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Abstract

We show that there is significant benefit to using a recon-
figurable computer to enumerate bent Boolean functions for
cryptographic applications. Bent functions are rare, and
the only known way to generate all bent functions is by
sieve techniques in which many prospective functions are
tested. The speed-up achieved depends on the number of
variables n; for n = 8, we show that the reconfigurable
computer achieves better than a 60,000 speed-up over a
conventional computer. Further, we introduce the transeunt
triangle as a means to reduce the number of functions that
must be considered. For n = 6, this reduction is better than
1,000,000 to 1.

Previously, the transeunt triangle had been used only in
the design exclusive OR logic circuits; it converts a truth
table to the algebraic normal form. However, this fact has
never been proven rigorously, and that shortcoming is re-
moved in this paper. Our proof provides a practical benefit;
it yields a new realization of the transeunt triangle that has
less complexity and delay. Finally, we show computational
results from a reconfigurable computer.

1 Introduction

Shannon [17] introduced the concepts of confusion and
diffusion as a fundamental technique to achieve security in
cryptographic systems. The confusion principle is reflected
in the nonlinearity of Boolean functions, since most linear
systems are easily breakable. There are various criteria that
imply nonlinearity, one of them being bentness. Bent func-
tions were first introduced by Rothaus in 1976 [14], as func-
tions having maximum distance away from the set of affine
functions.

Bent Boolean functions have the highest nonlinearity
possible, which makes them useful in the design of block
and stream ciphers. Maximum length sequences based on
bent functions have cross-correlation and autocorrelation
properties that are close to the ones of Gold and Kasami
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codes [11], which have applications in spread spectrum
communication [5].

While we can mathematically define bent functions pre-
cisely, to generate them it is a different matter. One needs
sophisticated mathematical (like invariant theory) and com-
putational tools to list all n-variable bent functions (this has
been achieved for n < 8). Some of these methods cannot be
easily parallelized, and do not offer a significant improve-
ment in a reconfigurable environment.

Using the SRC-6 reconfigurable computer, we have
tested millions of Boolean functions. Specific sets of
Boolean functions were chosen based on their specific prop-
erties, including degree, homogeneity, and symmetry. These
groups were evaluated for relationships between nonlinear-
ity and specific properties. The objective is to find groups of
Boolean functions that are rich in bent functions [1]. These
groups, if small enough, can be tested exhaustively. Testing
across the entire set of functions, even for small numbers
of variables, e.g., n = 6 or more, is infeasible because of
the large number of functions. The use of the transeunt tri-
angle enables functions to be generated easily in one form,
converted to another form and then tested for certain char-
acteristics. Without the transeunt triangle [2, 3], important
groups of functions could not be tested efficiently.

2 Background and Definitions

Definition 2.1. A Boolean function f in n variables is
a map from the n-dimensional vector space V,, = Fg
to Fo, the two-element field. For a function f, let fo =
f(0,0, ce ,0), f1 = f(0,0, ey ].), ey and fznfl =
f(l, 1,..., 1) TT = (fo fl . f2"71) is the truth table
representation of f.

Example 2.1. f = xixox314 has the truth table rep-
resentation TT = (0000000000000001). ¢g =
r1Ty @ x3w4 has the truth table representation TT =
(0001000100011110). (End of Example)

Definition 2.2. A linear function is the constant 0 function
or the exclusive-OR of one or more variables. An affine



function is a linear function or the complement of a linear
function.

Example 2.2. There are 16 linear functions on 4 variables,
0, x1, T2, T3, Tg, T1 D To, T1 D x3, T1 D T4, To D T3,
T2DT4, T3DTs, T1DT2D T3, 1 DT2 DTy, T1 DT3 DTy,
To B x3 B x4, and x1 B T2 B x3 B x4. These functions and
their complements comprise the 32 4-variable affine func-
tions. (End of Example)

Affine functions, when used in encrypting a plaintext
message, are susceptible to a linear attack. We seek func-
tions that are as “far”” away as possible from affine functions.

Definition 2.3. The Hamming distance d(f,g) between
two functions f and g is the number of places where their
truth table representations differ.

Definition 2.4. The nonlinearity NLy¢ of a function f is
the minimum Hamming distance between f and an affine
function.

