply a well-known result from the

theory of S-unit equations (see [4]) to conclude that such an equation can have only finitely many
solutions (n, a, b). Thus, there exists n0 with the property that if n > n0 and n ≡ x (mod M),
then Fn is not of the form pa + qb with primes p and q and nonnegative integers a and b.

In order to finish the proof of the Theorem, it suffices to find a finite set of triples (ai, bi, pi)s
i=1

fulfilling (i)–(iii) above.

We first note that by taking s = 7 and

((a1, b1), . . . , (a7, b7)) = ((0, 2), (0, 3), (3, 4), (1, 12), (5, 36), (17, 36), (29, 36))

we get that (i) above is fulfilled. Indeed, every integer is congruent either to 0 (mod 2) or to 0
(mod 3) or to 3 (mod 4) or to 1 (mod 12) or to 5 (mod 12), and in this last case it is congruent to
either 5, 17 or 29 modulo 36. We now take (p1, . . . , p7) = (3, 7, 5, 13, 19, 37, 73) and note that con-
dition (ii) above is fulfilled. It is easy to check that (h(p1), . . . , h(p7)) = (8, 16, 20, 28, 18, 76, 148).
Finally, it is easy to see that

A(2a1 , p1) = A(20, 3) = {1, 2, 7} (mod 8),
A(2a2 , p2) = A(20, 7) = {1, 2, 6, 15} (mod 16),
A(2a3 , p3) = A(23, 5) = {4, 6, 7, 13} (mod 20),
A(2a4 , p4) = A(21, 13) = {3, 25} (mod 28),
A(2a5 , p5) = A(25, 19) = {7, 11} (mod 18),
A(2a6 , p6) = A(217, 37) = {10, 15, 28, 61} (mod 76),
A(2a7 , p7) = A(229, 73) = {53, 95} (mod 148),

One now checks that the system of congruences x ≡ 1 (mod 8), x ≡ 1 (mod 16), x ≡ 13
(mod 20), x ≡ 25 (mod 28), x ≡ 7 (mod 18), x ≡ 61 (mod 76) and x ≡ 53 (mod 148) has a
positive integer solution x. In fact, the above system is equivalent to the system of congruences
x ≡ 1 (mod 16), x ≡ 3 (mod 5), x ≡ 4 (mod 7), x ≡ 7 (mod 9), x ≡ 4 (mod 19) and x ≡ 16
(mod 37). Solving this system, we get x ≡ 1807873 (mod 3543120), which, together with the
above arguments completes the proof of Theorem 1.

We would like to conclude by offering the following problem.

Problem. Find an arithmetic progression of positive integers A (mod B) such that if n > n0

satisfies n ≡ A (mod B), then Fn 6= ±pa ± qb for any primes p, q and nonnegative integers a, b.

Acknowledgments. This work was done during a visit of F. L. at the Mathematics Depart-
ment of the Auburn University at Montgomery. He thanks the people of this department for their
warm hospitality.

3



References

[1] F. Cohen and J. L. Selfridge, ‘Not every number is the sum or difference of two prime powers’,
Math. Comp. 29 (1975), 79–81.

[2] J. G. van der Corput, ‘On de Polignac’s conjecture’, Simon Stevin 27 (1950), 99–105.
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[8] N. P. Romanoff, ‘Über einige Sätze der additiven Zahlentheorie’, Math. Ann. 57 (1934), 668–
678.

[9] Z. W. Sun, ‘On integers not of the form ±pa ± qb’, Proc. Amer. Math. Soc. 128 (2000),
997–1002.

4