Example 2.3. f = xyx2x324 has nonlinearity 1, since con-
verting the single I to a 0 in its truth table representation
creates the truth table representation of the constant 0 func-
tion, which is affine. ¢ = x1x9 ® x3214 has a distance 6
or 10 from any affine function. Thus, its nonlinearity is 6.

(End of Example)

Definition 2.5. Let f be a Boolean function on n-variables,
where n is even. [ is a bent function if its nonlinearity is
maximum among n-variable functions.

Example 2.4. Rothaus [14] showed that bent functions
have nonlinearity 2"~ — 251 Thus, [ = x1222324 is ROt
bent (NLy = 1), and g = x122 @ w374 is bent (NLgy = 6).

(End of Example)

Along with the truth table representation, the algebraic
normal form is an important tool in the study of bent func-
tions.

Definition 2.6. The algebraic normal form (ANF) of a
function fis f = Y g caxi'®5? ... ain, where ) is
the exclusive OR sum, a = (a1,as,...,ay), Ca,a; € Fa,
2 =1, and 2} = x;. ANF = (cocy ... con_1) is the

ANF representation of f.

Example 2.5. f = T1xox3x4 has the ANF
f = r1Tox3xy and the ANF representation
ANF = (0000000000000001). g = 129 B @324
has the ANF g = x1x2 ® x3x4 and the ANF representation
ANF =(0001000000001000). (End of Example)

Definition 2.7. The degree of a product term is the num-
ber of variables in that term. The degree of a function f is
the maximum of the degrees among the product terms in the
ANF of f.

Example 2.6. f = zizox314 has degree 4 and g = ©1x5®
r3x4 has degree 2. (End of Example)

Definition 2.8. Functions f and h belong to the same affine
class if and only if f = h ® a, where a is an affine function.

Example 2.7. f = x1xox314, a non-bent function, belongs
to an affine class of 32 functions. g = x1x9 ® T3T4, a
bent function, belongs to an affine class of 32 functions.

(End of Example)

Certainly, each affine class contains the same number of
functions, namely 2ntl  Also, all functions in the same
affine class as a non-affine function f have the same degree.

Definition 2.9. A function f is homogeneous of degree d if
and only if all terms in the ANF of f have degree d.

Example 2.8. f = xix2x374 is homogeneous of degree
4, and g = 122 D T374 IS homogeneous of degree 2.
(End of Example)

Xia, Seberry, Pieprzyk, and Charnes [18] considered ho-
mogeneity in the context of bent functions and showed the
next result.

Theorem 2.1. When n > 6, no n-variable homogeneous
bent function has degree 7.

Because of f = x1x9 @ w374, Theorem 2.1 does not
hold for n = 4. Qu, Seberry, and Pieprzyk [13] found 30
homogeneous 6-variable bent functions of degree 3, and so,
Theorem 2.1 does not hold for n = 6. Therefore, from [13,
18], for n > 6, degree—% n-variable bent functions exist,
but none are homogeneous. More recently, Meng et al. [10]
showed (purely combinatorially) that, for any nonnegative
integer k, there exists a positive integer N, such that for
n > N, there do not exist 2n variable homogeneous bent
functions having degree n — k or more, where NV is the least

integer satisfying 2V =1 > (V) + (M) + -+ ().

3 Architecture of Bent Function Enumerator

A reconfigurable computer allows one to adapt the archi-
tecture to the problem. Fig. 1 shows the architecture to enu-
merate bent functions based on the ANF of the tested func-
tions. This and other variations yield the data we present
later. In all cases, a counter was used to enumerate prospec-
tive functions. This is shown on the left. This is applied to a
block labeled Transeunt Triangle. In this case, the counter
enumerates ANFs; each bit of the counter determines the
presence or absence of a term in the ANF. The transeunt tri-
angle produces the corresponding truth table. This is then
applied to a block that computes the function’s nonlinear-
ity, NL. If NL is maximum, the function is bent, and it is
stored.
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Figure 1. Bent function enumeration circuit

In the SRC-6 reconfigurable computer, this circuit is im-
plemented on a Xilinx Virtex2 Pro FPGA. It is pipelined
and runs at 100 MHz. Specifically, one function is tested
every clock cycle. We used this to enumerate all 6-variable
bent functions [15]. If we had to enumerate all 22° =
1.85 x 10 6-variable functions, this would take 5,849
years. However, Rothaus [14] showed that no bent func-

tion has degree greater than 5. By eliminating functions

with degree greater than Z, it is only necessary to enumer-

ate 2(§)+(g)+(§)+(3) = 2%2 functions. A function in an

affine class is bent if and only if all functions in the same
affine class are bent. As a result, the number of bent func-
tions is found by multiplying the number of affine classes

by the number of functions in each class, 2(D+() = 27 =
128. The number of affine classes with degree 3 or less

is 2(8)+() = 235 At one class (function) per 100 MHz
clock period, this enumeration takes only 5.7 minutes. That
is, by enumerating only the affine classes corresponding to
functions of degree 3 or less, we achieve a reduction of
370 = Tomssw: However, this requires that we quickly
convert between the ANF of a function and its truth table.
For this, we need the Transeunt Triangle of Fig. 1, which
we discuss in the next section.

Fig. 2 shows the circuit that realizes the Nonlinearity
block of Fig. 1. The truth table representation of the func-
tion f is applied on the left to 2”1 sets of exclusive OR
gates to compute 271! distance vectors. The number of 1’s
in these vectors is the distance from f to each affine func-
tion. The Ones_Count circuit produces a binary number
that is the distance between f and an affine function. Then, a
Minimum circuit computes the overall minimum distance.
This is the nonlinearity IV L.

Both the Ones_Count and the Minimum circuit in Fig.
2 are trees. Fig. 3 shows that, in the case of the Ones_Count
circuit, adders of various sizes form the circuit. Fig. 4 shows
that, in the case of the Minimum circuit, two-input one-
output minimum circuits are used.

The circuit to compute nonlinearity is combinational.
However, its delay is larger than the period of the SRC-6’s

Distance vectors
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Figure 2. Nonlinearity circuit
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Figure 3. Ones_Count circuit

100 MHz clock, and so it is pipelined. The added latency
is not a problem; it is much less than the total computation
times we experienced. The FPGA is ideal for this compu-
tation, since the many small additions that are needed are
done simultaneously. This is to be compared with the PC
which has limited adders. Similarly, in the Minimum Cir-
cuit, many comparators are used simultaneously. This is to
be compared with the PC again, which has limited compara-
tors.

Most of the code was written in Verilog. The code that
generated the functions was written in C, and created cir-
cuits on the FPGA. Code on the PC, for example, for input-
output, was also written in C.

4 The Transeunt Triangle
4.1 Definition

Green [8] and others [2, 3, 7] proposed the transeunt tri-
angle as a means to derive the ANF from the truth table of
a given function and, in so doing, produce compact exclu-
sive OR sum-of-products circuits. In this paper, we show
the benefit of the transeunt triangle in a computational ap-
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plication. Not only can the ANF be computed from the truth
table, but the truth table can be computed from the ANF by
using the same algorithm. This yields a significant compu-
tational advantage.

Definition 4.10. The transeunt triangle* is a set of 2" —
1 rows of adjacent 2-input I-output exclusive-OR gates,
where adjacent exclusive-OR gates connect to the same
point. The input is a set of 2" binary values that applies to
the first (bottom) row of the triangle. That is, the inputs con-
nect to a row of 2" — 1 adjacent exclusive-OR gates, whose
outputs connect to a row of 2" — 2 adjacent exclusive-OR
gates, etc.. The apex of the transeunt triangle is a row of just
one exclusive-OR gate. The output of the transeunt triangle
consists of the leftmost input bit and the outputs of the left-
most gates in each row. The inputs are indexed by the binary
tuples 00 ...000, 00...001, 00...010, ..., and 11...111
from left to right. Similarly, the outputs are indexed from the
lower left corner to the apex by the binary tuples 00 . . . 000,
00...001,00...010, ..., and 11 ...111.

Example 4.9. Fig. 5a, shows the transeunt triangle for n =
3. In this case, there are eight inputs and eight outputs.
Table 1 shows an example of the output values for given
input values. Specifically, if the input truth table repre-
sentation, TT = (01101001), which corresponds to
the minterm canonical form X1Zox3 V T12X2%3 V £1Z2T3 V
T1xox3, is applied to the bottom, then the left side of the
transeunt triangle corresponds to the output ANF represen-
tation of this function, ANF = (01101000), which is
T3 @ o ® x1. Conversely, Table 1 also shows that if the
input ANF representation, ANF = (01101001), is ap-

*Green [8] and others [3] define the transeunt triangle to be the logic
values at the inputs and outputs of the 2-input 1-output exclusive-OR gates.
We define it to be a circuit of exclusive-OR gates.

plied to the bottom, then the truth table representation of
that function, TT = (01101000), is produced on the left
side of the transeunt triangle. (End of Example)

4.2 The Transeunt Triangle Proof

Input: Truth table (ANF)
a) Full Transeunt Triangle

Input: Truth table (ANF)
b) Reduced Transeunt Triangle

Figure 5. Comparing the full and reduced
transeunt triangle for n = 3.

Green [8] did not prove that the transeunt triangle con-
verts a truth table representation to an ANF representation.
We do so now. The following result from [9, p. 68] will be
used in our proof.

Theorem 4.2 (Lucas). Let p be a prime number, and two
integers represented in base p, namely n = ngp® + --- +
nipl+ngandr = rp*+- - +ript+ro, with0 < ng,r; <

) )

The main result of this section is as follows.

Theorem 4.3. If the input to the transeunt triangle is the
truth table representation of an n-variable function f, then
the output is the ANF representation of f. Conversely, if the
input to the transeunt triangle is the ANF representation of
an n-variable function f, then the output is the truth table
representation of f.

Proof: The second statement follows from the first because
the logic values in the transeunt triangle are unchanged if all
exclusive-OR gates are rotated 120 degrees clockwise (thus

Table 1. Example transeunt triangle in/out

[ z1mozs = [000 001 010 011 100 101 110 111 |
Output ANF Repr. = | (0 1 1 0 1 0 0 0)
Output Expression T3 D T2 O T1
Input TT Repr.= o 1 1 0 1 0 0 1)

Input Expression
Output TT Repr.= (¥ 1 1 0 1 0 0 0)
Output Expression T1To2x3 V T122X3 V 1T2T3

Input ANF Repr. = o 1 1 0 1 0 0 1)
Input Expression x3 P o B 1 D rireTs

T1Zox3 V 1223 V £1T2T3 V T1T2T3




exchanging the input with the output). We prove the first
statement by induction.

Fig. 6a shows that the first statement is true for all func-
tions on n = 1 variable.

Assume the first statement is true for n, and consider
an n + 1-variable transeunt triangle. Fig. 6b shows that
there are two n-variable transeunt triangles embedded in this
transeunt triangle. Applied as an input to the lower one is
fo—=,,shown as fp in Fig. 6b. By the inductive assumption,
the output of this transeunt triangle is the ANF representa-
tion of fo_.,,.

1 0
f= 1®x1‘ f=1 .
1 _0 1 1
f=x f:
Q 1
f:()‘ f:xl‘
0 0 0. 1
/=0 f=x

Jo S
b) n+1-Variable Transeunt
Triangle Decomposition

a) Transeunt Triangles of All
1-Variable Functions

Figure 6. Transeunt triangle composition

We now show that fy_,,, @ f1_, is applied as an input
to the upper transeunt triangle. Let o be an assignment of
values to xs, 3, ..., and x,,. Then, each input to the upper
triangle is driven by a (271 +1) x (2771 +1) x (2" "1 +1)
transeunt triangle whose inputs assignments range from Oc
through la. This is shown in Fig. 6b as a dotted-line trian-
gle. For example, the left input is driven by a transeunt tri-
angle whose on—141 inputs are 00...000, 00...001, ...,
01...111, and 10...000 where &« = 0...000. Consider
one triangle, and index its inputs by 4, for 0 < ¢ < on—1,
The output of this triangle is the exclusive-OR of some num-
ber of its inputs. The number of times an assignment ap-
pears in the exclusive-OR expression of the inputs is the
number of paths from that input to the output. This is just
(2':1). Fori =0andi = 271, (27271) = 1; i.e. there is
exactly one path to the triangle’s output, and these two in-
puts appear once in the exclusive-OR expression. Consider
i, such that 0 < i < 2"~1. We use Theorem 4.2.

Since n = 2F~1, n; = 0 for all i, except that n,_, =
1. For 0 < r < n = 2F~1 there is at least one j such
that (:fj) = ((1)) = 0. Thus, for 0 < r < n = 2k1,
(Qk:) = 0 (mod 2). Thus, the number of paths from any
assignment of values in the truth table input to the root is
even. It follows that the only terms that occur are O and
la. We can conclude, therefore, that the input to the upper
transeunt triangle in Fig. 6b is the truth table representation
of fo—z, ® f1—z,, shown in this figure as fy & fi.

By the inductive hypothesis, the output of the upper
transeunt triangle is the ANF representation of fy_,,, &
fi—z,. The input to the n + 1-variable transeunt triangle
in Fig. 6b is the truth table representation of fo_..,Z1 V
fi—z,x1. The output is the ANF representation of fy_.,, &
(fooay ® fi—a, )T1, Which represents the same function. B

4.3 Reduced Transeunt Triangle

We note that, in Fig. 6b, only one of the dotted-line tri-
angles embeds a transeunt triangle (left dotted-line triangle).
That is, all but one of these triangles can be replaced by a
single 2-input 1-output exclusive-OR gate. Doing this yields
the reduced transeunt triangle. Fig. 5b shows the reduced
transeunt triangle for n = 3. In this case, only 12 2-input 1-
output exclusive-OR gates are needed, compared to 28 gates
for the full transeunt triangle.

Definition 4.11. A transeunt triangle is balanced if, for ev-
ery output f, the path length to all inputs on which f de-
pends is the same.

Example 4.10. Both the full and reduced transeunt trian-
gles are balanced. A transeunt triangle in which all outputs
are driven by a cascade of 2-input 1-output exclusive OR
gates is not a balanced transeunt triangle.

Lemma 4.1. The full transeunt triangle for n-variable func-
tions requires (2™ — 1)2"~1 2-input 1-output exclusive-OR
gates, while the reduced transeunt triangle requires n2" !,
which is the smallest possible among all balanced transeunt
triangles using only 2-input 1-output exclusive-OR gates.

Proof: The number of gates in the full transeunt triangle is
fn=1+24+3+---4+2"-1= w The number
of gates r,, in the reduced transeunt triangle is given by the
recurrence relation r,, = 2r,,_1 + 271, with initial condi-
tion r; = 1. Solving yields r,, = n2"~!. The fact that this
is the smallest possible can be seen as follows.

Order the inputs so that they are in lexicographical order,
00...00,00...01,...,and 11...11, and construct a mini-
mal balanced transeunt triangle so that the outputs are in lex-
icographical order. Each output bit indexed by 0105 ... 0,
is the exclusive OR of all input bits indexed by i1, 22, . . . iy,
such that i; < o;. For example, output bit 00 . . . 00 is driven
by input bit 00...00, and no gate is needed. Output bit
00...01 is driven by a gate with input bits 00...00 and
00...01, and one gate is needed. Specifically, each out-
put bit is the root of a full binary tree, where the leaves are
driven by input bits whose index is the same as the output
node’s index where some 1’s may be changed to 0’s. In-
put bit 00...00 is in the binary tree of every output. Let
wt(0102 . .. 0,) be the Hamming weight of 0105 . .. 0, (the
number of 0;’s that are 1). Consider the number of nodes



added to the transeunt triangle constructed so far by out-
put bit 0105 . .. 0,,. The fewest nodes added are those in the
binary tree associated with output bit 0;02 ... 0, that are
along a path from the output bit 0705 . .. 0, to the input bit
1192 ...1%p, such that i; = o4, forall 1 < j < n. None
of these nodes are part of the transeunt triangle constructed
so far. Because the transeunt triangle is balanced, there are
wt(0102 . .. 0,) added nodes. Because of the lexicograph-
ical order of the inputs, all arcs from these nodes must go
toward that part of the transeunt triangle constructed so far.
It follows that the number of gates in a balanced transeunt
triangle is bounded below by the total number of 1’s among
all binary n-tuples, which is n2" 1.
|
In addition, the reduced transeunt triangle yields smaller
delay than the full transeunt triangle. It is straightforward to
show the following.

Lemma 4.2. The full transeunt triangle for n-variable func-
tions requires 2" — 1 gate delays, while the reduced transe-
unt triangle requires n gate delays, where one gate delay is
the delay associated with a 2-input I-output exclusive-OR
gate.

Since the full and reduced transeunt triangles are balanced,
the delay to an output from any of the inputs is identical.
We can specify the gate delays for all outputs of the reduced
transeunt triangle, as follows.

Definition 4.12. Let i and j be non-negative integers. i = j
if and only if the binary representation of j has a 1 every-
where there is a 1 in the binary representation of 1.

The next result appears in [4].

Lemma 4.3. Let f(x1,22,...,2,) be a function. Let t; be
the i-th truth table entry for f, and let a; be the j-th ANF
entry for f. Then, aj = 3, _ . ty, where 3 is modulo 2
sum. Conversely, t; =, . . a.

It follows from Lemma 4.3 that the outputs of the transeunt
triangle are just the exclusive OR of all inputs whose indices
are subsumed by the index of the output. For example, from
Fig. 5b the output 101 is the exclusive OR of the inputs 000,
001, 100, and 101. From this, it can be seen that each output
depends on 2%&*(%) inputs, where i is the index of the output
and wgt(4) is the number of 1’s in the binary representation
of i. The reduced transeunt triangle realizes each output as
a balanced binary tree of exclusive OR gates.

5 Experimental Results

5.1 Speed-up Achievable by the Reconfig-
urable Computer

We compare the computation time required by an SRC-6
reconfigurable computer with the time required by a conven-

tional computer. In our case, this is an Intel Xeon proces-
sor running at 2.8 GHz., which is one of two conventional
microprocessors associated with the SRC-6. The program,
written in C, computes the nonlinearity of n-variable func-
tions, forming the distribution of functions to nonlinearity.
Similarly, the time it takes to do the exact same calculation
on the SRC-6 can be calculated since the throughput is one
function per clock period. The results are shown in Table 2.

Table 2. Speed-up obtained by the SRC-6 re-
configurable computer

n PC Compute SRC-6 Compute Speed-up
Time Time Factor
(@2.8 GHz.) (@100 MHz)

2 6.38 usec. 0.16 usec. 39.9 x
3 457.0 psec. 2.56 usec. 178.5 %
4 0.388 sec. 655.4 psec. 592.0 x
5 25.338 hours 429 sec. || 2,126.3 x
6 39,807,788 years 5,840 years || 6,805.9 x
7 || 2.05 x 10?7 years | 1.08 x 10?3 years || 19,005 x
8 || 2.28 x 1056 years | 3.67 x 10%! years || 62,111 x
Speed-up factors range from 39.9x for n = 2 to

62,111x for n = 8. Note that the speed-up factor should
increase by approximately 4 for each increase in n by 1. On
the PC, the computation time doubles for each increase in n
because the number of affine functions doubles. Similarly,
the number of Ones_Count operations also doubles. How-
ever, on the SRC-6, the circuit size increases; the through-
put of one function per clock cycle remains the same. The
computation times for 2 < n < 5 shown in Table 2 were
achieved by programs on the PC and on the SRC-6 that
enumerated all 22" n-variable functions. The computation
times for 6 < n < 8 for the PC were obtained by run-
ning the C program over a fraction of the functions and then
prorating to compute the time had all functions been enu-
merated. Although the computation time on the SRC-6 for
these values of n is much less, it is still excessive, and this
computation could not be done. However, the speed-up ap-
plies when we enumerate a sufficiently small subset of all
functions. For example, we enumerated all 6-variable func-
tions with degree 3 or less and, in so doing, enumerated all
bent functions [15] using the theorem by Rothaus [14]. As
discussed in Section 3, this computation required 5.7 min-
utes. Had this computation been done on the PC, it would
have taken 6805.9x longer or 27 days. We achieved the
62,111 speed-up associated with n = 8 in computing the
distribution of rotation symmetric functions, as described in
Section 5.4.

5.2 Number of 6-Variable Bent Functions

The computation described in the previous section veri-
fied Preneel’s [12] result that there are 5,425,430,528 bent



functions on 6 variables. We showed further, that 1,777,664
of these functions or 0.03% have degree 2. All of the re-
maining have degree 3.

5.3 Nonlinearity of 6-Variable Homoge-
neous Boolean Functions

Although it is not possible to enumerate all 6-variable
functions, it is possible to enumerate all homogeneous 6-
variable functions. There are 3°°_ (2(8) —1) = 1,114,237
6-variable homogeneous functions. Fig. 7 shows the dis-
tribution of 6-variable homogeneous functions to nonlinear-
ity and degree. The vertical axis shows the log, number of
functions. For example, there are 63 homogeneous func-
tions of nonlinearity O and degree 1; these are the linear
functions. A vertical bar of length 63 extends just above
the tick mark labeled 32 because of compression due to the
log, scale. There is one function, f = 1, of nonlinear-
ity 0 and degree 0. This is not visible in Fig. 7. Nor
is the only function that has degree 6 and nonlinearity 1
(f = z1xow3247526). The bent functions have nonlinearity
28, and Fig. 7 shows there are two different degrees. 13,888
have degree 2 and 30 have degree 3. The next largest nonlin-
earity is 23, and again, functions exist with only degrees 2
and 3. For degrees 3, 4, and 5, there is bell-like distribution
across nonlinearity.

32,768 1

Number of Functions

Degree

Nonlinearity

Figure 7. Distribution of homogeneous 6-
variable functions by nonlinearity and degree

Table 3 shows the resource usage on the Xilinx Virtex2 Pro.

Table 3. Resources used to compute the
nonlinearity of 6-variable homogeneous func-
tions

H Number of

Slice Flip-Flops
4-Input LUTs
Occupied Slices

H Number/Total Percentage

7,959/88,192 9%
12,335/88,192 13%
8,724/44,096 19%

5.4 Nonlinearity of 8-Variable Rotation
Symmetric Boolean Functions

Definition 5.13. A function f is rotation symmetric if and
only if for any (x1,xa,...,x,) € F}

f($1,$271'37 e ,(En) = f(.’L'n,.’I]h.’l?Q, .. 'xnfl)-

In a rotation symmetric function, “rotating” an assignment
of values to the variables leaves the function unchanged. A
special case of rotation symmetric functions are the totally
symmetric functions, in which any permutation of the vari-
ables leaves the function unchanged. Rotation symmetric
functions have interesting properties [5] and there is evi-
dence to suggest that their class may contain bent functions.
It is conjectured [6] that the weight and nonlinearity of a
third degree homogeneous rotation symmetric function are
identical.

Fig. 8 shows the distribution of 8-variable rotation sym-
metric functions to nonlinearity. This shows that more rota-
tion symmetric functions have nonlinearity around 110 than
other values. Relatively few have low nonlinearity (0 — 75)
or high nonlinearity (> 113). This distribution resembles
the distribution of nonlinearity to all functions, which is
known only for n = 4 [1].

4500000000
4000000000
3500000000
3000000000 -
2500000000 -
2000000000 -
1500000000 ~
1000000000 ~

500000000 ~

0 e
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

Nonlinearity

Number of Functions

Figure 8. Distribution of 8-variable rotation
symmetric functions by nonlinearity

Table 4 shows the resource usage on the Xilinx Virtex2 Pro.
Table 4. Resources used to compute the
nonlinearity of 8-variable rotation symmetric
functions

[ Number of

Slice Flip-Flops
4-Input LUTSs
Occupied Slices

[ Number/Total | Percentage ||

9,531/88,192 10%
8,850/88,192 10%
8,540/44,096 19%

6 Concluding Remarks

Our use of the reconfigurable computer focused on a sci-
entific application. We show that the reconfigurable com-



puter is an effective research tool in bent function discov-
ery. Because we adapt the architecture to the problem, we
achieve significant efficiencies. Indeed, we show that a re-
configurable computer can achieve better than a 60,000x
speed-up over a conventional computer for 8-variable func-
tions. The implementation of the transeunt triangle is ben-
eficial in reducing the number of functions through which
we must sieve. We show that the reduction is better than
1,000,000 to 1 for 6-variable functions. Although the trans-
formation produced by the transeunt triangle is generally
accepted as correct, no proof is known. We provide such
a proof. This proof yields the reduced transeunt trian-
gle, which produces the identical transformation of the full
transeunt triangle, but with significantly fewer gates and less
delay. We show examples of results obtained from this tool.
For other results, see Schneider [15] and Shafer [16].

Nonlinearity is only one type of cryptographic property.
Other types include strict avalanche criterion, propagation
criterion, correlation immunity, and algebraic immunity.
There is significant promise in exploiting the efficiencies of
a reconfigurable computer to make new discoveries in these
important topics.
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